

Aalborg Universitet

Skyline Queries over Knowledge Graphs

Keles, Ilkcan; Hose, Katja

Published in:
The Semantic Web – ISWC 2019 - 18th International Semantic Web Conference, Proceedings

DOI (link to publication from Publisher):
10.1007/978-3-030-30793-6_17

Creative Commons License
CC BY 4.0

Publication date:
2019

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Keles, I., & Hose, K. (2019). Skyline Queries over Knowledge Graphs. In C. Ghidini, O. Hartig, M. Maleshkova,
V. Svátek, I. Cruz, A. Hogan, J. Song, M. Lefrançois, & F. Gandon (Eds.), The Semantic Web – ISWC 2019 -
18th International Semantic Web Conference, Proceedings (pp. 293-310). Springer. https://doi.org/10.1007/978-
3-030-30793-6_17

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: March 19, 2024

https://doi.org/10.1007/978-3-030-30793-6_17
https://vbn.aau.dk/en/publications/f1746e90-713f-4f71-8b31-2e931ff5712d
https://doi.org/10.1007/978-3-030-30793-6_17
https://doi.org/10.1007/978-3-030-30793-6_17

Skyline Queries over Knowledge Graphs

Ilkcan Keles[0000−0002−1424−5223] and Katja Hose[0000−0001−7025−8099]

Aalborg University, Aalborg, Denmark
{ilkcan,khose}@cs.aau.dk

Abstract. With the continuously growing amount of data offered in the
form of knowledge graphs, users are often overwhelmed by the amount of
potentially relevant information and entities. Hence, helping users find
relevant data is a problem that becomes more and more important. Sky-
line queries are typically used in multi-criteria decision making applica-
tions to find a set of objects that are of interest to a user. This type of
queries has been extensively studied over relational data in the database
community. But only little attention has yet been paid to investigating
if and how the skyline principle can help identifying sets of interest-
ing entities in knowledge graphs. In this paper, we therefore show how
the skyline principle can be applied to RDF knowledge graphs and help
the user find interesting entities. In particular, we present algorithms
using commonly used standard interfaces for accessing RDF data and
a lightweight extension of existing interfaces (SkyTPF) to process sky-
line queries. Our experiments show that the proposed algorithms enable
efficient and scalable skyline query processing over knowledge graphs.

1 Introduction

More and more knowledge graphs are becoming available in different fields.
Whereas some knowledge graphs, such as DBpedia [15] and YAGO [9], offer
factual information about real-world entities, others are used by private compa-
nies. For querying publicly accessible knowledge graphs, there are two widely ac-
cepted interfaces: SPARQL endpoints and Triple Pattern Fragments (TPF) [24].
SPARQL endpoints typically use indexes and advanced query planning tech-
niques to enable efficient query processing. On the other hand, the drawback is
that the server running the SPARQL endpoint handles all the query processing
load whereas the client that sends the query simply waits for the result. Hence,
when many clients access an endpoint concurrently, it is likely to have problems
regarding performance and throughput. TPF [24] has been proposed to reduce
the server load by assigning more tasks to the client. To achieve this, a TPF
server is only capable of processing queries consisting of a single triple pattern
instead of complex SPARQL queries. In order to process SPARQL queries, the
client has to take care of the remaining query processing tasks, such as query
planning, filtering, and joins.

Even though these interfaces provide means of querying knowledge graphs,
it is often very difficult for users to find the entities that they are interested in.

For instance, assume that a user is doing research on planets, consults DBpedia,
and wants to know about planets that have high densities (?d) and high average
speeds (?as). The user is unable to provide a precise scoring function, such as
0.5 ∗ ?d + 0.5 ∗ ?as, that could be used to rank the planets because he/she has
neither any information about the attributes’ domains and ranges nor a clear
understanding of whether one criterion is more important than the other.

In such use cases, skyline queries [3] can help users find interesting entities
without the need to provide a specific weight for each criterion. In other words,
a skyline query allows users to simply provide a set of preferences on the at-
tributes of interest and returns a set of “interesting” entities with respect to
these preferences. More formally, a skyline set consists of all entities that are not
dominated by any other entity; entity ei dominates entity ej if ei is at least as
good in all attributes and better in at least one attribute.

Assuming the above mentioned skyline query for planets with preferences on
high density and high average speed is evaluated on the dataset illustrated in
Fig. 1 (subset of planets in DBpedia), the skyline set consists of Earth and Venus
(highlighted in red). Fig. 1 also illustrates the dominance region of the planets
in the skyline. Intuitively, with the given preferences a skyline point is clearly
“preferable” over any planet contained in the dominance region – we therefore
refer to the latter as being dominated.

Avg. Speed

10km/s10km/s 20km/s20km/s 30km/s30km/s 40km/s40km/s

Density

2000kg/m^32000kg/m^3

4000kg/m^34000kg/m^3

6000kg/m^36000kg/m^3

00

SaturnSaturn

EarthEarth

Europa (Moon)Europa (Moon)

NeptuneNeptune
JupiterJupiterUranusUranus

VenusVenus

Himaliya (Moon)Himaliya (Moon)

Fig. 1. Skyline of Planets

Efficient processing of skyline queries over relational databases [1–3, 6, 13,
18, 19, 22, 27] has been extensively studied. However, there is only very little
related work [5, 29] on processing skyline queries over knowledge graphs. These
works assume direct control over the data source and how the data is stored.
We, on the other hand, aim at supporting skyline computation over standard
and lightweight interfaces that we do not control and that are not restricted to
skyline queries only.

In this paper, we propose methods for skyline query computation over stan-

dard interfaces, such as SPARQL endpoints and TPF. In addition, we propose
the SkyTPF interface, which extends TPF and aims at making skyline query
processing more efficient. Finally, we provide an extensive experimental evalua-
tion of the proposed methods. The experiments show that the proposed methods
enable efficient skyline query processing over knowledge graphs. In summary, our
main contributions are: (i) methods to enable skyline query processing over stan-
dard RDF interfaces (SPARQL endpoints and TPF), (ii) SkyTPF; a TPF-like
interface on the server-side and a client-side algorithm to optimize and process
skyline queries, (iii) an extensive experimental evaluation of these methods.

