arXiv:1906.10261v1 [cs.DB] 24 Jun 2019

Datalog Materialisation in Distributed RDF
Stores with Dynamic Data Exchange

Temitope Ajileye, Boris Motik, and Ian Horrocks

Department of Computer Science, University of Oxford, Oxford, UK

Abstract. Several centralised RDF systems support datalog reasoning
by precomputing and storing all logically implied triples using the well-
known seminaive algorithm. Large RDF datasets often exceed the capac-
ity of centralised RDF systems, and a common solution is to distribute
the datasets in a cluster of shared-nothing servers. While numerous dis-
tributed query answering techniques are known, distributed seminaive
evaluation of arbitrary datalog rules is less understood. In fact, most
distributed RDF stores either support no reasoning or can handle only
limited datalog fragments. In this paper we extend the dynamic data ez-
change approach for distributed query answering by Potter et al.] to
a reasoning algorithm that can handle arbitrary rules while preserving
important properties such as nonrepetition of inferences. We also show
empirically that our algorithm scales well to very large RDF datasets.

1 Introduction

Reasoning with datalog rules over RDF data plays a key role on the Semantic
Web. Datalog can capture the structure of an application domain using if-then
rules, and OWL 2 RL ontologies can be translated into datalog rules. Datalog
reasoning is supported in several RDF management systems such as Oracle’s
database ﬂ], GraphDBEI Amazon NeptuneE VLog ﬂﬁ], and RDFox[All of
these system use a materialisation approach to reasoning, where all facts implied
by the dataset and the rules are precomputed and stored in a preprocessing
step. This is usually done using the seminaive algorithm E], which ensures the
nonrepetition property: no rule is applied to the same facts more than once.
Many RDF management systems are centralised in that they store and pro-
cess all data on a single server. To scale to workloads that cannot fit into a
single server, it is common to distribute the data in a cluster of interconnected,
shared-nothing servers and use a distributed query answering strategy. Abde-
laziz et al. @] present a comprehensive survey of 22 approaches to distributed
query answering, and Potter et al. ﬂﬁ] discuss several additional systems. There
is considerable variation between these approaches: some use data replication,
some compute joins on dedicated server, others use distributed join algorithms,

! http://graphdb.ontotext .com/

2 http://aws.amazon.com/neptune,/
3http://www.cs.ox.ac.uk/isg/tools/RDFox/

http://arxiv.org/abs/1906.10261v1
http://graphdb.ontotext.com/
http://www.cs.ox.ac.uk/isg/tools/RDFox/

2 T. Ajileye et al.

and many leverage big data frameworks such as Hadoop and Spark for data
storage and query processing. In contrast, distributed datalog materialisation
is less well understood, and it is more technically challenging. Freshly derived
facts must be stored so that they can be taken into account in future rule appli-
cations, but without repeating derivations. Moreover, synchronisation between
rule applications should be reduced to allow parallel computation.

Several theoretical frameworks developed in the 90s aim to address these
questions [4, 119,13, [15, [21]. As we discuss in more detail in Section Bl they con-
strain the rules so that that each server performs only certain rule applications,
and they send the derived facts to all servers where these facts could participate
in further rule applications. Thus, same facts can be stored on more than one
server, which severely limits the scalability of such systems.

The Semantic Web community has recently developed several RDF-specific
approaches. a number of them are hardwired to fixed datalog rules, such as RDFS
[18, 16] or so-called ter Horst fragment [16, 13]. Focusing on a fixed set of rules
considerably simplifies the technical problems. PLogSPARK [20] and SPOWL
[9] handle arbitrary rules, but they do not seem to use seminaive evaluation.
Finally, several probabilistic algorithms aim to handle large datasets [11, 9], but
these approaches are approximate and are thus unsuitable for many applications.
Distributed SociaLite [14] is the only system we are aware of that provides sem-
inaive evaluation for arbitrary datalog rules. It uses a custom graph model, but
the approach can readily be adapted to RDF. Moreover, its rules must explicitly
encode the communication and storage strategy, which increases complexity.

In this paper we present a new technique for distributed materialisation of
arbitrary datalog rules. Unlike SocialLite, we do not require any distributed pro-
cessing hints in the rules. We also do not duplicate any data and thus remove an
obstacle to scalability. Our approach is based on the earlier work by Potter et al.
[12] on distributed query answering using dynamic data exchange, from which it
inherits several important properties. First, inferences that can be made within a
single server do not require any communication; coupled with careful data parti-
tioning, this can very effectively minimise network communication. Second, rule
evaluation is completely asynchronous, which promotes parallelism. This, how-
ever, introduces a complication: to ensure nonrepetition of inferences, we must
be able to partially order rule derivations across the cluster, which we achieve
using Lamport timestamps [8]. We discuss the motivation and the novelty in
more detail in Section [3] and in Section 4 we present the approach formally.

We have implemented our approach in a new prototype system called DMAT.
In Section] we present the results of an empirical evaluation. We compared
DMAT with WebPIE [16], investigated how it scales with increasing data loads,
and compared it with RDFox to understand the impact of distribution on con-
currency. Our results show that DMAT outperforms WebPIE by an order of
magnitude (albeit with some differences in the setting), and that it can han-
dle well increasing data loads; moreover, DMAT’s performance is comparable to
that of RDFox on a single server. Our algorithms are thus a welcome addition
to the techniques for implementing truly scalable semantic systems.

Distributed Datalog Materialisation 3
2 Preliminaries

We now recapitulate the syntax and the semantics of RDF and datalog. A con-
stant (aka RDF term) is an IRI, a blank node, or a literal. Datalog constants
can be arbitrary sets, but we are limiting them to RDF terms because this work
in within the context of RDF stores. A term is a constant or a wariable. An
atom a (aka triple pattern) has the form a = (ts,t,,%,) over terms ts (subject),
tp (predicate), and t, (object). A fact (aka triple) is an variable-free atom. A
dataset (aka RDF Graph) is a finite set of facts.

We define the set of positions as II = {s,p,o}. Then, for a = (ts,t,,t,) and
7 € II, we define a|, = t,—that is, a|, is the term that occurs in a at position
w. A substitution o is a partial function that maps finitely many variables to
constants. For « a term or an atom, ao is the result of replacing with o(x) each
occurrence of a variable x in « on which o is defined.

A query @ is a conjunction of atoms a; A - - - A a,,. Substitution o is an answer
to @ on a dataset I if a;o € I holds for each 1 < i < n.

A datalog rule r is an implication of the form h < by A - -+ A by, where h is the
head atom, all b; are body atoms, and each variable occurring in h also occurs in
some b;. A datalog program is a finite set of rules. Let I be a dataset. The result
of applying r to I is r(I) = I U {ho | o is an answer to by A--- A'b, on I'}. For P
a program, let P(I) = {J,cpr(I); let P°(I) = I; and let P*"'(I) = P(P*(I)) for
i > 0. Then, P>*(I) = J;5, P*(I) is the materialisation of P on I. This paper
deals with the problem of computing P°°(I) where I is distributed across of a
cluster of servers such that each fact is stored in precisely one server.

