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Abstract. Efficient ontology reuse is a key factor in the Semantic Web
to enable and enhance the interoperability of computing systems. One
important aspect of ontology reuse is concerned with ranking most rel-
evant ontologies based on a keyword query. Apart from the semantic
match of query and ontology, the state-of-the-art often relies on ontolo-
gies’ occurrences in the Linked Open Data (LOD) cloud to determine
relevance. We observe that ontologies of some application domains, in
particular those related to Web of Things (WoT), often do not appear in
the underlying LOD datasets used to define ontologies’ popularity, result-
ing in ineffective ranking scores. This motivated us to investigate — based
on the problematic WoT case — whether the scope of ranking models can
be extended by relying on qualitative attributes instead of an explicit
popularity feature. We propose a novel approach to ontology ranking
by (i) selecting a range of relevant qualitative features, (ii) proposing
a popularity measure for ontologies based on scholarly data, (iii) train-
ing a ranking model that uses ontologies’ popularity as prediction target
for the relevance degree, and (iv) confirming its validity by testing it
on independent datasets derived from the state-of-the-art. We find that
qualitative features help to improve the prediction of the relevance degree
in terms of popularity. We further discuss the influence of these features
on the ranking model.

Keywords: Learning to Rank - Ontology Reuse - Web of Things -
Linked Vocabularies - Semantic Interoperability.

1 Introduction

In the Semantic Web, efficient ontology reuse is a key factor to enable and en-
hance the interoperability of computing systems [29]. Approaches to ontology
ranking are a key component in finding and selecting the most relevant ontolo-
gies based on a query [25]. The importance of ontology reuse is also increasing
in Internet of Things (IoT) environments, in which the adoption of Semantic
Web technologies has received great interest [2,4]. Emerging open innovation
IoT ecosystems [15] aim for the seamless discovery, access and integration of
heterogeneous, sensor-originated data through the Web, also referred to as the
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Web of Things (WoT). Efficient ontology reuse for the semantic annotation of
data streams based on existing ontologies is thus a prerequisite to overcome
this semantic interoperability challenge in the WoT [15]. Moreover, it enables
reasoning over data and establishing linkage to existing knowledge on the Web.

Motivation. This work is motivated by the need of researchers and practi-
tioners to discover and select the most relevant ontologies for their needs. The
large number of available ontologies and the fast-paced developments in do-
mains often make it difficult to find and select the most appropriate ontologies.
For the WoT case, this is evidenced through extensive surveys in the litera-
ture [1,10,13,16]. This does not only concern ontologies with regard to sensors
and sensor network setups, but further to sensor observations [13] (e.g., in the
context of smart city use cases with regard to the environment, transportation,
health, homes, and factories). At the core of many state-of-the-art tools that
facilitate ontology reuse — such as repositories, search engines and recommender
systems — lies the ranking of ontologies for a user query in the form of keywords.

Importance of popularity. Fundamental ontology reuse strategies rely on
ontologies’ popularity, which is typically understood as the measure of how often
an ontology is used to model data in the Linked Open Data (LOD) cloud [27].
While rankings foremost take into account the semantic match of query and
ontologies in the collection, current state-of-the-art tools such as Linked Open
Vocabularies (LOV) [32], TermPicker [28], and vocab.cc [30] further incorporate
such a popularity measure in their ranking model. This is crucial because it
reflects the community’s consensus on ontologies’ relevance, instead of solely re-
lying on how well ontologies semantically match the query. Thus, the approach
of computing the popularity measure has an important influence on the perfor-
mance of the ranking model.

Problem statement. We find that the approach to derive popularity from
LOD datasets, as computed in many state-of-the-art tools, can be problematic
for ontologies of some domains. We illustrate this problem in Fig. 1, which shows
the number of ontologies contained in the well-known LOV platform that have
never been reused in LOD datasets®. In total, only ~ 35% of the ontologies in
the repository have been reused. We identify particular critical domains with no
reuse in any LOD dataset for any ontology in the collection, namely: Services,
Industry, IoT, Transport, and Health. We consider all these domains highly
relevant to WoT application domains (e.g., smart mobility, smart health care,
industry 4.0), which thus forms our motivating case to investigate qualitative
ontology ranking from this perspective. From a more general viewpoint, this
case highlights the problem that the likeliness of missing relevant information to
explicitly determine popularity for all ontologies in a collection is high, leading
to the computation of ineffective popularity scores in the ranking model.

Contributions. This research contributes to the extension of scope and ef-
fectiveness of popularity-driven ontology ranking models, aiming to make these
models less dependent on the underlying popularity measure, such as the se-

3 Extracted from the LOV SPARQL endpoint: https://lov.linkeddata.es/
dataset/lov/spargl — accessed 03/2019
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Fig. 1. Count of ontologies per category in the LOV repository that were never reused
in LOD datasets, which is often used as underlying popularity measure in state-of-the-
art rankings. It shows that this score is inefficient for many domains related to WoT
applications, for which none of the ontologies appear in any LOD dataset.

lection of LOD datasets (and the way these datasets are assembled). In this
respect, we investigate whether the relevance degree in terms of popularity can
be predicted with qualitative properties of the ontology instead of relying on an
explicit popularity feature as it is common in the state-of-the-art. We perform
this study (based on the problematic WoT case) by learning a ranking model that
uses the popularity as relevance degree for the prediction target. This approach
to ontology ranking results in fairer scores for ontologies that were developed for
use cases other than LOD publication, such as semantic sensor data annotation
and the development of context-aware applications. In general, obtaining rele-
vance labels for learning to rank is perceived as a major challenge and a costly
process [17]. We propose a popularity measure for ontologies of WoT domains
that relies on scholarly data (i.e., the citation history of ontologies’ associated
scientific publication) to determine relevance degrees in terms of popularity. This
approach overcomes limitations of existing approaches, and we ensure that this
measure approximates popularity in terms of reuses by evaluating the model on
state-of-the-art rankings.
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Table 1. Notation.