The remainder of this paper is organized as follows. Section 2 discusses re-
lated work, and Section 3 introduces background and definitions. While Section 4
presents how to process skylines over standard interfaces (SPARQL endpoints
and TPF), Section 5 presents the SkyTPF interface as well as a client-side al-
gorithm for skyline computation. Finally, Section 6 presents our evaluation, and
Section 7 concludes the paper.

2 Related Work

The general problem of computing skyline queries was first introduced by Kung
et al. [14] as the maximum vector problem in the field of computational ge-
ometry. The term skyline was first introduced by Börzsönyi et al. for relational
databases [3]. Since then skyline queries have attracted significant interest in the
database community as they enable finding interesting data objects in consider-
ation of multiple preference criteria. To compute skyline queries over relational
databases, Börzsönyi et al. [3] propose the Block Nested Loops (BNL) and Di-
vide and Conquer (D&C) algorithms. BNL scans the database in several rounds
and compares each data object with the current set of candidate skyline objects.
If a data object p is not dominated by any of the current skyline candidates,
p is added to that set and, if necessary, all data objects dominated by p are
removed. The D&C algorithm is based on the divide and conquer principle. So,
it first partitions a dataset into several subsets, computes the skyline in each of
the subsets, and then combines the partial results by checking them for mutual
dominance. The SFS algorithm [6] improves BNL by presorting the data objects
with respect to a monotone function. Bartolini et al. [2] propose the SaLSa algo-
rithm to eliminate the need to scan all the data objects in the database. All these
algorithms target skyline computation over relational data, where all attributes
of a data item are combined in a single relational tuple. In knowledge graphs,
however, joins are required to obtain the attribute values. Whereas the BNL
principle of comparing all data items against each other is of course applicable
in arbitrary setups, the proposed optimizations are tailored towards relational
data that is available locally and cannot be applied to our problem scenario.

The literature proposes a variety of algorithms [1,13,18,19,22,27] that focus
on skyline computation over vertically partitioned data and for multi-relational
settings where joins are required. Balke et al. [1] propose algorithms (BDS and
IDS) to compute skylines over vertically partitioned data where each server hosts
a single skyline attribute. The BDS algorithm uses sorted access until a pivot

data object is reached at all servers. Then, other attributes of the data objects
that are better than the pivot object in at least one attribute are obtained by
random access from the servers. The IDS algorithm improves BDS by using
a combination of sorted and random access to reach the pivot object. Jin et
al. [13] introduce the multi-relation skyline operator. Vlachou et al. [27] propose
the sort-first skyline join (SFSJ) algorithm that provides an early termination
condition and makes it possible to compute skyline objects progressively. Trim-
ponias et al. [22] address the skyline computation problem in a setting where
each server has a disjoint set of attributes together with a record ID. Their algo-
rithm is able to support any decomposition of the attributes among the servers.
Nagendra et al. [18, 19] improve the state-of-the-art algorithms by applying re-
gion based pruning before skyline computation. In our case, we assume that
we access the knowledge graph via standard interfaces – potentially on remote
servers. Unfortunately, these interfaces do not provide sorted access and random
access at the same time, which renders the above mentioned techniques inappli-
cable. There are also numerous approaches on horizontally partitioned data in
P2P systems [10–12, 26, 28]. These systems differ substantially from our setup
as the data is typically located on remote peers in a distance of several hops
without knowing which peers exactly provide relevant data for a given query. In
this paper, however, we assume a direct connection to the relevant server.

There are a couple of studies [5, 20, 21, 23, 29] on incorporating preference-
based querying over knowledge graphs. Some studies [20, 21, 23] propose ways
of extending SPARQL for expressing preferences. Siberski et al. [21] provide a
proof-of-concept implementation based on BNL. We also use the BNL algorithm
as a straightforward solution for skyline computation over existing interfaces.
Troumpoukis et al. [23] compare the performance of NL, BNL, and query rewrit-
ing. Schneider et al. [20] claim the extension for preferences can be efficiently
integrated into SPARQL endpoints by using union-find algorithms. We do not
focus on extending SPARQL in this paper. Chen et al. [5] focus on skyline com-
putation on knowledge graphs that are stored as vertically partitioned relations.
They use a header point (pivot object) to prune non-skyline entities. However,
as our goal is to enable skyline query processing using existing interfaces, we
cannot make assumptions on how the data is stored. For this reason, the algo-
rithms proposed in [5] are not applicable to our case. Zheng et al. [29] propose
subgraph skyline analysis over knowledge graphs. However, their methods re-
quire precomputing additional bit-string encodings for each vertex and edge.
Again, as we do not assume that we have control over how the knowledge graph
is stored, this approach is not applicable to our problem scenario. In addition,
we do not want to increase the load on the server too much by pushing more
work to the server for skyline computation since that would reduce throughput
and therefore counteract the idea of TPF.

In addition to skyline querying over knowledge graphs, Lukasiewicz et al. [16]
extend Datalog+/- with preferences and propose algorithms to execute prefer-
ence queries over ontologies [16]. These queries are defined using first order logic
formulas that allow including more general preferences than skyline queries.

However, preference queries on ontologies are out of scope of this paper.

3 Preliminaries

RDF [4] is a standard data format that is widely used to represent information
on the Web; its basic building block is a triple. A triple is defined as a 3-tuple t =
〈s, p, o〉, where s, p, and o correspond to subject, predicate and object, respectively.
The subject of a triple identifies an entity and is either an IRI or a blank node.
The predicate is an IRI representing the relation between subject and object.
And the object can be an IRI, a literal, or a blank node. A knowledge graph
is then defined as a set of triples. In this paper, we assume that the knowledge
graph does not contain blank nodes because blank nodes do not represent any
entities.

