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Abstract. It is a strength of graph-based data formats, like RDF, that they are
very flexible with representing data. To avoid run-time errors, program code that
processes highly-flexible data representations exhibits the difficulty that it must
always include the most general case, in which attributes might be set-valued
or possibly not available. The Shapes Constraint Language (SHACL) has been
devised to enforce constraints on otherwise random data structures. We present
our approach, Type checking using SHACL (TyCuS), for type checking code that
queries RDF data graphs validated by a SHACL shape graph. To this end, we
derive SHACL shapes from queries and integrate data shapes and query shapes
as types into a λ-calculus. We provide the formal underpinnings and a proof of
type safety for TyCuS. A programmer can use our method in order to process
RDF data with simplified, type checked code that will not encounter run-time
errors (with usual exceptions as type checking cannot prevent accessing empty
lists).
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1 Introduction

Graph-based data formats, such as RDF, have become increasingly popular, because
they allow for much more flexibility for describing data items than rigidly-structured
relational databases. Even when an ontology defines classes and properties, because of
its open-world assumption, it is always possible to leave away required information or
to add new classes and properties on the fly. Such flexibility incurs cost. Programmers
cannot rely on structural restrictions of data relationships. For instance, the following
T-Box axiom states that every Student has at least one studiesAt relation:

Student ⊑ ≥ 1 studiesAt.⊤ (1)

Consider an RDF data graph such as shown in Fig. 1. The two nodes alice and bob
are both instances of Student and Person. For alice, only the name is known. For bob,
name, age and that he studies at b1, which is an instance of University. Such a graph is
a valid A-Box for the T-Box stated above. However, for a program containing a variable
x representing an instance of Student, there is no guarantee that the place of study is
explicitly mentioned in the data and can be displayed. Depending on whether x contains
alice or bob, the following program may succeed or encounter a run-time error:

1 print(x.studiesAt)
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Fig. 1: Sample RDF data graph G1.

The Shapes Constraint Language (SHACL) is a recent W3C recommendation [13] set
out to allow for formulating integrity constraints. By now, a proposal for its formal se-
mantics has been formulated by the research community [7] and SHACL shape graphs
can be used to validate given data graphs. [13] itself states that:

SHACL shape graphs [...] may be used for a variety of purposes besides vali-
dation, including user interface building, code generation and data integration.

However, it does not state how SHACL shape graphs might be used for these purposes.
We consider the problem of writing code against an—possibly evolving—RDF data
graph that is and remains conformant to a SHACL shape graph. We assume that the
RDF database handles the rejection of transactions that invalidate conformance between
SHACL shape graph and data graph. Then, the programming language should be able to
type check programs that were written referring to a defined SHACL shape graph. Type
checking should reject programs that could cause run-time errors, e.g., because they try
to access an RDF property that is not guaranteed to exist without safety precautions.
They should also simplify programs for which queries are guaranteed to return single
values rather than lists, and they should accept programs that do not get stuck when
querying conformant data graphs (with usual exceptions).

To exemplify this, consider three SHACL shapes StudentShape, PersonShape and
UniversityShape (see Fig. 2). StudentShape validates all instances of Student, en-
forcing that there is at least one studiesAt relation, that all studiesAt relations point
to a node conforming to the UniversityShape and that all instances of Student are
also instances of Person. PersonShape validates all instances of Person and enforces
the presence of exactly one name relation. UniversityShape enforces at least one in-
coming studiesAt relation and that all incoming studiesAt relations are from nodes
conforming to the StudentShape. In order for G1 to be valid with respect to the SHACL
constraints above, either the statement that alice is an Student must be removed or a
place of study for alice added. With these changes, the program above cannot fail any-
more. A different program (see Lst. 1) may query for all instances of Student. The
program may then try to access the age relation of each query result. However, since it
is possible to construct an RDF graph that is validated by the shapes above, but lacks
an age relation on some instances of Student, the program is unsafe and may crash
with a run-time error. Contrary to that, a similar program that accesses the name relation
instead is guaranteed to never cause run-time errors.
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1 ex:StudentShape a sh:NodeShape;

2 sh:targetClass ex:Student;

3 sh:property [

4 sh:path ex:studiesAt;

5 sh:minCount 1;

6 sh:node ex:UniversityShape ];

7 sh:class ex:Person.