Var. Meaning Function Meaning

q Keyword query ®(q, 0, R) Relevance feature extractor

qi it" term of query ¢ ®(o, R) Importance feature extractor

o Ontology TF(qi, 0, R) Term frequency

R Ontology repository IDF(q:, R) Inverse document frequency
M2, Word2Vec vector space  coord(q, o) Scoring for number of g; matches
Dw ~n WordNet dictionary queryNorm(q) Normalization factor

w; it" word in collection w propertyBoost(g;, R) Boost based on matched property
D; it feature cosineDistance(q, w;, M2, ) Similarity of query and word

l Relevance judgment sense(q, Dw ) Senses of query (WordNet)

L] Total order synonym(q, Dw n) Synonyms of query (WordNet)

The remainder of this paper is structured as follows. The background and
related work for ontology ranking are presented in Section 2. Section 3 defines
the key ranking features and introduces the approach to relevance mining from
scholarly data. The experiments, data collection and results are presented in
Section 4. The findings are further discussed in Section 5; the conclusion follows.

2 Background and Related Work

This section introduces the background regarding ontology ranking, learning to
rank and related work. The notation in this paper is summarized in Table 1.

2.1 Ontology Ranking and Learning to Rank

Approaches to ontology ranking adopt conventional ranking techniques and mod-
els from information retrieval, which can be categorized as follows [17]: relevance
ranking models aim to rank an ontology o from a repository R based on their
relevance to a query g, i.e., in the form of &(q, 0) or (g, 0, R). These include well-
known approaches (e.g., TF-IDF [26], BM25 [24]) and further ontology-specific
approaches such as centrality of matched concepts in the ontology graph [8]. On
the other hand, one can find importance ranking models that rank ontologies
independently from the query, i.e., in the form of @(0) or @(o, R). Models that
compute scores based on the quality of ontologies in a collection belong to this
category. Well known approaches include PageRank [22]; ontology-specific ap-
proaches consider qualitative metrics such as ontologies’ popularity, availability,
interlinkage to other ontologies, etc. [15]. Some ontology ranking models have
been studied in [7].

In most practical settings various of the previous introduced scoring func-
tions @ are combined to form a better performing ranking model h(g,o, R).
Learning-to-rank approaches allow to automatically tune the parameters when
combining different ranking models by employing supervised machine learning
algorithms [17]. The parameters are derived based on the correlations of features
(i.e., relevance and importance scores) and a corresponding label that determines
how relevant an ontology for a query is. Therefore, in order to obtain a training
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set for learning to rank of ontologies, one requires a ground truth that provides
information about which ontologies o in a collection R are more relevant than
others for a certain query ¢. Such a ground truth is obtained by (i) selecting a
set of queries with a set of relevant ontologies per query, and by (ii) assigning
relevance judgments [ to each query-ontology pair. Obtaining a ground truth is a
difficult task and annotating data with human assessors is costly [17]. Thus, sev-
eral approaches are employed to automatically mine a ground truth by deriving
labels from sources such as user click logs of existing search engines and exploit-
ing usage patterns in LOD datasets. However, such approaches also have their
limitations, e.g., using user click logs requires access to back-ends of existing
search engines with a large user base, which are usually closed systems.

2.2 Related Work

Learning-to-rank techniques have been previously applied to build ontology rank-
ing models. The CBRBench ground truth [6] was gathered through human la-
beling based on how well ontology terms meet their definition in a dictionary,
comprising ten queries with a total of 819 relevance judgments. CBRBench was
used to learn a ranking model in DWRank [8]. Termpicker [28] proposes a ground
truth derived from LOD datasets and a ranking model that relies on popularity
features, offering ontology term recommendations upon a query in form of triple
patterns. In CARRank [33], a ground truth was obtained through human label-
ing for evaluation purposes, resulting in ~ 400 query-term relevance judgments.
Our work differs from these efforts, as we aim to rank ontologies instead of terms.
Further, we aim to propose a ranking that uses popularity as a target instead of
a feature, which is not captured in existing ground truths.

Ontology ranking models have been integrated in tools that help users to find
and select relevant ontologies according to their need, such as the previously
mentioned LOV platform [32], TermPicker [28], and vocab.cc [30]. Such tools
have been previously surveyed in the literature, as in [15]. Ontology reuse has
been studied from more holistic viewpoints, such as methodological guidelines
[11] and choosing ontologies from a set of candidates [14]. This study contributes
to ontology ranking with the overall aim to support the ontology reuse task and
to improve related tools.