Definition 1 (Triple Pattern and Basic Graph Pattern). Let I, L, and
V be the pairwise disjoint sets of IRIs, literals, and variables. A triple pattern
then is an element of (I ∪ L ∪ V)× (I ∪ V)× (I ∪ L ∪ V). We say that a triple
t = 〈s, p, o〉 is a matching triple for a triple pattern tp = 〈stp, ptp, otp〉 or t
satisfies tp if (stp = s ∨ stp ∈ V) ∧ (ptp = p ∨ ptp ∈ V) ∧ (otp = o ∨ otp ∈ V).
The solution to a triple pattern is a mapping µ from V to I ∪L, i.e., the possible
mappings for each variable in the triple pattern. A basic graph pattern (BGP)
is a set of triple patterns. The solution to a BGP is the mappings obtained by
joining the solution mappings of each triple pattern included in the BGP.

After defining the basics of knowledge graphs, let us now define skyline sets
and skyline queries.

Definition 2 (Skyline Set and Dominance). Given a dataset D of n-
dimensional data objects, oi ∈ D dominates oj ∈ D (oi � oj) if oi is better
than or equal to oj in all n dimensions and is strictly better than oj in at least
one dimension with respect to user-defined preference functions. The skyline set
S = {o | o ∈ D∧@e(e ∈ D∧e � o)} consists of the objects that are not dominated
by any other object. If two objects oi and oj do not have a dominance relation
between them, we say that oi and oj are not comparable.

In knowledge graphs, data objects correspond to real-life entities, such as
people, cities, and countries. A skyline query over a knowledge graph is then
defined as follows.

Definition 3 (Skyline Query over Knowledge Graphs). Given a knowl-
edge graph K, a skyline query is defined as a pair q = 〈BGP ,SV 〉, where BGP
is a basic graph pattern and SV is a set of pairs, each of which is a skyline vari-
able with its corresponding preference function (MIN, MAX). Skyline variables are
a subset of variables included in the basic graph pattern. The result of a skyline
query is the skyline set of the solutions to BGP computed with respect to the
skyline variables and the preference functions. The variables of the skyline query
that the preferences are defined on are called dimension variables. A query with
two dimension variables is then called a 2-dimensional skyline query.

For instance, SV = {〈?v1, MIN〉, 〈?v2, MAX〉} means that the user is interested
in a skyline over ?v1 and ?v2, and MIN and MAX will be used to determine domi-
nance between the solution mappings.

In line with [5], we use an extended version of SPARQL to express a skyline
query. The extension contains a SKYLINE keyword together with MIN and
MAX keywords to be able to express preference functions. The query for the
motivational example is illustrated in Listing 1.1.

1 SELECT ?planet ?as ?d
2 WHERE
3 { ?planet rdf:type dbpedia:Planet . #11826 triples
4 ?planet dbpedia:averageSpeed ?as . #739 triples
5 ?planet dbpedia:density ?d . #146 triples
6 }
7 SKYLINE OF ?as MAX, ?d MAX

Listing 1.1. Example Skyline Query

4 Skylines over Standard Interfaces

In this section, we propose client-side algorithms for processing skyline queries
over knowledge graphs using standard interfaces (SPARQL endpoints and Triple
Pattern Fragments) that are commonly used to provide access to knowledge
graphs on the Web.

4.1 SPARQL Endpoint

SPARQL endpoints are widely used to query knowledge graphs on the Web using
the SPARQL query language [7]. As SPARQL does not cover skyline queries, such
servers do not directly support them. Hence, we propose a client-side algorithm
that computes skylines while only sending standard SPARQL queries to the
server (SPARQL endpoint).

The client-side algorithm first retrieves the solution mappings µ for the basic
graph pattern of the query (q .BGP) from the SPARQL endpoint. Then, we
compute the skyline over µ in a block-nested-loop fashion, i.e., we maintain a
skyline set S and scan µ sequentially. When a mapping m is read from µ, the
algorithm checks whether m is dominated by any mapping currently in S. If so,
the algorithm continues with the next mapping. Otherwise, the mappings that
are dominated by m are removed from S, and m is added to S. After iterating
over all mappings in µ, S corresponds to the skyline set and it represents the
output.

Example. Let us assume that Table 1 corresponds to the output mappings
for the BGP of the example query from Listing 1.1. Saturn is read first and
added to the skyline set S. Europa (Moon) is considered next. Since it dominates
Saturn, it is added to S and Saturn is removed from S. Neptune, Jupiter, and
Uranus are considered next consecutively but they are not added to S since they
are dominated by Europa (Moon). Next, Earth is added to S since it dominates
Europa (Moon) and the latter is removed from S. Venus is also added to S since

Table 1. Output Mappings for our Example Query

?planet ?as(km/s) ?d(kg/m3)

Saturn 9.69 687
Europa (Moon) 13.74 3010
Neptune 5.43 1638
Jupiter 13.07 1326
Uranus 6.81 1270
Earth 29.78 5515
Venus 35.02 5243
Himalia (Moon) 3.312 2600

it is incomparable with Earth: Venus has a higher average speed but Earth has
a higher density. When Himalia (Moon) is read, it is not added to S since it is
dominated by Earth. The final skyline set is then S = {Earth, Venus}.

4.2 Triple Pattern Fragments (TPF)

The TPF interface [25] was proposed to increase availability and throughput of
the servers by reducing their computational load. A server hosting a SPARQL
endpoint has to perform all the tasks that are related to query processing such as
query planning, executing joins, and filtering operations included in the query.
However, a TPF server is designed only to process triple pattern requests in
a paged manner. A TPF request contains a single triple pattern and a page
number. The response to a TPF request is a page containing a set of matching
triples together with metadata containing an estimation of the total number
of matching triples. Hence, a TPF server only returns the matching triples for
an input triple pattern without having to invest extensive resources on query
processing. For this reason, the workload of TPF servers is much lower than of
SPARQL endpoints. On the other hand, the workload at the client is considerably
higher.