8
9 ex:PersonShape a sh:NodeShape;

10 sh:targetClass ex:Person;

11 sh:property [

12 sh:path ex:name;

13 sh:minCount 1;

14 sh:maxCount 1 ].

15 ex : U n i v e r s i t y S h a p e a
16 sh : NodeShape ;
17 sh : p r o p e r t y [
18 sh : p a t h [
19 sh : i n v e r s e P a t h ;
20 ex : s t u d i e s A t ] ;
21 sh : minCount 1 ;
22 sh : node
23 ex : S t u d e n t S h a p e ] .
24
25
26
27
28

Fig. 2: SHACL constraints for RDF data graph G1.

Listing 1: Program that may produce a run-time error.

1 map (fun x -> x.?X.age) (query {

2 SELECT ?X WHERE { ?X rdf:type ex:Student.} })

Contributions We propose a type checking procedure based on SHACL shapes being
used as types. We assume that a program queries an—possibly evolving—RDF data
graph that is validated by a SHACL shape graph. Our contributions are then as follow:

1. We define how SHACL shapes can be inferred from queries. As queries are the
main interaction between programs and RDF data graphs, inferring types from data
access is a major step in deciding which operations are safe.

2. We then use a tiny core calculus that captures essential mechanisms to define a type
system. Due to its simplicity, we use a simply typed λ-calculus whose basic model
of computation is extended with queries. We define how SHACL shapes are used
to verify the program through a type system and show that the resulting language is
type-safe. That is, a program that passed type checking successfully does not yield
run-time errors (with the usual exception of e.g., accessing the head of an empty
list).

Organization The paper first recalls basic syntax and semantics for SPARQL and
SHACL in Section 2. Then, the paper describes how we infer SHACL shapes from
queries in Sections 3 and 4 before defining syntax and evaluation rules of the λ-calculus
in Section 5. Then, the type system including subtyping is defined in Section 6 before
showing its soundness in Section 7. Finally, we discuss related work in Section 8 and
conclude in Section 9.
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2 Preliminaries

2.1 SPARQL

RDF graphs are queried via the SPARQL standard [20]. We focus on a core fragment
of SPARQL that features conjunctive queries (CQ) and simple path (P) expressions.
We abbreviate this fragment by PCQ. That is, our queries are conjunctions of property
path expressions that use variables only in place of graph nodes, not in place of path
expressions1 [3]. This is also a very widely used subset of SPARQL queries [18].

Syntax We denote the set of graph nodes of an RDF graph G by NG with v ∈ NG denot-
ing a graph node. Furthermore, we assume the existence of a set of variables NV with x
representing members of this set. The metavariable r denotes a SPARQL property path
expression. A property path expression allows for defining paths of arbitrary length
through an RDF graph. In our case, a property path is either a simple iri (i), the inverse
of a path (r−) or a path that connects subject to object via one or more occurrences of
r (r+). Lastly, we allow for path sequences (r1/r2). A PCQ q = (x) ← body consists
of a head (x) and a body . We use x to denote a sequence of variables x1, . . . , xn. In a
head of a PCQ (x), the sequence x represents the answer variables of the query which
are a subset of all variables occurring in the body of q. We use vars(q) to refer to the
set of all variables occurring in q. Fig. 3 summarizes the syntax.

q ::= (x)← body (query)

body ::= (query body)
body ∧ body (conjunction)
| pattern (pattern)

pattern ::= (pattern)
x r v (subject var pattern)
| v r x (object var pattern)
| x r x (subject object var pattern)

r ::= i | r− | r/r | r+ (path expresssions)

Fig. 3: Syntax of PCQs.

Semantics For query evaluation, we follow standard semantics. Evaluation of a query
over a graph G is denoted by J·KG and yields a set of mappings µ, mapping variables
of the query onto graph nodes. The full evaluation rules can be found in the extended
technical report of the paper2.