3 Motivation and Related Work

We can compute P> (I) using the definition in Section 2} we evaluate the body
of each rule r € P as a query over I and instantiate the head of r for each query
answer, we eliminate duplicate facts, and we repeat the process until no new
facts can be derived. However, since P*(I) C P**1(I) holds for each i > 0, such
a naive approach repeats in each round of rule applications the work from all
previous rounds. The seminaive strategy |2] avoids this problem: when matching
a rule r in round ¢ + 1, at least one body atom of must be matched to a fact
derived in round ¢. We next discuss now these ideas are implemented in the
existing approaches, and then we present an overview of our approach.

3.1 Related Approaches

Several approaches to distributed reasoning partition rule applications across
servers. For example, to evaluate rule (z, R, z) + (z, R,y) A (y, R, z) on { servers,
one can let each server ¢ with 1 < 4 < ¢ evaluate rule

(x,R,z) + (z,R,y) AN (y, R, z) N h(y) = i, (1)

4 T. Ajileye et al.

where h(y) is a partition function that maps values of y to integers between 1
and ¢. If h is uniform, then each server receives roughly the same fraction of
the workload, which benefits parallelisation. However, since a triple of the form
(s, R,0) can match either atom in the body of (), each such triple must be
replicated to servers h(s) and h(o) so they can participate in rule applications.
Based on this idea, Ganguly et al. [4] show how to handle general datalog;
Zhang et al. [21] study different partition functions; Seib and Lausen |13] identify
programs and partition functions where no replication of derived facts is needed;
Shao et al. |15] further break rules in segments; and Wolfson and Ozeri [19]
replicate all facts to all servers. The primary motivation behind these approaches
seems to be parallelisation of computation, which explains why the high rates of
data replication were not seen as a problem. However, high replication rates are
not acceptable when data distribution is used to increase a system’s capacity.

Materialisation can also be implemented without any data replication. First,
one must select a triple partitioning strategy: a common approach is to assign
each (s,p,0) to server h(s) for a suitable hash function h, and another popular
option is to use a distributed file system (e.g., HDFS) and thus leverage its parti-
tioning mechanism. Then, one can evaluate the rules using a suitable distributed
query algorithm and distribute the newly derived triples using the partitioning
strategy. These principles were used to realise RDFS reasoning |18, I6], and they
are also implicitly present in approaches implemented on top of big data frame-
works such as Hadoop [16] and Spark [5, 20, 9]. However, most of these can
handle only fixed rule sets, which considerably simplifies algorithm design. For
example, seminaive evaluation is not needed in the RDFS fragment since the
nonrepetition of inferences can be ensured by evaluating rules in a particular or-
der [5]. PLogSPARK [20] and SPOWL [9] handle arbitrary rules using the naive
algorithm, which can be detrimental when programs are moderately complex.

Distributed Social.ite [14] is the only system known to us that implements
distributed seminaive evaluation for general datalog. It requires users to ex-
plicitly specify the data distribution strategy and communication patterns. For
example, by writing a fact R(a,b) as R[a](b), one specifies that the fact is to
be stored on server h(a) for some function h. Rule () can then be written
in Socialite as Rz < R[z](y) A R[y](z), specifying that the rule should be
evaluated by sending each fact R[a](b) to server h(b), joining such facts with
R[b](c), and sending the resulting facts R[a](c) to server h(a). While the evalu-
ation of some rules is parallelised, servers must synchronise after each round of
rule application.

3.2 Dynamic Data Exchange for Query Answering

Before describing our approach to distributed datalog materialisation, we next
recapitulate the earlier work by Potter et al. [12] on distributed query answering
using dynamic data exchange, which provides the foundation for this paper.
This approach to query answering assumes that all triples are partitioned into
¢ mutually disjoint datasets I1, ..., Iy, with £ being the number of servers. The

Distributed Datalog Materialisation 5

main objectives of dynamic exchange are to reduce communication and elimi-
nate synchronisation between servers. To achieve the former goal, each server
k maintains three occurrence mappings pirs, fik,p, and pyo. For each resource
r occurring in Iy, set u s(r) contains all servers where r occurs in the sub-
ject position, and pg,(r) and pgo(r) provide analogous information for the
predicate and object positions. To understand how occurrences are used, con-
sider evaluating Q = (x, R,y) A (y, R, z) over datasets I1 = {(a, R,b), (b, R, c)}
and I = {(b, R,d), (d, R,e)}. Both servers evaluate () using index nested loop
joins. Thus, server 1 evaluates (z, R, y) over I, which produces a partial answer
o1 ={x — a,y+— b}. Server 1 then evaluates (y, R, z)o1 = (b, R, z) over I; and
thus obtains one full answer oo = {2z — a,y — b, z — c}. To see whether (b, R, z)
can be matched on other servers, server 1 consults its occurrence mappings for
all resources in the atom. Since 1 4(b) = p1,p(R) = {1,2}, server 1 sends the
partial answer o1 to server 2, telling it to continue matching the query. After
receiving o, server 2 matches atom (b, R, z) in I5 to obtain another full answer
o3 ={x — a,y+— b,z — d}. However, server 2 also evaluates (z, R,y) over I,
obtaining partial answer o4 = {x — b,y — d}, and it consults its occurrences to
determine which servers can match (y, R, z)os = (d, R, z). Since ps2 s(d) = {2},
server 2 knows it is the only one that can match this atom, so it proceeds without
any communication and computes o5 = {z — b,y — d, z — e}.

This strategy has several important benefits. First, all answers that can be
produced within a single server, such as o5 in our example, are produced without
any communication. Second, the location of every resource is explicitly recorded,
rather than computed using a fixed rule (e.g., a hash function). We use this to
partition a graph based on its structural properties and thus collocate highly
interconnected resources. Combined with the first property, this can significantly
reduce network communication. Third, the system is completely asynchronous:
when server 1 sends oy to server 2, it does not need to to wait for server 2 to
finish; and server 2 can process o1 whenever it wishes. This eliminates the need
for synchronisation between servers, which is beneficial for parallelisation.

3.3 Our Contribution

In this paper we extend the dynamic data exchange framework to datalog materi-
alisation. We draw inspiration from the work by Motik et al. [10] on parallelising
datalog materialisation in centralised, shared memory systems. Intuitively, their
algorithm considers each triple in the dataset, identifies each rule and body atom
that can be matched to the triple, and evaluates the rest of the rule as a query.
This approach is amenable to parallelisation since distinct processors can simul-
taneously process distinct triples; since the number of triples is generally very
large, the likelihood of workload skew between processors is very low.

Our distributed materialisation algorithm is based on the same general prin-
ciple: each server matches the rules to locally stored triples, but the resulting
queries are evaluated using dynamic data exchange. This approach requires no
synchronisation between servers, and it reduces communication in the same way

6 T. Ajileye et al.

as described in Section We thus expect our approach to exhibit the same
good properties as the approach to query answering by Potter et al. [12].