Our client-side algorithm builds upon the query processing algorithm pro-
posed by Verborgh et al. [25] to retrieve the solution mappings for the basic
graph pattern of a skyline query (q .BGP). The algorithm first iterates over the
triple patterns of q .BGP . At each iteration, the algorithm chooses the most
selective triple pattern as the next triple pattern to process. In order to find
the most selective triple pattern, the algorithm retrieves the first pages of each
triple pattern in q .BGP to obtain the number of matching triples for each triple
pattern.

The algorithm then retrieves all matching triples for the most selective triple
pattern. The remaining triple patterns are updated with respect to the obtained
bindings.

For instance, to process the basic graph pattern of the query given in List-
ing 1.1, the algorithm first processes the third triple pattern since it has the
least number of matching triples (146). If the number of triples per page is 1001,

1 recommended page size according to [25]

we need to send two requests for this triple pattern with page numbers set to
1 and 2. After retrieving the triples and initializing the mappings for ?planet,
the algorithm instantiates 146 triple patterns for each remaining triple pattern
by replacing ?planet with these mappings. So, for processing the remaining two
triple patterns, we have 292 instantiated triple patterns (requests). Once all re-
quests have been successfully processed, the skyline is computed over the output
mappings as described in Section 4.1.

4.3 Bindings-restricted Triple Pattern Fragments

As explained in the previous section, the TPF interface was designed to reduce
the workload of servers when querying knowledge graphs. However, it leads to
a higher client-side workload since clients are responsible for processing joins.
Moreover, it also creates a higher network load since a TPF client has to send
a high number of requests to process a query. In order to address these draw-
backs, Hartig et al. [8] proposed the Bindings-restricted Triple Pattern Fragments
(brTPF) interface. The key consideration is that the request sent to the server
does not only contain a triple pattern but also a set of mappings originating
from intermediate results computed at the client, which are used to prune the
matches of the triple pattern. The number of mappings sent together is deter-
mined by a parameter (maxMpR). In the original paper, this parameter is set
to values between 5 to 50 since more than 50 bindings result in “414 (URI too
long)” response due to being included in HTTP GET requests [8]. In this paper
we set maxMpR to 302.

Processing skyline queries over standard brTPF interfaces in principle works
the same as with TPF interfaces. The only difference is that instead of sending
separate requests for each mapping obtained from the first triple pattern, the
algorithm sends mappings in groups of 30 in a single request to the brTPF server.
This reduces the number of requests to 10 (5 for each remaining triple pattern)
instead of 292 for the example query given in Listing 1.1. Once all requests have
been successfully processed, the skyline is computed over the retrieved mappings
as described in Section 4.1.

5 Skylines over SkyTPF Interface

In this section, we propose an extension of the brTPF interface for skyline query
processing and a client-server hybrid algorithm to compute skylines efficiently.

5.1 SkyTPF Interface

The client-side algorithms presented in Section 4 do not take the skyline prop-
erties into account while processing the skyline query and therefore return all
matching triples regardless of whether the corresponding entities can be part of
the skyline or not. However, by taking skyline properties into account, the server
can prune the search space and increase efficiency.

2 recommended value according to [8]

The main idea behind SkyTPF is to use a pivot entity to prune the set of
skyline candidates. It is a mapping for the variables in triple patterns processed
so far. We add (i) a pivot entity, (ii) a skyline flag, (iii) a skyline variable,
and (iv) a skyline preference function to the request sent to the server. If the
skyline flag is not set, it is identical to brTPF. Otherwise, the server returns
the triples whose corresponding entities are better than or equal to the pivot
entity with respect to the given skyline variable and preference function. Since
the same pivot entity is used for all the skyline triple patterns, i.e., the triple
patterns containing skyline variables, any entity that is not returned from the
server cannot be part of the skyline since it is guaranteed that any such entity
is dominated by the pivot entity. We therefore propose a minimal extension to
the brTPF interface to retain the characteristics of TPF (shifting load to the
clients) while still improving skyline query performance.

In line with the definitions of bindings-restricted triple pattern selector and
bindings restricted triple pattern fragment collection (Definitions 1 and 2, [8]), we
define skyline binding-restricted triple pattern selector and skyline triple pattern
fragment as follows:

Definition 4 (Skyline Binding-Restricted Triple Pattern Selector). A
selector is a function that selects triples from a knowledge graph according to
the provided input. Given a triple pattern tp, a finite sequence of mappings Ω, a
skyline flag sf that is either 0 or 1, a skyline preference function sp that is either
MIN or MAX, a pivot entity pe that satisfies tp, a skyline triple pattern selector
for tp, Ω, sf , sp and pe, denoted by sG(tp, Ω, sf , sp, pe) for a knowledge graph
G is defined by Equation 1. In this equation, m(tp,G ,Ω) denotes the matching
triples for tp that are compatible with the mappings included in Ω. If Ω = ∅,
then m(tp,G,Ω) is simply the set of matching triples.

sG(tp,Ω,sf ,sp,pe)=

m(tp,G ,Ω) if sf =0

{t | t ∈ m(tp,G ,Ω) ∧ (t �sp pe)} if sf =1∧pe is set
(1)

In Equation 1, t �sp pe denotes that corresponding entity of t either domi-
nates or is equal to pe according to the skyline preference function sp and the
skyline variable in tp. As shown in Equation 1, when the skyline flag sf is 0, the
selector function is just a bindings-restricted triple pattern selector.