Ontology catalogs exist that aim at the collection and curation of ontolo-
gies related to WoT applications. The respective tools provide extensive lists of
ontologies and respective metadata, such as classifications, characteristics (e.g.,
ontology language), and background information. We are aware of three related
projects: LOV4IoT? [12], the Smart City Ontology Catalogue® [23], and the
Smart City Artifacts Web Portal® [3], which maintain an expert selection of re-
spectively 499, 70, and 124 ontologies”. Whereas these projects provide valuable

4 http://lov4iot.appspot.com/

® http://smartcity.linkeddata.es/

5 http://opensensingcity.emse.fr/scans/ontologies
7 Accessed 03/2019
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Table 2. Overview of selected ranking features.

Category Feature Description
®1 Lucene A Lucene match with property boost.
Relevance @5 Word2Vec Score based on closely related words of the query.
&3 WordNet Score based on senses and synonyms of the query.
@, Availability Whether the ontology is accessible at its URI.
&5 Believability Whether provenance information is provided.
P Understandability To which degree terms are labelled and commented.
Importance @7 Interlinking To which degree the ontology refers to external terms.
®g PageRank The importance derived through owl:imports statements.
&9 Consistency Whether a reasoner does not detect inconsistencies.

@1 Richness (Width) The size of the ontology in terms of width.
@11 Richness (Depth) The size of the ontology in terms of depth.

ontology collections for WoT application domains, to the best of our knowledge,
no ranking mechanism that effectively considers these ontologies’ popularity ex-
ists. We base our experiments on the collection of the LOV4IoT catalog as it
contains the largest number of ontologies and more extensive metadata about
the collection.

3 Ranking Features and Relevance Mining

This section presents the selected ranking features that are considered to con-
stitute our proposed model as well as our approach to derive relevance labels
for ontologies of WoT application domains. The selection of ranking features is
based on comprehensive studies in the literature on ontology ranking and qual-
ity [15,34]. We include all attributes identified in survey [15] except for subjective
features and those that only concern term ranking, not ontology ranking. Ta-
ble 2 provides an overview of the selected features. Our interpretation of these
features, as presented in the following, is guided by the review presented in [34].

3.1 Relevance Features

Relevance features aim to determine most suitable matches for a query and an
ontology corpus, for which the following features are selected:

Lucene match (@1). Our fundamental feature to find relevant ontologies
based on keywords is a Lucene match [19]. As argued in [32], ontologies are
structured documents and more meaningful matches should be given a higher
score. We adopt the approach of [32] and apply a property boost to the lucene
match that aims at rewarding more important matches, such as local names,
primary labels (e.g., rdfs:label), and secondary labels (e.g., rdfs:comment). The
definition of the Lucene score is given in Eq. 1.

Lucene(q, 0, R) = coord(g, o) - queryNorm(q)-

n 1
Z (TF(qi7 o, R) - IDF (g, R)2 - propertyBoost(g;, R)) e

i=1
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Word2Vec ($2). Word2Vec [20] trains a neural network to predict the sur-
roundings of a word. We employ this approach to find closely related words of
the input search terms and compute a score based on the cosine distance and
the lucene match. The respective matching score is given in Eq. 2.

Word2VecMatch(q, o, R) = Z cosineDistance(q, w;, My2,) + Lucene(w;, o, R)

w; EcosineDistance(q, M2, )
(2)
WordNet (@3). WordNet [21] is a lexical database in English. We use this
source to find senses and synonyms of the keyword input and compute a score
for these words based on the Lucene search, as given in Eq. 3.

WordNetMatch(q, o, R) = Z Lucene(w;, 0, R) (3)

w; €sense(q, DwordNet) U
w; €synonym(q, DwordNet)

3.2 Importance Features

Importance features aim to assign a score to an ontology within a collection in-
dependently from the query. The selected features that represent the ontologies’
quality are defined as follows:

Availability (@4). The availability indicates whether ontology o can be ac-
cessed at its indicated URI. We derive this feature as given in Eq. 4.

1, if httpResponseCode(URI(0)) = 200

Availabilit = 4

vailability (o) {07 otherwise @
Believability (@5). The believability of a published ontology increases with

the presence of provenance data (e.g., specification of authors and descriptions),

and is computed based on DCMI metadata terms®, as given in Eq. 5.

1, if {URI(o) dc:creator ?c} U
Believability (o) = {URI(o0) dc:description ?d} # & (5)
0, otherwise

Understandability ($g). The better a ontology is documented, the easier
it is to reuse it. We measure the understandability of an ontology by computing
how many of all defined terms in ontology o are labelled and commented.

_|labelledTerms(o)|  |commentedTerms(o)]

Understandability (o) = | defined Terms(o)| | defined Terms(o)| (©6)

Interlinking (®7). Ontologies foster interoperability by establishing links
to previously defined terms. Thus, we count the outlinks found in an ontology
as formalized in Eq. 7.

Interlinking(o) = | outlinks(o)| )

8 http://purl.org/dc/terms/
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PageRank (&s). PageRank [22] is an algorithm that helps to compute the
importance of ontologies based on how often they have been referred to by others
(i.e., inlinks). We compute the PageRank score based on owl:imports statements,
as given in Eq. 8.

1-d Z PageRank(o;, R)

PageRank(o;, R) = 7] imports(o;)|

(8)

ojeimportedBy(o;)

Consistency (Py). Ontologies are expected to be logically consistent, which
can be derived through OWL reasoners. We compute the consistency feature as
given in Eq. 9.

1, if {inconsistencies(o)} = @

Consistency (o) = { )

0, otherwise
Richness (®19 & ®@11). We further consider the size of the ontology in the
form of its width (see Eq. 10) and depth (see Eq. 11).