The lack of synchronisation between servers introduces a technical compli-
cation. Remember that, to avoid repeating derivations, at least one body atom
in a rule must be matched to a fact derived in the previous round of rule appli-
cation. However, due to asynchronous rule application, there is no global notion
of a rule application round (unlike, say, SociaLite). A naive solution would be
to associate each fact with a timestamp recording when the fact has derived, so
the order of fact derivation could then be recovered by comparing timestamps.
However, this would require maintaining a high coherence of server clocks in the
cluster, which is unrealistic in practice. Instead, we use Lamport timestsamps
[8], which provide a cheap way of determining a partial order of events across a
cluster. We describe this technique in more detail in Section 4l

Another complication is due to the fact that the occurrence mappings stored
in the servers may need to be updated due to the derivation of new triples. For
completeness, it is critical that all servers are updated before such triples are
used in rule applications. Our solution to this problem is fully asynchronous,
which again benefits parallelisation.

Finally, since no central coordinator keeps track of the state of the compu-
tation of different servers, detecting when the system as a whole can terminate
is not straightforward. We solve this problem using a well-known termination
detection algorithm based on token passing [3].

4 Distributed Materialisation Algorithm

We now present our distributed materialisation algorithm and prove it to be cor-
rect. We present the algorithm in steps. In Section Tl we discuss data structures
that the servers use to store their triples and implement Lamport timestamps.
In Section we discuss the occurrence mappings. In Section [£.3] we discuss
the communication infrastructure and the message types used. In Section [4.4]
we present the algorithm’s pseudocode. In Section we discuss how to detect
termination. Finally, in Section .6l we argue about the algorithm’s correctness.

4.1 Adding Lamport Timestamps to Triples

As already mentioned, to avoid repeating derivations, our algorithm uses Lam-
port timestamps [§], which is a technique for establishing a causal order of events
in a distributed system. If all servers in the system could share a global clock,
we could trivially associate each event with a global timestamp, which would al-
low us to recover the ‘happens-before’ relationship between events by comparing
timestamps. However, maintaining a precise global clock in a distributed system
is technically very challenging, and Lamport timestamps provide a much simpler
solution. In particular, each event is annotated an integer timestamp in a way
that guarantees the following property (x):

Distributed Datalog Materialisation 7

if there is any way for an event A to possibly influence an event B, then
the timestamp of A is strictly smaller then the timestamp of B.

To achieve this, each server maintains a local integer clock that is incremented
each time an event of interest occurs, which clearly ensures (x) if A and B occur
within one server. Now assume that A occurs in server s; and B occurs in So;
clearly, A can influence B only if s; sends a message to s2, and sa processes
this message before event B takes place. To ensure that holds (%) in such a
case, server sp includes its current clock value into the message it sends to so;
moreover, when processing this message, server s updates its local clock to the
maximum of the message clock and the local clock, and then increments the
local clock. Thus, when B happens after receiving the message, it is guaranteed
to have a timestamp that is larger than the timestamp of A.

To map this idea to datalog materialisation, a derivation of a fact corresponds
to the notion of an event, and using a fact to derive another fact corresponds to
the ‘influences’ notion. Thus, we associates facts with integer timestamps.

More precisely, each server k in the cluster maintains an integer Cj called
the local clock, a set Iy, of the derived triples, and a partial function Ty : I, —» N
that associates triples with natural numbers. Function T} is partial because
timestamps are not assigned to facts upon derivation, but during timestamp
synchronisation. Before the algorithm is started, Cy must be initialised to zero,
and all input facts (i.e., the facts given by the user) partitioned to server k should
be loaded into I} and assigned a timestamp of zero.

To capture formally how timestamps are used during query evaluation, we
introduce the notion of an annotated query as a conjunction of the form

Q=al" Ao NaT, (2)

where each a; is an atom and each i<; is symbol < or symbol <; each a;"
is called an annotated atom. An annotated query requires a timestamp to be
evaluated. More precisely, a substitution ¢ is an answer to @) on I and T} w.r.t.
a timestamp 7 if (i) o is an answer to the ‘ordinary’ query ai A -+ A a, on I,
and (ii) for each 1 <i < n, the value of T} is defined for a;o and it satisfies
Tk (a;0) > 7. For example, let @, I, and T be as follows, and let 7 = 2:

Q= (z,R,y)< ANy, S, z)< I ={{a,R,b),(b,S,c),(b,S,d),(b,S,e)}
T={(a,R,b) = 1, (b,S,c) — 2, (b,S,d) — 3}

Then, o1 = {z — a,y — b,z — ¢} is an answer to Q on I and T w.r.t. 7, whereas
o ={x—a,y—b,z—d} and o3 = {z — a,y— b,z — e} are not. o2 is ex-
cluded because T'((b,S,d)) > 2 and o3 is excluded because the timestamp of
(b, S, e) is undefined.

To incorporate this notion into our algorithm, we assume that each server
can evaluate a single annotated atom. Specifically, given an annotated a™, a
timestamp 7, and a substitution o, server k can call EVALUATE(a™, 7, I, Tk, 0).
The call returns each substitution p defined over the variables in a¢ and o such
that o C p holds, ap € Ij holds, and T is defied on ap and it satisfies T'(ap) 1 7.

8 T. Ajileye et al.

In other words, EVALUATE matches a™ in I and T} w.r.t. 7 and it returns each
extension of o that agrees with a™. For efficiency, server k should index the facts
in Ij; any RDF indexing scheme can be used, and one can modify index lookup
to simply skip over facts whose timestamps do not match 7.

Finally, we describe how rule matching is mapped to answering annotated
queries. Let P be a datalog program to be materialised. Given a fact f, function
MATCHRULES(f, P) considers each rule h < by A---Ab, € P and each body
atom b, with 1 <p <n, and, for each substitution o over the variables of b,
where f = byo, it returns (o, by, Q, h) where Q is the annotated query

<

by Ao Aby g by

A ADS. (3)

Intuitively, MATCHRULES identifies each rule and each pivot body atom b,
that can be matched to f via substitution ¢. This o will be extended to all body
atoms of the rule by matching all remaining atoms in nested loops using function
EVALUATE. The annotations in (3] specify how to match the remaining atoms
without repetition: facts matched to atoms before (resp. after) the pivot must
have timestamps strictly smaller (resp. smaller or equal) than the timestamp of
f. As is usual in query evaluation, the atoms of ([B]) may need to be reordered to
obtain an efficient query plan. This can be achieved using any known technique,
and further discussion of this issue is out of scope of this paper.

4.2 Occurrence Mappings

To decide whether rule matching may need to proceed on other servers, each
server k must store indexes ks, tk,p, and g, called occurrence mappings that
map resources to sets of server IDs. To ensure scalability, ux s, prp, and pig o
need not be defined on all resources: if, say, u, s is not defined on resource r, we
will assume that r can occur on any server. However, these mappings will need
to be correct during algorithm’s execution: if server I, contains a resource r (in
any position), and if r occurs on some other server j in position 7, then ug -
must be defined on r and it must contain j. Moreover, all servers will have to
know the locations of all resources occurring in the heads of the rules in P.