Definition 5 (Skyline Triple Pattern Fragment). A Linked Data Fragment
(LDF) is defined as a 5-tuple f = 〈u, s, Γ,M,C〉, where u is a URI that hosts the
fragment f , s is a selector function, Γ is the set of triples that are selected with
respect to s, M is a finite set of RDF triples that contains metadata regarding f ,
and C is a finite set of hypermedia controls (Definition 2, [25]). A skyline triple
pattern fragment (SkyTPF) collection is defined for a given hypermedia control c,
and a maxMpR value. A specific LDF collection F is called a SkyTPF collection
if there exists one LDF 〈u, s, Γ,M,C〉 ∈ F for any possible triple pattern tp,
any finite sequence of solution mappings Ω with at most maxMpR mappings,
any possible skyline flag sf , any possible skyline preference function sp, and any

possible pivot entity pe with the following conditions: (i) The selector function s
is a skyline bindings-restricted triple pattern selector for tp, Ω, sf , sp, pe, (ii)
there is a triple 〈u, void :triples, cnt〉 ∈M , where cnt represents a cardinality
estimate for Γ (if Γ = ∅, then cnt = 0), and (iii) c ∈ C.

Implementation The SkyTPF server is implemented using Java and extends the
brTPF server implementation provided by Hartig et al. [8]. The implementation
is available online3 and uses RDF-HDT data sources [17].

A SkyTPF server is able to serve multiple data sources as TPF and brTPF.
For each data source, the server creates an HDT index file, together with a
dictionary-based index that holds the rank of each subject (i.e. entity) for each
skyline preference function and for each predicate with a numeric value. To put
differently, given a subject URI of an entity, it is possible to get the rank of the
entity for a specific predicate and for a specific skyline preference function using
the index. When a request is received, the server iterates over the mappings
provided in the request to construct the set of triple patterns that will be used
to query the data source. For each mapping, the server updates the variables of
the input triple pattern according to the mapping and adds the triple pattern
to this set. Then, the HDT backend is queried using these triple patterns. The
resulting triples are added to the output set if their corresponding entity has
a rank at least equal to the pivot entity according to the skyline preference
function.

Client-side Query Processing Algorithm The complete algorithm to process sky-
line queries over SkyTPF interfaces is sketched in Algorithm 1.

The client first decomposes the skyline query into skyline and non-skyline
subqueries (lines 1 and 2); the skyline subquery consists of the triple patterns
containing skyline attributes and the remaining triple patterns constitute the
non-skyline subquery. Then, the non-skyline subquery is processed using the
SkyTPF endpoint (line 3); the skyline flag is set to 0 to process this subquery
in a brTPF fashion.

Next, the algorithm determines the pivot using the skyline subquery (line 4)
– we explain how to choose the pivot entity later. The set of candidate skyline
results is populated by sending SkyTPF requests for each triple pattern in the
skyline subquery (lines 6–15). Afterwards, the missing mappings for the skyline
variables are retrieved for the incomplete mappings included in the candidate
set. Finally, the algorithm computes the skyline in a block-nested-loop fashion
and returns the output (lines 16 and 17).

We extend our SkyTPF server to return triples in a paged manner when the
skyline flag is set and no pivot mapping is provided. The output triples match
with the input triple pattern and their corresponding entities are better than re-
maining entities that have a matching triple according to a skyline attribute and
a skyline preference function. The motivation behind this extension is twofold.
First, we need to guarantee that the pivot entity has a matching triple for each

3 https://github.com/ilkcan/skyTPF-server

Algorithm 1 Skyline query processing over SkyTPF interface

Input: q = 〈BGP ,SV 〉 - a skyline query, url - a SkyTPF endpoint URL
Output: S - the set of skyline entities
1: sTPs ← triple patterns that contain a skyline attribute
2: nsTPs ← q.BGP \ sTPs
3: Process the non-skyline subquery and initialize the set of mappings µ by sending

brTPF requests to url
4: pe = DeterminePivot(url , µ, sTPs)
5: candSkylines = ∅
6: for all tp in sTPs do
7: Retrieve the matching triples by sending a skyTPF request for tp with pe and

the corresponding skyline preference function and initialize the mappings µtp wrt
the triples

8: for all m in µtp do
9: if A mapping ms contains the subject mapping of m exists in candSkylines

then
10: Extend ms with m
11: else
12: Add m to candSkylines
13: end if
14: end for
15: end for
16: Retrieve missing skyline variables of candSkylines by sending brTPF requests
17: Compute the set of skyline entities S by applying BNL algorithm
18: return S

skyline triple pattern. Second, if a pivot entity is better than most of the entities
that have matching triples for all skyline triple patterns, it provides a higher
pruning power.

To determine the pivot, we first retrieve the first pages of all skyline triple
patterns using this extension. If there is an entity that is present in the outputs
of all skyline triple patterns and if this entity is included in the output of the
non-skyline subquery, this entity is chosen as the pivot entity. Otherwise, the
algorithm continues with the next page.

Example. The complete example for processing a 2-dimensional skyline
query using the SkyTPF interface is given in Figure 2. The query is defined
as q.BGP = {〈?id, a1, ?A1〉, 〈?id, a2, ?A2〉} and q.SV = {〈?A1, MAX〉 〈?A2, MAX〉}.
For ease of presentation, we leave the non-skyline triple patterns out and assume
that the non-skyline output is O = {A,B,C,D,E, F,G}. In order to determine
the pivot entity, the algorithm requests first pages of the triple patterns that
include the skyline attributes A1 and A2. Since D is part of both pages and is
also included in the non-skyline output, it is selected as the pivot entity. Then,
the algorithm determines the set of candidates Sc = {D,E, F} by sending a
SkyTPF request for each attribute and combine the responses. The algorithm
then obtains the A1 values for E and F by sending a brTPF request. Finally,
we compute the skyline in a block-nested-loop fashion as described in Section 4

Id A1 A2

A 8 7

B 4 3

C 3 2

D 10 8

E 7 10

F 6 11

G 5 4

H 9 7

I 11 5

Retrieve first pages

D

H

I

First page

wrt A1

D

E

F

First page

wrt A2

D is selected as pivot

Id A1

D 10

Response to

SkyTPF request for

A1 with D as pivot

Id A2

D 8

E 10

F 11

Response to

SkyTPF request for

A2 with D as pivot

Id A1 A2

D 10 8

E 7 10

F 6 11

D

E

F

Skyline Candidates

R
etriev

e M
issin

g
 A

ttrib
u
tes

Compute Skyline

Fig. 2. Example Skyline Computation

and obtain {D,E, F} as the output.