Width(o) = | typeStatements(o)] (10)
Depth(o) = | subClassOfStatements(o)| + | subPropertyOfStatements(o)] (11)

3.3 Relevance Mining Approach

Learning to rank is a supervised machine learning approach that requires rele-
vance labels for query-ontology pairs. We propose to derive a popularity measure
based on corresponding scientific publications associated with an ontology. We
are inspired to follow this approach as a large number of ontologies for WoT
application domains emerge from research projects, as evidenced in [1,10,13,16].
Furthermore, it overcomes several limitations of other approaches: (i) as pre-
viously discussed, LOD does not provide a reliable source for ontology reuse in
WoT application domains; (ii) deriving relevance through user click logs requires
access to closed back-ends of existing ontology search engines with a large user
base; (iii) human labeling is costly and, unlike mining relevance from scholarly
data, does not come with the benefit of being reproducible.

Our popularity score is based on two measures; (i) citationsPerYear(o): cita-
tions per year are counted and divided by the number of ontologies described in
the same publication to represent the overall impact of the ontology; and (ii) the
linearTrend(0): a linear regression of the citation history to reward positively
trending ontologies combining the intercept and the slope of the linear model.
The final relevance score, as given in Eq. 12, is the mean of both min-max nor-
malized measures and used to derive the total order m; for the set of ontologies
associated with a query, for which an ontology with a higher popularity score is
more relevant than another, i.e., I, > Iy if popularity(o,) > popularity(op).

citationsPerYear(o) + linearTrend (o)
2

A ground truth mining process is always assumed to contain bias and noise:

for relevance mining from scholarly data, all self-citations are subtracted from

popularity (o) = (12)
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the citation history, and incomplete years are not considered (i.e., citations of the
current year and of the year of publication). Although the citation history is often
used to measure a study’s impact, the associated reason for the citation remains
unknown, which is a potential threat to the validity of our popularity scores.
We assume that the proposed measure reflects the overall ontologies’ relevance
for the scientific community (e.g., we assume that for outdated ontologies the
citation count will decline and the score is penalized accordingly through the
linear trend). In the following experiments, the proposed ranking model is tested
on completely independent datasets to evaluate whether our training data is
accurate and the assumptions hold.

4 Experiments

This section presents the experiments following the learning-to-rank approach
to build a ranking model with qualitative properties of the ontologies to predict
the relevance degree. An overview of the following experiments is illustrated in
Fig. 2, whose aims are twofold; (i) to investigate whether qualitative features in
the ranking model help to improve the ranking performance with regard to the
relevance degree, and (ii) to confirm the validity of the results by testing the
model on data sets derived from state-of-the-art ontology rankings.

4.1 Experiment Design

The design choices to learn and evaluate the ranking model are as follows:

Learning algorithm: various learning-to-rank algorithms were proposed by
the machine learning community. The ranking model is trained using the list-
wise LambdaMART algorithm which has successfully been applied for real-world
ranking problems [5] and has also been previously selected in related work for
ontology ranking [8]. We rely on the LambdaMART implementation of the
RankLib? library.

9 https://sourceforge.net/p/lemur/wiki/RankLib/
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FEvaluation metrics: the performance of the ranking model is validated and
tested based on the Mean Average Precision (MAP) [17], Normalized Discounted
Cumulative Gain (NDCG@QXk) [17] and the Expected Reciprocal Rank (ERR@Qk)
[9], considering the first ten elements (k=10). A unified point-wise scale for rel-
evance labels is required for some evaluation metrics, so popularity scores of
query-ontology pairs are mapped to a scale of 0-4 for the experiments. While
MAP is only a binary measure (i.e., 0: considered not relevant, 1-4: considered
equally relevant), the NDCG@k and ERR@k scores do consider the multi-valued
relevance labels (i.e., these metrics consider how well the ranking model matches
the relevance degree 0-4). Whereas NDCG@k only depends on the position in the
ranking, ERR@k discounts the results appearing after relevant ones, which sup-
posedly better reflects user behavior of search engines [9]. The ranking model is
trained by optimizing the ERR@10 score using 10-fold cross validation, meaning
that the training data is randomly partitioned into ten equal sized subsamples.
Iteratively, nine of these folds are used for training and the remaining one for
validation.

Feature sets: the training dataset is prepared by extracting the feature vectors
for each query-ontology pair as introduced in Section 3. We rely on the Lucene
search engine of the Stardog!® triple store, the openllet! OWL reasoner to
infer consistency and the GloVe word vector model'? to compute the Word2Vec
feature.

4.2 Ranking Model Training and Validation

In the first experiment we train and validate the ranking model, as presented in
the following.