Storing only partial occurrences at each server introduces a complication:
when a server processes a partial match o received from another server, its local
occurrence mappings may not cover some of the resources in o. Potter et al. [12]
solve this by accompanying each partial match o with a vector A = Ay, Ap, Ao
of partial occurrences. Whenever a server extends o by matching an atom, it
also records in A its local occurrences for each resource added to o so that this
information can be propagated to subsequent servers.

Occurrence mappings are initialised on each server k for each resource that
initially occurs in Iy, but they may need to be updated as fresh triples are
derived. To ensure that the occurrences correctly reflect the distribution of re-
sources at all times, occurrence mappings of all servers must be updated before
a triple can be added to the set of derived triples of the target server.

Distributed Datalog Materialisation 9

Our algorithm must decide where to store each freshly derived triple. It is
common practice in distributed RDF systems to store all triples with the same
subject on the same server. This is beneficial since it allows subject—subject
joins—the most common type of join in practice—to be answered without any
communication. We follow this well-established practice and ensure that the
derived triples are grouped by subject. Consequently, we require that py s(r),
whenever it is defined, contains exactly one server. Thus, to decide where to
store a derived triple, the server from the subject’s occurrences is used, and, if
the subject occurrences are unavailable, then a predetermined server is used.

4.3 Communication Infrastructure and Message Types

We assume that the servers can communicate asynchronously by passing mes-
sages. That is, each server can call SEND(m,d) to send a message m to a des-
tination server d. This function can return immediately, and the receiver can
processes the message later. Also, our core algorithm is correct as long as each
sent message is processed eventually, regardless of whether the messages are
processed in the order in which they are sent between servers. We next describe
the two types of message used in our algorithm. The approach used to detect
termination can introduce other message types and might place constraints on
the order of message delivery; we discuss this in more detail in Section

Message PAR]i, 0, @, h,T,A] informs a server that o is a partial match ob-
tained by matching some fact with timestamp 7 to the body of a rule with head
atom h; moreover, the remaining atoms to be matched are given by an anno-
tated query @ starting from the atom with index ¢. The partial occurrences for
all resources mentioned in o are recorded in A.

Message FCT[f, D, kp, 7, A] says that f is a freshly derived fact that should be
stored at server kj. Set D contains servers whose occurrences must be updated
due to the addition of f. Timestamp 7 corresponds to the time at which the
message was sent. Finally, A are the partial occurrences for the resources in f.

Potter et al. [12] already observed PAR messages correspond to partial join
results so a large number of such messages can be produced during query evalua-
tion; moreover, to facilitate asynchronous processing, the received PAR messages
may need to be buffered on the received server, which can easily require exces-
sive space. They also presented a flow control mechanism that can be used to
restrict memory consumption at each server without jeopardising completeness.
This solution is directly applicable to our problem as well, so we do not discuss
it any further.

4.4 The Algorithm

With these definitions in mind, Algorithms [I] and Bl comprise our approach to
distributed datalog materialisation. Before starting, each server k loads its sub-
set of the input RDF graph into I, sets the timestamp of each fact in I}, to zero,
initialises C to zero, and receives the copy of the program P to be materialised.
The server then starts an arbitrary number of server threads, each executing

10 T. Ajileye et al.

the SERVERTHREAD function. Each thread repeatedly processes either an un-
processed fact f in I} or an unprocessed message m; if both are available, they
can be processed in arbitrary order. Otherwise, the termination condition is
processed as we discuss later in Section

Function SYNCHRONISE updates the local clock Cj, with a timestamp 7. This
must be done in a critical section (i.e., two threads should not execute it simul-
taneously). The local clock is updated if C < 7 holds; moreover, all facts in Ij
without a timestamp are are timestamped with C}, since they are derived before
the event corresponding to 7. Assigning timestamps to facts in this way reduces
the need for synchronising access to C between threads.

Function PROCESSFACT kickstarts the matching of the rules to fact f. After
synchronising the clock with the timestamp of f, it simply calls MATCHRULES
to identify all rules where one atom matches to f, and forwards each match
FINISHMATCH to finish matching the pivot atom.

A PAR message is processed by matching atom a’" of the annotated query
in I, and Ty w.r.t. 7, and forwarding each match to FINISHMATCH.

A FCT message informs server k that fact f will be added to the set Iy,
of facts derived at server kj. Set D lists all remaining servers that need to be
informed of the addition, and partial occurrences A are guaranteed to correctly
reflect the occurrences of each resource in f. Server k updates its ug (1) by
appending A, (r) (line [d). Since servers can simultaneously process FCT mes-
sages, server k adds to D all servers that might have been added to u - (r) since
the point when A, (r) had been constructed (line [I8]), and it also updates A, (r)
(line [[9)). Finally, the server adds f to Ij if k is the last server (line 20)), and
otherwise it forwards the message to another server d form D.

Function FINISHMATCH finishes matching atom a5t by (i) extending A with
the occurrences of all resources that might be relevant for the remaining body
atoms or the rule head, and (ii) either matching the next body atom or deriving
the rule head. For the former task, the algorithm identifies in line [30] each vari-
able x in the matched atom that either occurs in the rule head or in a remaining
atom, and for each 7 it adds the occurrences of xo to Ar. Now if) has been
matched completely (line[BT]), the server also ensures that the partial occurrences
are correctly defined for the resources occurring in the rule head (lines B2H33]), it
identifies the server kj that should receive the derived fact as described in Sec-
tion[4.2] it identifies the set D of the destination servers whose occurrences need
to be updated, and it sends the FCT message to one server from D. Otherwise,
atom a; ;0 must be matched next. To determine the set D of servers that could
possibly match this atom, server k intersects the occurrences of each resource
from a;y;0 (line [@4)) and sends a PAR message to all servers in D.

4.5 Termination Detection

Since no server has complete information about the progress of any other server,
detecting termination is nontrivial; however, we can reuse an existing solution.

When messages between each pair of servers are guaranteed to be delivered
in order in which they are sent (as is the case in our implementation), one can

Distributed Datalog Materialisation 11

Algorithm 1 Distributed Materialisation Algorithm at Server k

1: function SERVERTHREAD

2 while cannot terminate do

3 if I contains an unprocessed fact f, or a message m is pending then
4: PROCESSFACT(f) or PROCESSMESSAGE(m), as appropriate

5 else if the termination token has been received then

6 Process the termination token

7: function PROCESSFACT(f)

8: SYNCHRONISE(T%(f))
9: for each (o, a,Q, h) € MATCHRULES(f, P) do
10: FINISHMATCH(0, 0, a, Q, h, T (f),®)

11: function PROCESSMESSAGE(PARJi, o, Q, h, 7,A]) where Q = ai™ A --- A ab™
12: SYNCHRONISE(T)

13: for each substitution o’ € EVALUATE(a}™, 7, Iy, Ty, o) do

14: FINISHMATCH(Z, 0, ai, Q, h, T,)

15: function PROCESSMESSAGE(FCTIf, D, kp, 7, A])

16: SYNCHRONISE(T)

17: for each resource r in f and each position 7 € II do

18: D :=DU [, (r) \ Ax(r)]

19: Ar (1) = pro,n (1) == An(r) U pge, = ()

20: if D =(then Add f to I

21: else

22: Remove an element d from D, preferring any element over kj, if possible
23: SEND(FCTIf, D, kn, Ck, A],d)

24: function SYNCHRONISE(7T) (must be executed in a critical section)
25: if Ci <T then
26: for each fact f € Ii such that T} is undefined on f do Tk (f) == Ck

27: Cp=7+1

use Dijkstra’s token ring algorithm [3], which we summarise next. All servers in
the cluster are numbered from 1 to £ and are arranged in a ring (i.e., server 1
comes after server ¢). Each server can be black or white, and the servers will
pass between them a token that can also be black or white. Initially, all servers
are white and server 1 has a white token. The algorithm proceeds as follows.