5.2 Extensions

The proposed algorithms can be extended to cases where data is horizontally
or vertically partitioned. Horizontal partitioning occurs when each server stores
all triples of a set of entities and vertical partitioning occurs when each server
stores a set of predicates. In the case of horizontal partitioning, the algorithm
can be applied on each server to compute the skylines for the server and then a
second iteration is needed to compute the global skylines. In the case of vertical
partitioning, the client needs to send the requests to the server that contains the
predicate included in the triple pattern.

6 Experimental Evaluation

This section discusses the results of our evaluation. We first explain the experi-
mental setup in Section 6.1 and we discuss the evaluation results in Section 6.2.

6.1 Experimental Setup

For the experimental evaluation, we have implemented both single-threaded
and multi-threaded versions of the proposed algorithms for TPF, brTPF, and
SkyTPF. The multi-threaded versions send HTTP requests in parallel and the
number of threads is set to the number of CPUs in the machine. We did not

include the SPARQL endpoint based algorithm since it is shown to increase the
load on the server significantly compared to TPF and brTPF [8,25].

We considered comparing our work against a client-side skyline query pro-
cessing algorithm based on SPARQL query rewriting [23]. However, it has al-
ready been shown that BNL outperforms such an algorithm because of expensive
not exists and filter clauses [23]; query re-writing performs better in only 1 out
of 7 queries. Since we use the BNL algorithm in our client-side query processing
algorithms, we do not include a comparison in our evaluation.

Datasets and Queries. We evaluate the proposed methods on synthetic
datasets in line with the literature [2, 3, 5, 6] due to a number of reasons. First,
when we evaluate the methods on synthetic data, we know the underlying dis-
tribution and we are able to see the effect of the underlying distribution on the
performance of the methods. Second, we might introduce a bias in favor of one
algorithm due to the query selection procedure and due to missing information
when we use real datasets. We generated synthetic datasets with independent,
correlated, and anti-correlated distributions using the data generator provided
by Börzsönyi et al. [3]. In the correlated distribution, if an entity is good in
one dimension, it is highly likely that it is good in other dimensions as well.
In the anti-correlated distribution, the opposite holds; good in one dimension,
bad in another. In the independent distribution, the dimensions follow uniform
distribution, so that the probability that an entity is better than another en-
tity with respect to a skyline dimension is independent from their relationship
with respect to another skyline dimension. The anti-correlated distribution is
the worst scenario for any skyline algorithm since it means that almost every
entity is part of the skyline and it is therefore quite difficult to prune the search
space. The number of entities in the generated datasets is between 10, 000 and
50, 000, and the number of skyline dimensions is between 2 and 6. A skyline
query in our setup contains all the skyline dimensions included in the dataset. If
not explicitly mentioned otherwise, the default number of entities is 10, 000 and
the default number of skyline variables (dimensions) is 4.

Metrics. To evaluate and compare these approaches, we have measured the
number of HTTP requests sent to the server, the number of candidates that the
client computes the skylines on, and the query processing time. The number of
HTTP requests provides a measure to assess the network load introduced by
an algorithm. We present a single value for each method for this metric since
multi-threading does not have an effect on it. We decided to include the number
of skyline candidates metric in our experimental evaluation to assess the effect
of pruning for the SkyTPF-based method.

Configuration. The server is hosted on a virtual machine with 4 2.29 GHZ
CPUs and 8GB of main memory and the client is hosted on a virtual machine
with 2 2.29 GHZ CPUs and 2GB of main memory.

6.2 Evaluation Results

Figure 3 shows the pruning power of SkyTPF’s client algorithm for different
dataset distributions. As expected, SkyTPF’s pivot based pruning is quite ef-

2 3 4 5 6
Number of Dimensions

0

2

4

6

8

10

Nu
m

be
r o

f S
ky

lin
e

Ca
nd

id
at

es
 (K

)

Correlated
Anti-Correlated
Independent

5 10 15 20 25 30 35 40 45 50
Number of Entities (K)

0

10

20

30

40

50

Nu
m

be
r o

f S
ky

lin
e

Ca
nd

id
at

es
 (K

)

Correlated
Anti-Correlated
Independent

Fig. 3. Pruning power of SkyTPF’s client algorithm
fective for the correlated dataset. The number of skyline candidates for the
independent dataset is below 50% of the number of entities even for 6 dimen-
sions. Moreover, the number of skyline candidates for the dataset including 50K
entities is less than 10K which means that our algorithm manages to prune 80%
of the entities. As expected, the figure also shows that the algorithm based on
SkyTPF has very low pruning power when the dataset is anti-correlated.

2 3 4 5 6
Number of Dimensions

0

10

20

30

40

50

60

Qu
er

y
Pr

oc
es

sin
g

Ti
m

e
(s

)

Correlated
SkyTPF (MT)
SkyTPF (ST)
brTPF (MT)
brTPF (ST)
TPF (MT)
TPF (ST)

2 3 4 5 6
Number of Dimensions

0

20

40

60

Nu
m

be
r o

f H
TT

P
Re

qu
es

ts
 (K

)
Correlated

SkyTPF
brTPF
TPF

Fig. 4. Effect of the number of dimensions (correlated dataset)

Figure 4 illustrates the effect of the number of dimensions on the proposed
algorithms for the correlated dataset. The TPF-based client-side algorithm per-
forms significantly worse than the brTPF-based and SkyTPF-based algorithms.
The TPF-based algorithm is between 6–8 times slower and needs at least an
order of magnitude more HTTP requests to process skyline queries. To present
the performance difference between algorithms more clearly and to demonstrate
the results in a finer granularity, we omit our results for TPF.