Data collection: the data for training and validation is collected from the
LOVA4IoT catalog!®. 455 ontology files related to WoT applications could be
downloaded through the catalog (each file being treated as a separate ontology).
Only 433 files were syntactically correct and stored as named graphs in a local
triple store. We derive training examples by using the available classification
labels from the LOV4IoT catalog as queries (i.e., ontologies’ domain'* and de-
scribed sensor devices!'®), and consider the correspondingly tagged ontologies as
relevant. As previously motivated, we rely on scholarly data to derive degrees
of relevance. From the initial collection, 395 ontologies could be assigned to 125
different scientific publications based on the LOV4loT metadata. This collec-
tion resulted in 1.1M triples with 133K distinct terms and forms the ontology
repository for the experiments. The citation history from Google Scholar of the
assigned publications is used to derive a relevance score for the ontologies based

10 https://www.stardog. com/

1 https://github.com/Galigator/openllet

2 https://github.com/stanfordnlp/GloVe

13 http://lov4iot.appspot.com/

4 Denoted by <http://sensormeasurement .appspot . com/m3#hasContext>

15 Denoted by <http://sensormeasurement .appspot.com/m3#hasM2MDevice>
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Fig. 3. Comparison of trained models with regard to MAP, NDCG@10 and ERR@Q10
on the validation set, for model (a) using only relevance features (@1 - @3) and model (b)
using further the importance features (@1 - ®11). The red lines indicate the difference
of the respective metric’s mean between the two models.

on the approach presented in Section 3. The resulting scores are mapped to rele-
vance labels 1-4 by dividing the range of the highest and lowest popularity score
for each query into four equal-sized intervals, and a random set of irrelevant on-
tologies is added with the relevance label 0. The resulting ground truth contains
1028 query-ontology relevance judgments with 25 different queries, for which the
previously introduced ranking features are extracted to finalize the training set.

Experiment and results: the first experiment aims at investigating whether
the selected qualitative importance features improve the ranking performance
with regard to the relevance degree. Thus, we first train and validate a model
only based on relevance features, and use this as a baseline to evaluate the
performance of a model that further considers the importance features. The
results are summarized in Fig. 3, showing the performance of two ranking models:
the relevance model (a) is only trained with the relevance features (91 - P3),
whereas the full model (b) also includes the importance features (@1 - ®11).

The results show that the trained ranking models appear to appropriately
rank ontologies with regard to their relevance. We observe that the addition of
qualitative features only has a small impact on the MAP score, but significantly
improves the NDCG@10 and ERR@10 scores. This behavior is expected, as MAP
effectively only measures the semantic match of query and relevant ontologies,
whereas the qualitative features aim at ranking relevant ontologies according
to their relevance degree. NDCG@10 and ERR@10 both reflect this degree, as
they take into account multi-valued relevance labels. We thus conclude that
qualitative features helped to improve the ranking with regard to the popularity-
based relevance degree captured in the ground truth. Subsequently, this implies
that the proposed approach can extend the scope of state-of-the-art rankings, by
improving the performance for domains in which ontologies were never reused
in LOD datasets. In such cases, the explicit popularity feature always results in
the same score for all ontologies (i.e., zero) and effective ranking is only based on
relevance (i.e., corresponding to model (a)). The presented approach in contrast
predicts the popularity based on the qualitative features (i.e., corresponding to
model (b)), even when no explicit information of popularity or reuse is present.
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4.3 Ranking Model Evaluation and Comparison

The second experiment aims at evaluating and comparing the model with inde-
pendent datasets derived from state-of-the-art rankings. We do this in order to
ensure that our assumptions for the ground truth, as introduced in Section 3,
hold and to confirm whether the findings from the first experiments are valid.
Due to the lack of existing benchmarks and implementations of ranking models
proposed in the literature, we derive test sets from state-of-the-art tools which
must: (i) provide an open API that returns the computed ranking score of the
top-ranked ontologies for a query; (ii) make the underlying ontology collection
available for download; and (iii) incorporate a popularity measure in their rank-
ing model. We choose to compare the proposed ranking model to approaches from
two different domains that fulfill these requirements: the LOV repository [32],
which measures popularity based on LOD occurrences (by excluding the prob-
lematic domains without any reuse in LOD for the test sets); and the NCBO
recommender 2.0 of the BioPortal [18], which ranks biomedical ontologies and
covers ontology’s popularity in its notion of acceptance, derived by the number
of other curated repositories that also keep an ontology in its collection.

Data collection: we create the test sets based on the LOV REST API'® and
the BioPortal REST API'7. For each platform, we (i) derive a set of test queries
by extracting nouns and verbs from names and descriptions of all ontologies in
the respective repository, (ii) use each test query to retrieve the ranking from
the respective API that forms the ground truth, (iii) use the same strategy as for
the training data to map the ranking scores to a scale of 1-4 and add a random
set of irrelevant ontologies with a relevance of 0, and, lastly, (iv) complete the
test set by extracting the features for all query-ontology pairs from a local triple
store that contains the respective ontology collection. For the LOV test set we
only consider domains with at least five ontologies that have been reused in LOD
datasets, in order to ensure that the derived ground truth sufficiently reflects the
ontologies’ popularity (see Fig. 1). This process resulted in test datasets with
2998 (LOV) and 4313 (BioPortal) query-ontology relevance scores.

Ezxperiment and results: in the second experiment we test both, the validated
relevance model (a) and the full model (b), from the first experiment on the newly
derived datasets. The results are illustrated in Fig. 4, showing the comparison
of the performance for the LOV and BioPortal test set, as well as the mean
performance of the full ranking model from the first experiment (indicated by
the dashed lines).