— When server 1 has the token and it becomes idle (i.e., it has no pending
work or messages), it sends a white token to the next server in the ring.

— When a server other than 1 has the token and it becomes idle, the server
changes the token’s colour to black if the server is itself black (and it leaves
the token’s colour unchanged otherwise); the server forwards the token to
the next server in the ring; and the server changes its colour to white.

— A server i turns black whenever it sends a message to a server j < i.

— All servers can terminate when server 1 receives a white token.

12 T. Ajileye et al.

Algorithm 2 Distributed Materialisation Algorithm at Server & (Continued)

28: function FINISHMATCH(%, 0, Gist, @, h, T, A) where Q = a7™ A+ A"

29: for each var. z occurring in as and in h or a; with j > ¢, and each = € II do
30: Extend Ar with the mapping xo — pi,~(z0)

31: if i = n then

32: for each resource r occurring in h and each = € Il do

33: Extend A, with the mapping r — pg,~(7)

34: k;, = the owner server for the derived fact

35: D = {kh}

36: for each position 7w € IT and r = ho|, where kj & Ax(r) do

37: Add k;, to A\ (7‘)

38: for each ' € IT do Add A,/ (r) to D

39: Remove an element d from D, preferring any element over kj, if possible
40: if d = k then PROCESSMESSAGE(FCT [ho, D, kp, Ck, A])

41: else SEND(FCT|ho, D, kp, Ci, A], d)

42: else

43: D = the set of all servers

44: for each position 7 € II where a;+10|r is a resource r do D := D N A (r)
45: for each d € D do

46: if d = k then PROCESSMESSAGE(PAR[i + 1,0, Q, h, 7, A])

47: else SEND(PAR[i 4+ 1,0,Q, h,T,A],d)

The Dijkstra—Scholten algorithm extends this approach to the case when the
order of message delivery cannot be guaranteed.

4.6 Correctness

We next prove that our algorithm is correct and that it exhibits the nonrepetition
property. We present here only an outline of the correctness argument, and we
give the full proof in the supplementary material.

Let us fix a run of Algorithms [Il and 2l on some input. First, we show that
Lamport timestamps capture the causality of fact derivation in this run. To
this end, we introduce four event types relating to an arbitrary fact f. Event
addy(f) occurs when f is assigned a timestamp on server k in line Event
process, (f) occurs when server k starts processing a new fact in line 8 Event
PAR(f,4) occurs when server k completes line[I2 for a PAR message with index 4
originating from a call to MATCHRULES on fact f. Finally, event FCT(f) occurs
when server k completes line[I6lfor a FCT message for fact f. We write e; ~ eq if
event e; occurs chronologically before event es; this relation is clearly transitive
and irreflexive. Furthermore, each fact is stored and assigned a timestamp on just
one server, so we define T'(f) as Ty (f) for the unique server k that satisfies f € Ij.
Lemma[Ilthen essentially says that the happens-before relationship between facts
and events on facts agrees with the timestamps assigned to the facts.

Lemma 1. In each run of the algorithm, for each server k, and all facts f1 and
f2, we have T(f1) < T(f2) whenever one of the following holds:

Distributed Datalog Materialisation 13

— PARj(f1,7) ~ addi(f2) for some i,
— process, (f1) ~ FCTy(f2), or
— PARj(f1,7) ~ FCT(f2) for some i.

Next, we show that then the occurrence mappings ji, » on each relevant server
k are updated whenever a triple is added to some I;. This condition is formally
captured in Lemma/[2] and it ensures that partial answers are sent to all relevant
servers that can possibly match an atom in a query. Note that the implication
in Lemma [is the only relevant direction: if uy () contains irrelevant servers,
we can have redundant PAR messages, but this does not harm correctness.

Lemma 2. At any point in the algorithm’s run, for all servers k and j, each
position m € I, and each resource v such that r occurs in I; at position m and
Uk, is defined on r, property j € pg (1) holds.

Using Lemmas [Il and B} we prove our main claim.

Theorem 1. For I,...,I; the sets obtained by applying Algorithms[dl and[2 to
an input set of facts I and program P, we have P>(I) =1, U---U I,. Moreover,
the algorithm exhibits the nonrepetition property.

5 Evaluation

To evaluate the practical applicability of our approach, we have implemented
a prototype distributed datalog reasoned that we call DMAT. We have reused
a well-known centralised RDF system to store and index triples in RAM, on
top of which we have implemented a mechanism for associating triples with
timestamps. To implement the EVALUATE function, we use the system’s interface
for answering individual atoms and then simply filter out the answers whose
timestamp does not match the given one. For simplicity, DMAT currently uses
only one thread per server, but we plan to remove this limitation in future. We
have publishecﬂ the executable and test files used, with the exception of the
datasets, which can be recreated using the LUBM generator.

We have evaluated our system’s performance in three different ways, each
aimed at analysing a specific aspect of the problem. First, to establish a baseline
for the performance of DMAT, as well as to see whether distributing the data can
speed up the computation, we compared DMAT with RDFox [L0]—a state-of-
the-art, centralised, RAM-based reasoner—on a relatively small dataset. Second,
to compare the performance of our approach with the state-of-the-art for dis-
tributed reasoning, we compared DMAT with WebPIE [16]—a distributed RDF
reasoner based on MapReduce. Third, we studied the scalability of our approach
by proportionally increasing the input data and the number of servers.

Few truly large RDF datasets are publicly available, so the evaluation of
distributed reasoning is commonly based on the well-known LUBMA benchmark

4 http://krr-nas.cs.ox.ac.uk,/2019/distributed-materialisation /
5http://swat.cse.lehigh.edu/projects/lubm/

http://swat.cse.lehigh.edu/projects/lubm/

14 T. Ajileye et al.

(e.g., 16,19, 120]). Following this practice, LUBM datasets of sizes ranging from
134 M to 6.5 G triples provided the input data for our system. We also used the
lower bound program was obtained by extracting the OWL 2 RL portion of the
LUBM ontology and translating it into datalog.