Figure 5 shows the effect of the number of entities and the number of sky-
line dimensions on the proposed methods for different data distributions. The
performance of the proposed methods becomes worse as the number of entities
and the number of skyline variables increase for all distributions. This is ex-
pected since the number of dominance checks and the number of variables that
the dominance will be checked on increases, respectively. The experimental re-
sults also show that the proposed methods benefit from multi-threading since
the algorithm can send HTTP requests and parse the responses in parallel.

As shown in Figure 5, SkyTPF performs better than brTPF for the correlated
dataset. This is due to the fact that when data is correlated, a good pivot
entity provides an effective pruning power. On the other hand, the figure also

2 3 4 5 6
Number of Dimensions

0

2

4

6

8

Qu
er

y
Pr

oc
es

sin
g

Ti
m

e
(s

)

Correlated
SkyTPF (MT)
SkyTPF (ST)
brTPF (MT)
brTPF (ST)

2 3 4 5 6
Number of Dimensions

0

2

4

6

8

10

12

Qu
er

y
Pr

oc
es

sin
g

Ti
m

e
(s

)

Independent
SkyTPF (MT)
SkyTPF (ST)
brTPF (MT)
brTPF (ST)

2 3 4 5 6
Number of Dimensions

0

10

20

30

40

50

60

Qu
er

y
Pr

oc
es

sin
g

Ti
m

e
(s

)

Anti-Correlated
SkyTPF (MT)
SkyTPF (ST)
brTPF (MT)
brTPF (ST)

2 3 4 5 6
Number of Dimensions

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Nu
m

be
r o

f H
TT

P
Re

qu
es

ts
 (K

)

Correlated
SkyTPF (MT/ST)
brTPF (MT/ST)

2 3 4 5 6
Number of Dimensions

0

1

2

3

Nu
m

be
r o

f H
TT

P
Re

qu
es

ts
 (K

)

Independent
SkyTPF (MT/ST)
brTPF (MT/ST)

2 3 4 5 6
Number of Dimensions

0

1

2

3

4

Nu
m

be
r o

f H
TT

P
Re

qu
es

ts
 (K

)

Anti-Correlated
SkyTPF (MT/ST)
brTPF (MT/ST)

5 10 15 20 25 30 35 40 45 50
Number of Entities (K)

0

5

10

15

20

25

30

Qu
er

y
Pr

oc
es

sin
g

Ti
m

e
(s

)

Correlated
SkyTPF (MT)
SkyTPF (ST)
brTPF (MT)
brTPF (ST)

2 3 4 5 6
Number of Dimensions

0

2

4

6

8

10

12

Qu
er

y
Pr

oc
es

sin
g

Ti
m

e
(s

)

Independent
SkyTPF (MT)
SkyTPF (ST)
brTPF (MT)
brTPF (ST)

2 3 4 5 6
Number of Dimensions

0

10

20

30

40

50

60

Qu
er

y
Pr

oc
es

sin
g

Ti
m

e
(s

)

Anti-Correlated
SkyTPF (MT)
SkyTPF (ST)
brTPF (MT)
brTPF (ST)

5 10 15 20 25 30 35 40 45 50
Number of Entities (K)

0

2

4

6

8

10

Nu
m

be
r o

f H
TT

P
Re

qu
es

ts
 (K

)

Correlated
SkyTPF (MT/ST)
brTPF (MT/ST)

5 10 15 20 25 30 35 40 45 50
Number of Entities (K)

0

2

4

6

8

10

Nu
m

be
r o

f H
TT

P
Re

qu
es

ts
 (K

)

Independent
SkyTPF (MT/ST)
brTPF (MT/ST)

5 10 15 20 25 30 35 40 45 50
Number of Entities (K)

0.0

2.5

5.0

7.5

10.0

12.5

Nu
m

be
r o

f H
TT

P
Re

qu
es

ts
 (K

)
Anti-Correlated

SkyTPF (MT/ST)
brTPF (MT/ST)

Fig. 5. Effect of the number of dimensions and the number of entities on brTPF-based
and SkyTPF-based methods

suggests that the brTPF-based methods are slightly better than SkyTPF-based
methods for anti-correlated datasets. This is due to the fact no matter what
pivot entity is used, basically nothing can be pruned from consideration for
such a data distribution and SkyTPF has some optimization overhead. Finally,
SkyTPF-methods achieve a comparable performance to brTPF-methods for the
independent data. Figure 5 also illustrates the number of HTTP requests to the
server. As expected, the number of HTTP requests also follows a similar trend
with the query processing time.

In summary, the experimental results on synthetic datasets show that
SkyTPF, especially its multi-threaded implementation, is well suited for cor-
related and independent datasets and that it has a slight performance overhead
when dealing with anti-correlated datasets. brTPF-based methods also perform
well without requiring any extensions to the standard interfaces, which enables
skyline query processing over knowledge graphs using standard interfaces. The

SkyTPF-based algorithm should be preferred for skyline query processing on real
datasets as long as the underlying dataset is not expected to be anti-correlated.
However, if one knows that the underlying dataset is anti-correlated with respect
to the skyline attributes, the brTPF-based method should be preferred.

7 Conclusion

In this paper we have studied the problem of computing skyline queries over
knowledge graphs and proposed solutions that exploit standard interfaces to
help the user find interesting entities. Furthermore, we propose, SkyTPF, a
lightweight extension of standard interfaces to process skyline queries more effi-
ciently by pruning the search space. The experimental evaluation shows that the
proposed methods are capable of computing skylines with reasonable response
times. The evaluation also suggests that one should use SkyTPF-based method
for skyline query processing unless the distribution of the data is expected to be
anti-correlated. In our future work, we plan to increase efficiency of skyline com-
putation by using index structures and support skyline query processing over
federations of endpoints/knowledge graphs.