The experiment results lead to two important conclusions. First, it shows
that the learned models behave reasonably well on these completely independent
datasets, evidenced by the similar performance compared to the first experiment.
This confirms that the underlying ground truth to train our model is valid and,
subsequently, implies that the citation history of ontologies in WoT domains is
a fair approximation of their popularity. Secondly, we observe a similar behavior
of the relevance and the full ranking model as in the first experiment, for which

16 https://lov.linkeddata.es/dataset/lov/api
7 http://data.bioontology.org/documentation
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Fig. 4. Comparison of the validated ranking models from the first experiment with the
LOV and BioPortal rankings. The dashed lines indicate the mean performance of the
full model on the 10 fold validation sets, showing that the model performs similarly
well on the test datasets. The red lines indicate the difference of the respective metric’s
mean between the two models.

the full model improves the ranking in terms of relevance degree. Albeit the
improvement on test sets is lower as in the previous experiment, it shows the same
trend and thus validates our previous conclusion that the selected qualitative
features help to predict the popularity-driven relevance degree of ontologies.
The experimental results are further analyzed and discussed in the following.

5 Discussion

Experiment summary. This study reveals that the prediction of ontologies’
relevance for a query in terms of popularity can be improved with qualitative
features. This confirms the hypothesis of a correlation between ontologies’ pop-
ularity and its quality, based on the intuition that ontologies with better quality
are more likely to be reused than others of the same domain. The presented
approach extends the scope and applicability of the ranking model, as it is not
dependent on measures of LOD occurrences. As motivated previously, this ap-
proach gives a fairer score to ontologies that are not engineered for LOD pub-
lication purposes, such as WoT application domains, and furthermore also for
newly proposed ontologies without any reuses that are well-defined.

Influence of qualitative attributes. The LambdaMART algorithm ap-
plied in the experiments creates an ensemble of regression trees which can be
further analyzed to better understand the model and its consequences. One way
to infer the importance of each feature on the ranking model is the frequency
it was used for classification of the training examples. We use these counts to
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Table 3. Full model feature frequencies averaged over all folds.

Category Feature Avg. Freq.
&, Lucene 1056.9
Relevance @5 Word2Vec 680.0
&3 WordNet 1375.5
@, Availability 697.7
&5 Believability 55.8
&g  Understandability 1237.9
Importance &7 Interlinking 634.8
&$g PageRank 1302.1
&9 Consistency T
@10 Richness (Width) 535.1
@11 Richness (Depth) 646.5

discuss the model’s implications and directions for future research. Table 3 re-
ports the results for feature frequency. We derive the following insights based
on the feature statistics, albeit detailed experimentation would be required to
confirm them. One interesting observation is that the feature believability (@5)
barely contributes to the model and would be the first candidate to be replaced
with another feature. This is surprising, as other approaches fundamentally rely
on provenance information such as ontologies’ authorship to compute the rank-
ing [31]. Other observations include that an ontology’s incoming links (®g) ap-
pear to have much more significance than outgoing links (@7). This is intuitive,
as being imported by another ontology often requires the ontology to be consid-
ered relevant by ontology engineers other than the original authors. In addition,
it can be observed that features that solely reflect the internal graph structure
(P10 and P1;) are less often used by the model than more expressive qualitative
scores such as understandability (@g), consistency (Pg) and availability (Py4).
Implications of proposed ranking approach. The experimental results
of this study show that the proposed approach is promising to extend the scope of
ontology ranking models. As evidenced through the experiments, this approach
can also be adopted for other domains and we expect a model trained on domain-
specific ontologies to perform better. This encourages further experimentation
with more quality attributes, new interpretations of them, and with training sets
from other domains in order to confirm the findings and achieve the development
of better performing ranking models. The quality of learning-to-rank approaches
also highly depends on the size of the training data. We expect future research to
provide larger benchmarks that allow for the study of more complex models and
better comparisons of ranking approaches, such as ground truths derived from
user click logs of existing search engines. In a broader context, this approach to
ranking could also encourage ontology engineers to put even more emphasis on
qualitative traits of proposed ontologies in order to increase exposure and reuse
in applications. Albeit the extraction of qualitative features can be computation-
ally very expensive, these scores are independent from the user query and can
be pre-computed. Thus, the lookup of these scores and re-ranking of relevant
ontologies only has a minor impact on the run-time performance compared to
the complexity of the semantic similarity search in the entire ontology corpus.
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Novel ontology ranking model for the WoT. To the best of our knowl-
edge, the proposed full ranking model is the first that effectively considers pop-
ularity for ontologies in WoT application domains. We thus conclude that the
proposed full ranking model contributes to ontology selection for these domains
in the scope of open IoT ecosystems, e.g., for ontology collections such as the
LOVA4IoT catalog. The ranking model can be integrated in more complex user
interfaces and combined with various other selection criteria in IoT domains,
that, e.g., further consider important standardization efforts.

Limitations. A potential threat to validity of this study’s experimental find-
ings is the ground truth derived through popularity measures from scholarly
data. While it is a common approach to use implicit user feedback as relevance
score (such as user clicks), using citations arguably is a more ambiguous measure.
Yet, as previously mentioned, this approach overcomes limitations of alternatives
and our evaluation showed a reasonable performance. We conclude that further
experimentation is required in order to confirm whether similar observations can
be made for other domains than WoT, by using training examples with a rel-
evance score derived from other popularity measures. From an ontology reuse
perspective, this study is limited as it only considers ranking of single ontologies.
However, practitioners often search for terms (e.g., as offered by LOV [32]) or
combinations of ontologies (e.g., as offered by NCBO 2.0 [18]).

Resource availability. The derived datasets, source files to replicate the
experiments, as well as more detailed results of the ranking models are available
online'®, and may be used for future experiments and comparison studies.