We conducted all tests with DMAT on the Amazon Elastic Compute Cloud
(EC2). We used the r4.8xzlarge servers, each equipped with a 2.3 GHz Intel
Broadwell processors and 244 GB RAM; such a large amount of RAM was
needed since the underlying storage mechanism in our system is RAM-based.
An additional, identical server stored the dictionary (i.e., a data structure map-
ping resources to integers): this server did not participate in materialisation,
but was used only to distribute the program and the data to the cluster. Fi-
nally, the EC2 instances offer 10 Gbps network performance, according to the
manifest published by Amazorld. In all tests apart from the ones with WebPIE,
we partitioned the dataset by using the graph partitioning approach by Potter
et al. [12]: this data partitioning approach aims to place strongly connected re-
sources on the same server and thus reduce communication overhead. For the
tests with WebPIE, due to memory constraints of the partitioning software,
we partitioned triples by subject hashing. For each test, we loaded the input
triples and the program into all servers, and computed the materialisation while
recording the wall-clock time. Apart from reporting this time, we also report the
reasoning throughput measured in thousands of triples derived per second and
worker (ktps/w). We next discuss the results of our experiments.

Comparison with RDFox. First, we ran RDFox and DMAT on a fixed dataset
while increasing the number of threads for RDFox and the numbers of servers for
DMAT. Since RDFox requires the materialised dataset to fit into RAM of a sin-
gle server, we used a small input dataset of just 134 M triples. The results, shown
in Table[Il provide us with two insights. First, the comparison on one thread es-
tablishes a baseline for the DMAT’s performance. In particular, DMAT is slower
than RDFox, which is not surprising: RDFox is a mature and tuned system,
whereas DMAT is just a prototype. However, DMAT is still competitive with
RDFox, suggesting that our approach is free of any overheads that might make it
uncompetitive. Second, the comparison on multiple threads shows how effective
our approach is at achieving concurrency. RDFox was specifically designed with
that goal in mind in a shared-memory setting. However, as one can see from our
results, DMAT also parallelises computation well: in some cases the speedup is
larger than in the case of RDFox. This seems to be the case mainly because data
partitioning allows each server to handle an isolated portion of the graph, which
can reduce the need for synchronisation.

Comparison with WebPIE. Next, we compared DMAT with WebPIE to see how
our approach compares with the state of the art in distributed materialisation.
To keep the experimentation effort manageable, we did not rerun WebPIE our-
selves; rather, we considered the same input dataset sizes as Urbani et al. |16]

6 https://aws.amazon.com/ec2/instance-types/

Distributed Datalog Materialisation 15

Times (s) 86 256 56 140 35 82 16 53
Speed-up 1.0x| 1.0x 1.5x| 1.8x| 2.5x| 3.1x| 5.4x| 4.8x
Size 134M — 182M

LI DR

Sizes TOI° FNeBPTRET WS W FONMET (12 servers)

Dataset Input|Output|Time (s)| ktps/w |Time (s)| ktps/w
4K| 0.5 0.729| 1920 4.1 224 85
8K| 1 1.457| 2100 7.5 461 81
36K| 5 6.516| 3120 24.9 2087 71

Table 37 %ﬁ@il'@ﬁﬁ@@ﬁﬁ}ﬁ% S Rate
Workers|Dataset |size (G)|size (G)| (s) |(ktps/w)
2 4K 0.5 0.73 | 646 212
6 12K 1.6 2.19 | 769 173
10 20K 2.65 3.64 | 887 151

and reused their published results. The setting of these experiments thus does
not quite match our setting: (i) WebPIE handles only the ter Horst fragment
of OWL and thus cannot handle all axioms in the OWL 2 RL subset of the
LUBM ontology; (ii) experiments with WebPIE were run on physical (rather
than virtualised) servers with only 24 GB of RAM each; and (iii) WebPie used
64 workers, while DMAT used just 12 servers. Nevertheless, as one can see from
Table 2 despite using more than five times fewer servers, DMAT is faster by
an order of magnitude. Hadoop is a disk-based system so lower performance is
to be expected to some extent, but this may not be the only reason: triples in
DMAT are partitioned by subject so, unlike WebPIE, DMAT does not perform
any communication on subject—subject joins.

Scalability Experiments. Finally, to investigate the scalability of DMAT, we mea-
sured how the system’s performance changes when the input data and the num-
ber of servers increase proportionally. The results are shown in Table Bl As
one can see, increasing the size of the input does introduce an overhead for
each server. Our analysis suggests that this is mainly because handling a larger
dataset requires sending more messages, and communication seems to be the
main source of overhead in the system. This, in turn, leads to a moderate reduc-
tion in throughout. Nevertheless, the system still exhibits very high inferences
rates and clearly scales to very large inputs.

16 T. Ajileye et al.

6 Conclusion

In this paper we have presented a novel approach to datalog reasoning in dis-
tributed RDF systems. Our work extends the distributed query answering al-
gorithm by Potter et al. [12], from which it inherits several benefits. First, the
servers in our system are asynchronous, which is beneficial for concurrency. Sec-
ond, dynamic data exchange is effective at reducing network communication,
particularly when input data is partitioned so that related triples are co-located.
Finally, we have shown empirically that our prototype implementation is an
order of magnitude faster than WebPIE [17], and that it scales to increasing
data loads. In the near future we intend to conduct tests on a broader range
of datasets and rule sets, as well as direct comparisons with other in-memory
distributed systems that perform tasks similar to DMAT.

We see several interesting avenues for our future work. First, better ap-
proaches to partitioning the input data are needed: hash partitioning does not
guarantee that joins other than subject—subject ones are processed on one server,
and graph partitioning cannot handle large input graphs. Second, supporting
more advanced features of datalog, such as stratified negation and aggregation
is also needed in many practical applications.

Acknowledgments

This work was supported by the SIRIUS Centre for Scalable Access in the Oil
and Gas Domain, and the EPSRC project Anal.OG.

References

[1] Abdelaziz, I., Harbi, R., Khayyat, Z., Kalnis, P.: A Survey and Experimental
Comparison of Distributed SPARQL Engines for Very Large RDF Data.
PVLDB 10(13), 2049-2060 (2017)

[2] Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-
Wesley (1995)

[3] Dijkstra, E., Feijen, W., van Gasteren, A.: Derivation of a Termination De-
tection Algorithm for Distributed Computations. Inf. Process. Lett. 16(5),
217-219 (1983)

[4] Ganguly, S., Silberschatz, A., Tsur, S.: Parallel Bottom-Up Processing of
Datalog Queries. Journal of Logic Programming 14(1-2), 101-126 (1992)

[5] Gu, R., Wang, S., Wang, F., Yuan, C., Huang, Y.: Cichlid: Efficient Large
Scale RDFS/OWL Reasoning with Spark. In: IPDPS. pp. 700-709 (2015)

[6] Kaoudi, Z., Miliaraki, I., Koubarakis, M.: RDFS Reasoning and Query An-
swering on Top of DHTs. In: ISWC. pp. 499-516 (2008)

[7] Kolovski, V., Wu, Z., Eadon, G.: Optimizing Enterprise-Scale OWL 2 RL
Reasoning in a Relational Database System. In: ISWC. pp. 436-452 (2010)

[8] Lamport, L.: Time, Clocks, and the Ordering of Events in a Distributed
System. CACM 21(7), 558-565 (1978)

[9] Liu, Y., McBrien, P.: SPOWL: Spark-based OWL 2 Reasoning Materialisa-
tion. In: BeyondMR@QSIGMOD 2017. pp. 3:1-3:10 (2017)