Acknowledgments. This research was partially funded by the Danish Council
for Independent Research (DFF) under grant agreement no. DFF-4093-00301B
and Aalborg University’s Talent Programme.

References

1. W.-T. Balke, U. Güntzer, and J. X. Zheng. Efficient distributed skylining for web
information systems. In EDBT 2004, pages 256–273, 2004.

2. I. Bartolini, P. Ciaccia, and M. Patella. Salsa: Computing the skyline without
scanning the whole sky. In CIKM 2006, pages 405–414, 2006.

3. S. Börzsönyi, D. Kossmann, and K. Stocker. The skyline operator. In ICDE 2001,
pages 421–430, 2001.

4. K. S. Candan, H. Liu, and R. Suvarna. Resource description framework: Metadata
and its applications. SIGKDD Explor. Newsl., 3(1):6–19, July 2001.

5. L. Chen, S. Gao, and K. Anyanwu. Efficiently evaluating skyline queries on rdf
databases. In ESWC 2011, pages 123–138. Springer, 2011.

6. J. Chomicki, P. Godfrey, J. Gryz, and D. Liang. Skyline with presorting. In ICDE
2003, pages 717–719, 2003.

7. K. Clark, L. Feigenbaum, G. Williams, and E. Torres. SPARQL 1.1 protocol. W3C
recommendation, W3C, Mar. 2013. http://www.w3.org/TR/2013/REC-sparql11-
protocol-20130321/.

8. O. Hartig and C. Buil-Aranda. Bindings-restricted triple pattern fragments. In
OTM 2016, pages 762–779. Springer, 2016.

9. J. Hoffart, F. M. Suchanek, K. Berberich, and G. Weikum. Yago2: A spatially
and temporally enhanced knowledge base from wikipedia. Artificial Intelligence,
194:28 – 61, 2013.

10. K. Hose, C. Lemke, and K.-U. Sattler. Processing Relaxed Skylines in PDMS Using
Distributed Data Summaries. In CIKM ’06, pages 425–434, 2006.

11. K. Hose, C. Lemke, K.-U. Sattler, and D. Zinn. A Relaxed But Not Necessarily
Constrained Way from the Top to the Sky. In CoopIS’07, pages 399–407, 2007.

12. K. Hose and A. Vlachou. A survey of skyline processing in highly distributed
environments. VLDB J., 21(3):359–384, 2012.

13. W. Jin, M. Ester, Z. Hu, and J. Han. The multi-relational skyline operator. In
ICDE 2007, pages 1276–1280, 2007.

14. H. T. Kung, F. Luccio, and F. P. Preparata. On finding the maxima of a set of
vectors. J. ACM, 22(4):469–476, Oct. 1975.

15. J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. N. Mendes, S. Hell-
mann, M. Morsey, P. van Kleef, S. Auer, and C. Bizer. Dbpedia - A large-scale,
multilingual knowledge base extracted from wikipedia. Semantic Web, 6(2):167–
195, 2015.

16. T. Lukasiewicz, M. V. Martinez, and G. I. Simari. Preference-based query answer-
ing in datalog+/- ontologies. In IJCAI 2013, pages 1017–1023, 2013.

17. M. A. Mart́ınez-Prieto, M. Arias Gallego, and J. D. Fernández. Exchange and
consumption of huge rdf data. In ESWC 2012, pages 437–452. Springer, 2012.

18. M. Nagendra and K. S. Candan. Skyline-sensitive joins with lr-pruning. In EDBT
2012, pages 252–263, 2012.

19. M. Nagendra and K. S. Candan. Efficient processing of skyline-join queries over
multiple data sources. ACM TODS, 40(2):10:1–10:46, June 2015.

20. P. F. Patel-Schneider, A. Polleres, and D. Martin. Comparative preferences in
sparql. In EKAW 2018, pages 289–305. Springer, 2018.

21. W. Siberski, J. Z. Pan, and U. Thaden. Querying the semantic web with prefer-
ences. In ISWC 2006, pages 612–624. Springer, 2006.

22. G. Trimponias, I. Bartolini, D. Papadias, and Y. Yang. Skyline processing on
distributed vertical decompositions. IEEE TKDE, 25(4):850–862, April 2013.

23. A. Troumpoukis, S. Konstantopoulos, and A. Charalambidis. An extension of
sparql for expressing qualitative preferences. In ISWC 2017, pages 711–727.
Springer, 2017.

24. R. Verborgh, O. Hartig, B. De Meester, G. Haesendonck, L. De Vocht, M. Van-
der Sande, R. Cyganiak, P. Colpaert, E. Mannens, and R. Van de Walle. Querying
datasets on the web with high availability. In ISWC 2014, pages 180–196. Springer,
2014.

25. R. Verborgh, M. V. Sande, O. Hartig, J. V. Herwegen, L. D. Vocht, B. D. Meester,
G. Haesendonck, and P. Colpaert. Triple pattern fragments: A low-cost knowledge
graph interface for the web. Journal of Web Semantics, 37-38:184 – 206, 2016.

26. A. Vlachou, C. Doulkeridis, Y. Kotidis, and M. Vazirgiannis. SKYPEER: Efficient
Subspace Skyline Computation over Distributed Data. In ICDE, pages 416–425,
2007.

27. A. Vlachou, C. Doulkeridis, and N. Polyzotis. Skyline query processing over joins.
In SIGMOD 2011, pages 73–84, 2011.

28. S. Wang, B. C. Ooi, A. K. H. Tung, and L. Xu. Efficient Skyline Query Processing
on Peer-to-Peer Networks. In ICDE, pages 1126–1135. IEEE Computer Society,
2007.

29. W. Zheng, X. Lian, L. Zou, L. Hong, and D. Zhao. Online subgraph skyline analysis
over knowledge graphs. IEEE TKDE, 28(7):1805–1819, July 2016.