6 Conclusion

In this paper, we show that the prediction of ontologies’ relevance in terms
of popularity can be improved with qualitative features in the ranking model,
making the model independent from explicit computed popularity metrics such
as LOD occurrences. Moreover, we present a ranking model that effectively ranks
ontologies of WoT domains with respect to their popularity. We show that the
proposed model performs similarly well on test set derived from rankings of
state-of-the-art tools, which is encouraging to adopt the presented approach also
in other domains. Lastly, we discuss the importance of the qualitative features
on the overall performance of the ranking model. The proposed model can be
integrated in ontology selection mechanisms for practitioners and researchers in
WoT use cases and thus contributes to establish semantic interoperability in
emerging large-scale IoT ecosystems.

Acknowledgements

The research leading to this publication is supported by the EU’s H2020 Research
and Innovation program under grant agreement Ne 688203 — bloTope.

'8 Supplemental material: https://tinyurl.com/y64sa6le


https://tinyurl.com/y64sa6le

16 N. Kolbe et al.
References
1. Androcec, D., Novak, M., Oreski, D.: Using semantic web for internet of

10.

11.

12.

13.

14.

15.

16.

things interoperability: A systematic review. International Journal on Se-
mantic Web and Information Systems (IJSWIS) 14(4), 147-171 (2018).
https://doi.org/10.4018/IJSWIS.2018100108

Atzori, L., Iera, A., Morabito, G.: The internet of things: A survey. Computer
networks 54(15), 2787-2805 (2010). https://doi.org/10.1016/j.comnet.2010.05.010
Bakerally, N., Boissier, O., Zimmermann, A.: Smart city artifacts web por-
tal. In: International Semantic Web Conference. pp. 172-177. Springer (2016).
https://doi.org/10.1007/978-3-319-47602-5 34

Barnaghi, P., Wang, W., Henson, C., Taylor, K.: Semantics for the inter-
net of things: early progress and back to the future. International Jour-
nal on Semantic Web and Information Systems (IJSWIS) 8(1), 1-21 (2012).
https://doi.org/10.4018 /jswis.2012010101

Burges, C.J.: From ranknet to lambdarank to lambdamart: An overview. Learning
11(23-581), 81 (2010)

Butt, A.S.: Ontology search: finding the right ontologies on the web. In: Proceed-
ings of the 24th International Conference on World Wide Web. pp. 487-491. ACM
(2015). https://doi.org/10.1145/2740908.2741753

Butt, A.S., Haller, A., Xie, L.: Ontology search: An empirical evaluation.
In: International Semantic Web Conference. pp. 130-147. Springer (2014).
https://doi.org/10.1007,/978-3-319-11915-1 9

Butt, A.S., Haller, A., Xie, L.: Dwrank: Learning concept ranking for ontology
search. Semantic Web 7(4), 447-461 (2016). https://doi.org/10.3233 /SW-150185
Chapelle, O., Metlzer, D., Zhang, Y., Grinspan, P.: Expected recipro-
cal rank for graded relevance. In: Proceedings of the 18th ACM confer-
ence on Information and knowledge management. pp. 621-630. ACM (2009).
https://doi.org/10.1145/1645953.1646033

Espinoza-Arias, P., Poveda-Villalon, M., Garcia-Castro, R., Corcho, O.: Ontologi-
cal representation of smart city data: From devices to cities. Applied Sciences 9(1),
32 (2019). https://doi.org/10.3390/app9010032

Fernandez-Loépez, M., Suarez-Figueroa, M.C., Gémez-Pérez, A.: Ontology Develop-
ment by Reuse, pp. 147-170. Springer Berlin Heidelberg, Berlin, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-24794-1 7

Gyrard, A., Bonnet, C., Boudaoud, K., Serrano, M.: Lov4iot: A second life for
ontology-based domain knowledge to build semantic web of things applications.
In: IEEE 4th International Conference on Future Internet of Things and Cloud
(FiCloud). pp. 254-261. IEEE (2016). https://doi.org/10.1109/FiCloud.2016.44
Gyrard, A., Zimmermann, A., Sheth, A.: Building iot-based applications for smart
cities: How can ontology catalogs help? IEEE Internet of Things Journal 5(5),
3978-3990 (2018). https://doi.org/10.1109/JI0T.2018.2854278

Katsumi, M., Griininger, M.: Choosing ontologies for reuse. Applied Ontology
12(3-4), 195-221 (2017). https://doi.org/10.3233/A0-160171

Kolbe, N., Kubler, S., Robert, J., Le Traon, Y., Zaslavsky, A.: Linked vocabulary
recommendation tools for internet of things: A survey. ACM Computing Surveys
(CSUR) 51(6), 127 (2019). https://doi.org/10.1145/3284316

Kolchin, M., Klimov, N., Andreev, A., Shilin, I., Garayzuev, D., Mouromtsev,
D., Zakoldaev, D.: Ontologies for web of things: A pragmatic review. In: Interna-
tional Conference on Knowledge Engineering and the Semantic Web. pp. 102-116.
Springer (2015). https://doi.org/10.1007,/978-3-319-24543-0 8


https://doi.org/10.4018/IJSWIS.2018100108
https://doi.org/10.1016/j.comnet.2010.05.010
https://doi.org/10.1007/978-3-319-47602-5_34
https://doi.org/10.4018/jswis.2012010101
https://doi.org/10.1145/2740908.2741753
https://doi.org/10.1007/978-3-319-11915-1_9
https://doi.org/10.3233/SW-150185
https://doi.org/10.1145/1645953.1646033
https://doi.org/10.3390/app9010032
https://doi.org/10.1007/978-3-642-24794-1_7
https://doi.org/10.1109/FiCloud.2016.44
https://doi.org/10.1109/JIOT.2018.2854278
https://doi.org/10.3233/AO-160171
https://doi.org/10.1145/3284316
https://doi.org/10.1007/978-3-319-24543-0_8