[10] Motik, B., Nenov, Y., Piro, R., Horrocks, I., Olteanu, D.: Parallel Materi-
alisation of Datalog Programs in Centralised, Main-Memory RDF Systems.
In: AAAL pp. 129-137 (2014)

[11] Oren, E., Kotoulas, S., Anadiotis, G., Siebes, R., ten Teije, A., van Harme-
len, F.: Marvin: Distributed reasoning over large-scale Semantic Web data.
JWS 7(4), 305-316 (2000)

[12] Potter, A., Motik, B., Nenov, Y., Horrocks, I.: Dynamic Data Exchange in
Distributed RDF Stores. IEEE TKDE 30(12), 2312-2325 (2018)

[13] Seib, J., Lausen, G.: Parallelizing Datalog Programs by Generalized Pivot-
ing. In: PODS. pp. 241-251 (1991)

[14] Seo, J., Park, J., Shin, J., Lam, M.: Distributed SociaLite: A Datalog-Based
Language for Large-Scale Graph Analysis. PVLDB 6(14), 1906-1917 (2013)

[15] Shao, J., Bell, D., Hull, E.: Combining Rule Decomposition and Data Par-
titioning in Parallel Datalog Processing. In: PDIS. pp. 106-115 (1991)

[16] Urbani, J., Kotoulas, S., Maassen, J., van Harmelen, F., Bal, H.: WebPIE:
A Web-scale Parallel Inference Engine using MapReduce. JWS 10 (2012)

[17] Urbani, J., Jacobs, C., Krétzsch, M.: Column-Oriented Datalog Material-
ization for Large Knowledge Graphs. In: AAAIL pp. 258-264 (2016)

[18] Weaver, J., Hendler, J.A.: Parallel Materialization of the Finite RDFS Clo-
sure for Hundreds of Millions of Triples. In: ISWC. pp. 682-697 (2009)

[19] Wolfson, O., Ozeri, A.: Parallel and Distributed Processing of Rules by
Data-Reduction. IEEE TKDE 5(3), 523-530 (1993)

[20] Wu, H., Liu, J., Wang, T., Ye, D., Wei, J., Zhong, H.: Parallel Materializa-
tion of Datalog Programs with Spark. In: WISE. pp. 363-379 (2016)

[21] Zhang, W., Wang, K., Chau, S.C.: Data Partition and Parallel Evaluation
of Datalog Programs. IEEE TKDE 7(1), 163-176 (1995)

18 T. Ajileye et al.

A Proofs

Lemma 1. In each run of the algorithm, for each server k, and all facts fi and
f2, we have T(f1) < T(f2) whenever one of the following holds:

— PARk(f1,1) ~ addi(f2) for some i,
— process;(f1) ~» FCTk(f2), or
— PARj(f1,7) ~ FCT(f2) for some i.

Proof. Consider an arbitrary run of Algorithms [and 2] arbitrary server k, and
arbitrary facts f1 and fs.

Assume that PARg(f1) ~ addy(f2) holds. Then, after the call to SYNCHRONISE
in line[T2] the local clock of server k has a value that is strictly larger than T'(f1).
Thus, when f; is assigned a timestamp, T'(f2) > T'(f1) holds.

If process, (f1) ~» FCTk(f2) (resp. PARL(f1) ~ FCT(f2)) holds, then after
the call to SYNCHRONISE in line B (resp. [[2]), the local clock of server k has a
value that is strictly larger than T'(f1). Server k reads this value into the FCT
message for f3 in line@lor line 23] Before f5 is added on some destination server,
this server calls SYNCHRONISE in line [I6, which ensures T'(f2) > T'(f1). 0

Lemma 2. At any point in the algorithm’s run, for all servers k and j, each
position m € II, and each resource r such that r occurs in I; at position m and
Wi, s defined on v, property j € pu - (r) holds.

Proof. Fix r in the domain of py ., we want to show that j € ug (r) ~ r €
vocy (I;). If the initial state of voc, (I;) includes r, then there is nothing to prove
because the occurrence mappings are initialized consistent.

Now let addOccy(r, 7, j) denote the point at line [[9 where j is added to the
image of ug, (7). Let fi, denote the first fact added to I, with r as an argument
and 7y the position of in fy . Let f; , be the analogous for I;. Let D(f) denote
the set of update servers compiled for fact f in FINISHMATCH.

Assume k # j and that addg(fxr) ~ add;(f;.) and f;, & Io. We know
that the set D(fj) N D(fx,) is not empty because of Lemma Bl Let [be an
element of the intersection. Both FCT;(f%) and FCT;(f;,) will occur on server
1. If addOcc; (7, 7k, k) ~» addOcc;(r, 75, j), k is be added to D(f;) at line[I9] if it
was not an initial member of D(f;). In either case, or in the case that [= k, f; ,
updates server k before being added to Iy, hence addOccy (7, 7, j) ~» add; (f;.»).
If instead addOcc(r,7j,5) ~» addOcc;(r, 7, k), j is added to D(fy), and we
can still conclude addOccy(r, 7;,j) ~ addy(fx,») ~ add;(f;,) because of our
initial assumption. If we assume add;(f;,) ~» addy(f) then the symmetrical
argument applies.

We have shown that, for k& # j, addOccg(r,7;,7) ~> add;(f;,), which is
equivalent to the thesis. When £ = j, then it is true by construction that
addOccy (7, Tk, k) ~~ addy(fx.») and we conclude. m|

Lemma 3. Leta,b € P>(I) have a common resource r, then D,(a)ND,.(b) # 0,
where D,.(x) is the update set created for the FCT message of x.

Distributed Datalog Materialisation 19

Proof. The proof is by induction over P*(I). It is true by definition for i = 0
because the condition in Lemma [2] has to apply to the initial configuration. For
the inductive step, suppose the property is true for all facts in P*~!(I) and let
a,b € Pi(I) share a resource r. We can find two chains ag,as,--- ,a, = a and
bo, b1, -+ ,bm = b such that for each ¢ and = € {a,b} x; participates in the
derivation of x;41, it has r among its arguments, and D,.(x;) C D,(z;+1) (we
select the branch of the derivation tree that corresponds to the first matchings of
the resource r so that the partial mappings are passed between x; and ;41). At
each stage D, (a;) N Dy(b;) C Dy(aiy1) N Dy (bi11), therefore the property holds.

Theorem 1. For I,...,I; the sets obtained by applying Algorithms[l and[2 to
an input set of facts I and program P, we have P*(I) =1, U--- U I,. Moreover,
the algorithm exhibits the nonrepetition property.

Proof (Soundness). The proof is by induction on the construction of sets I;.
The argument is straightforward so we just present a sketch: when (o,a,Q,h)
is returned on some server k in line [@ substitution o satisfies ao € Iy; more-
over, as matching of () progresses, each substitution ¢’ returned in line line
satisfies a;0’ € Iy/; consequently, each substitution o in line] is an answer to
the annotated query @. Thus, each such ¢ matches all body atoms of the rule
corresponding to (o, a, @, h) in P>°(I), and so we clearly have ho € P>(I). O

Proof (Completeness). Let P be a program, let I be an input dataset, and
let I1,...,I; be the datasets computes after Algorithms [Il and 2 finish on some
partition of I to ¢ servers. Our claim follows from the following property:

(x) for each i and each fact f € P¥(I), a server k exists were f € I holds.

The proof is by induction on i. The base case holds trivially, so we assume
that (*) holds for some ¢ > 0 and show that it also holds for ¢4 1. To this
end, we consider an arbitrary fact f € PT(I)\ P(I). This fact is derived by a
rule h < by A - -+ A b, € P and substitution o such that ho = f and bjo € P*(I)
for 0 < j <n. Now choose p as the smallest integer between 0 and n such
that T'(by) < T'(bpo) holds for each 0 < p’ < n. Now let ag, ..., a, be the body
atoms of the rule rearranged so that ag = b, is the pivot atom, and the remain-
ing atoms correspond to the annotated query @ = a7™ A --- A al' returned by
MATCHRULES(b,0, P) in line[@on fact byo. Finally, for each 0 < j < n, let g; be
the substitution o restricted to all variables occurring in atoms ao,...,a; and
let 7, = T'(aj0); moreover, (*) holds for ¢ by the induction assumption, so there
exists a server kj; such that ajo € Ij; holds. We next prove the following:

(0) for each 0 < j < n, function FINISHMATCH(j, 0}, a;,Q,h, 1o, A;) is
called for some A;.

Property (¢) implies our claim because in lines BIHA1] the algorithm then con-
structs a FCT message for ho and dispatches it to some server kj, so ho is
eventually added to Iy, in line 20l as required for (x).

We next prove ({) by induction on 0 < j < n. For the base case, ago € I,
ensures that PROCESSFACT(ap0) is called on server kg, so MATCHRULES (ago, P)

20 T. Ajileye et al.

returns (09, ag, @, k), and FINISHMATCH(0, 09, ag, @, h, 70, ®) is called in line [[0l
For the induction step, we assume that (¢) holds for some 0 < j < n, and we
show that it holds for j + 1 as well. To this end, we consider several cases.
Assume that event PARy;,, (a0, j + 1) occurs at some point during the algo-
rithm’s run. Server ;1 then executes line [[3for a';q_ﬁfl. Note that aji10 € Iy, ,
holds by induction assumption. We next show that server k;i; contains a;j;i0

at the point in time when line [[3]is executed. We have the following possibilities.

— If event addy;, (a;j4+10) never happens, then server k;;q contains fact a;110
since the algorithm’s start.

— If addy;, (aj+10) ~» PARg,,, (ago, j + 1) holds, then server k; 1 clearly con-
tains fact aj;10 at this point in time.

— If PARy,, (apo, j + 1) ~ addy;, (a;+10) were to hold, then Lemma [Ilimplies
T(apo) < T(aj4+10), contradicting our assumption that T(a;y10) < T(ago).

Moreover, if T'(aj+10) = T(ago), since ag = b, was chosen so that p is the least
index of a body atom matched to a fact with timestamp T'(ago), the shape of Q
from (B]) ensures that ;1= <. Consequently, the call to EVALUATE in line
on server kj;yq returns o;41, so the call in line [I4] ensures (0).

Now assume that event PARg, ., (aoo,j + 1) never occurs during the algo-
rithm’s run—that is, server k; never forwards a PAR message to server k4.
Then, for some 7 € II and r = a;j410;|», we have kj11 & A (r) at the point in
time when line[d4]is executed on server k;, ensuring that k;1 is removed from D.
However, this A, (r) is populated in line B0l when resource r is matched on some
server ks with 0 < s < j, so at that point in time we have kj11 & pk, (r). Now
if event addkﬁl(aﬁl o) never happened, then server k;y1 would contain a;yi0
when the algorithm starts; but then, since py, r is defined on r, Lemma [2implies
kji1 & pr, x(r), which is a contradiction. Consequently, event addy,,, (a;410)
occurs on server kji1.

Moreover, let oo = process;, (ago) if s = 0, and let a = PARy_(ag0, j) if s > 0.
Function FINISHMATCH is called on server ks by the induction assumption for
(0), so event « occurs on server k.

Now note that the set Ir,,, N {f | fl= = 7} is not empty and let f, . be
the first fact in the in the set that is added to kj;1 and consider the set the set
D constructed in line for frr (from here on update set). By definition,the
partial occurrences for resource r at position 7 in the FCT message for f, .
cannot contain k;1, therefore the occurrences of r are added to D. Let D, be
the contribution of r to D; it cannot be empty because f, , was derived at some
server and it is either the case that D, contains ks or not.

First, assume ks € D, then event FCTy, (f,) occurs on server ky. This event
updates occurrences for 7 on ks, so for kjy1 & pk, »(r) tohold, a ~» FCTy, (a;410)
must hold. But then, regardless of how « is defined, Lemma [I implies T'(ago) <
T(a;y10), which contradicts our assumption that T'(a;10) < T(ago) holds.

Otherwise, we know that the presence of the resource r in I, had not yet
been fully notified when the the partial mappings for the argument r of f, . were
created. Let f/ be the first added fact to Ij, that contains r in any position,

Distributed Datalog Materialisation 21

and its update set D’. We apply Lemma Bl on f, » and f/ to find an element in
k' € D, N D). where both FCTy (fr) and FCTy (f)) occur. If FCTy/ (fr) ~
FCTw (f)), then kj;1 is added to pw - at line when the first message is
processed, and then to A, at line[I9 when the second message is processed. This
event is then followed by FCTy, (f)) and we proceed as done with FCTg, (f,)
above to derive T(ago) < T(f]) from Lemma [0l But f/ is the first appearance
of r in server kg, hence T'(apo) < T'(aso) which contradicts our assumption that
T(aso) < T(ago) holds.

If FCTy (f]) ~» FCT (fr x), then ks is added to ug » at line when the
first message is processed, and then to D at line I8 when the second message is
processed, so FCTy, (fr) eventually happens and we conclude like above.

In summary, we proved that PARy,., (ago,j + 1) occurs on server kj;;1 and
this concludes the theorem. a

Proof (Nonrepetition of Derivations). Assume that PROCESSFACT considers two
facts fi1 and fa2, both of which matched the same rule and produce the same sub-
stitution o. Let b1 and Q1 be the pivot atom and the annotated query returned
in line @ when f; is processed, and let by and Q)2 be defined analogously. Thus,
bio = f1 and beo = f5. Since each fact is processed only once, atoms b; and b
are distinct. Now w.l.o.g. let us assume that b; occurs before by in the body of the
rule; thus, the atom corresponding to b2 in @)1 is annotated with <, and the atom
corresponding to by in)2 is annotated with <. But then, f; is not matched by
Q1 if T(f1) < T(f2) holds, and f1 is not matched by Q2 if T'(f1) > T'(f2) holds,
which contradicts our assumption that the algorithm repeats inferences. a

	Datalog Materialisation in Distributed RDF Stores with Dynamic Data Exchange