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Popularity-driven Ontology Ranking using Qualitative Features 17

Liu, T.Y.: Learning to rank for information retrieval. Foundations and Trends
in Information Retrieval 3(3), 225-331 (2009). https://doi.org/10.1007/978-3-642-
14267-3

Martinez-Romero, M., Jonquet, C., O’Connor, M.J., Graybeal, J., Pazos, A.,
Musen, M.A.: Ncbo ontology recommender 2.0: an enhanced approach for biomed-
ical ontology recommendation. Journal of Biomedical Semantics 8(1), 21 (2017).
https://doi.org/10.1186/s13326-017-0128-y

McCandless, M., Hatcher, E., Gospodnetic, O.: Lucene in action: covers Apache
Lucene 3.0. Manning Publications Co. (2010), ISBN: 1933988177

Mikolov, T., Sutskever, 1., Chen, K., Corrado, G.S., Dean, J.: Distributed repre-
sentations of words and phrases and their compositionality. In: Advances in neural
information processing systems. pp. 3111-3119 (2013)

Miller, G.A.: Wordnet: a lexical database for english. Communications of the ACM
38(11), 39-41 (1995). https://doi.org/10.1145/219717.219748

Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking:
Bringing order to the web. Technical Report 1999-66, Stanford InfoLab (1999)
Poveda Villalon, M., Garcia Castro, R., Gémez-Pérez, A.: Building an ontology
catalogue for smart cities. pp. 829-839. CRC Press (2014)

Robertson, S.E.: Overview of the okapi projects. Journal of documentation 53(1),
3-7 (1997). https://doi.org/10.1108 /EUM0000000007186

Sabou, M., Lopez, V., Motta, E., Uren, V.: Ontology selection: Ontology evalua-
tion on the real semantic web. In: 4th International Workshop on Evaluation of
Ontologies for the Web (2006)

Salton, G., Buckley, C.: Term-weighting approaches in automatic text
retrieval. Information processing & management 24(5), 513-523 (1988).
https://doi.org/10.1016,/0306-4573(88)90021-0

Schaible, J., Gottron, T., Scherp, A.: Survey on common strategies of vocabulary
reuse in linked open data modeling. In: European Semantic Web Conference. pp.
457-472. Springer (2014). https://doi.org/10.1007/978-3-319-07443-6 31
Schaible, J., Gottron, T., Scherp, A.: Termpicker: Enabling the reuse of vocabulary
terms by exploiting data from the linked open data cloud. In: International Seman-
tic Web Conference. pp. 101-117. Springer (2016). https://doi.org/10.1007/978-3-
319-34129-3 7

Simperl, E.: Reusing ontologies on the semantic web: A feasibil-
ity study. Data & Knowledge Engineering 68(10), 905-925 (2009).
https://doi.org/10.1016/j.datak.2009.02.002

Stadtmiiller, S., Harth, A., Grobelnik, M.: Accessing information about linked
data vocabularies with vocab.cc. In: Semantic Web and Web Science, pp. 391-396.
Springer (2013). https://doi.org/10.1007,/978-1-4614-6880-6 34
Stavrakantonakis, I., Fensel, A., Fensel, D.: Linked open vocabulary ranking and
terms discovery. In: Proceedings of the 12th International Conference on Semantic
Systems. pp. 1-8. ACM (2016). https://doi.org/10.1145/2993318.2993338
Vandenbussche, P.Y., Atemezing, G.A., Poveda-Villalon, M., Vatant, B.: Linked
open vocabularies (lov): a gateway to reusable semantic vocabularies on the web.
Semantic Web 8(3), 437452 (2017). https://doi.org/10.3233/SW-160213

Wu, G., Li, J., Feng, L., Wang, K.: Identifying potentially important concepts and
relations in an ontology. In: International Semantic Web Conference. pp. 33-49.
Springer (2008). https://doi.org/10.1007,/978-3-540-88564-1 3

Zaveri, A., Rula, A., Maurino, A., Pietrobon, R., Lehmann, J., Auer, S.: Qual-
ity assessment for linked data: A survey. Semantic Web 7(1), 63-93 (2016).
https://doi.org/10.3233/SW-150175


https://doi.org/10.1007/978-3-642-14267-3
https://doi.org/10.1007/978-3-642-14267-3
https://doi.org/10.1186/s13326-017-0128-y
https://doi.org/10.1145/219717.219748
https://doi.org/10.1108/EUM0000000007186
https://doi.org/10.1016/0306-4573(88)90021-0
https://doi.org/10.1007/978-3-319-07443-6_31
https://doi.org/10.1007/978-3-319-34129-3_7
https://doi.org/10.1007/978-3-319-34129-3_7
https://doi.org/10.1016/j.datak.2009.02.002
https://doi.org/10.1007/978-1-4614-6880-6_34
https://doi.org/10.1145/2993318.2993338
https://doi.org/10.3233/SW-160213
https://doi.org/10.1007/978-3-540-88564-1_3
https://doi.org/10.3233/SW-150175

	Popularity-driven Ontology Ranking using Qualitative Features