1 As we use plain RDF, we do not differentiate between distinguished and existential variables.
2 Available on arxiv.org.
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2.2 Shapes Constraint Language (SHACL)

The Shapes Constraint Language (SHACL) is a W3C standard for validating RDF
graphs. In the following, we rely on the definitions presented by [7]. SHACL groups
constraints in so-called shapes. A shape is referred to by a name, it has a set of con-
straints and defines its target nodes. Target nodes are those nodes of the graph that are
expected to fulfill the constraints of the shape. As exemplified by StudentShape and
UniversityShape (see Fig. 2), constraints may reference other shapes.

Constraint Syntax We start by defining constraints. We follow [7], who use a logical
abstraction of the concrete SHACL language. Fragments of first order logic are used
to simulate node shapes whereas so called property shapes are completely abstracted
away. Constraints that are used in shapes are defined by the following grammar:

ϕ ::= ⊤ | s | v | ϕ1 ∧ ϕ2 | ¬ϕ |≥n r.ϕ (2)

where s is a shape name (indicating a reference to another shape), v is a constant (or
rather a graph node), r is a property path and n ∈ N+. Additional syntactic constructs
may be derived from this basic grammar, including ≤n r.ϕ for ¬(≥n+1 r.ϕ), =n r.ϕ
for (≤n r.ϕ)∧(≥n r.ϕ) and ϕ1∨ϕ2 for ¬(¬ϕ1∧¬ϕ2). We sometimes use ϕs to denote
the constraint belonging to a specific shape s. To improve readability, we sometimes add
parenthesis to constraints although they are not explicitly mentioned in the grammar.

Constraint Evaluation Evaluation of constraints is rather straightforward with the ex-
ception of reference cycles. Evaluation is therefore grounded using assignments σ which
map graph nodes to shape names [7]. We rely on total assignments instead of partial as-
signments for simplicity.

Definition 1 (Total Assignment). Let G be an RDF data graph with its set of nodes
NG and let NS a set of shape names. Then σ is a total function σ : NG → 2NS mapping
graph nodes v to subsets of NS . If s ∈ σ(v), then v is assigned to the shape s.

Evaluation of a constraint ϕ for a node v of a graph G using an assignment σ is
denoted JϕKv,G,σ and yields either true or false. The extended version contains the com-
plete definition.

Shapes and Validation A shape is modelled as a triple (s, ϕ, q) consisting of a shape
name s, a constraint ϕ and a query for target nodes q which is either an empty set or
a monadic query that has exactly one answer variable to describe all intended target
nodes. Target nodes denote those nodes which are expected to fulfill the constraint
associated with the shape. In a slight abuse of notation, we write v ∈ JqKG to indicate
that a node v is a target node for s in the graph G. If S is a set of shapes, we assume
that for each (s, ϕ, q) ∈ S, if shape name s′ appears in ϕ, then there also exists a
(s′, ϕ′, q′) ∈ S. To illustrate this, consider our running example again (see Fig. 2)3. The

3 We simplified target queries in the example—in reality, the target queries should query for
Student or any of its subclasses. We simplified this as we do not use any RDFS subclass
relations in our examples.



6 Martin Leinberger, Philipp Seifer, Claudia Schon, Ralf Lämmel, Steffen Staab

set S1 containing all three shapes looks as follows:

S1 = {(sStudent ,≥1 studiesAt.⊤∧ ≤0 studiesAt.¬sUniversity∧ ≥1 type.Person,

(x1)← x1 type Student),

(sPerson ,=1 name.⊤, (x1)← x1 type Person),

(sUniversity ,≥1 studiesAt
−.⊤∧ ≤0 studiesAt

−.sStudent , ∅)}

Intuitively, only certain assignments are of interest. Such an assignment is called a faith-
ful assignment.

Definition 2 (Faithful assignment). An assignment σ for a graph G and a set of
shapes S is faithful, iff for each (s, ϕ, q) ∈ S and for each graph node v ∈ NG, it
holds that:

– if v ∈ JqKG, then s ∈ σ(v).
– if s ∈ σ(v), iff JϕKv,G,σ = true .

Validating an RDF graph means finding a faithful assignment. The graph is said to
conform to the set of shapes.

Definition 3 (Conformance). A graph G conforms to a set of shapes S iff there is a
faithful assignment σ for G and S. We write σG,S to denote that σ is a faithful assign-
ment for G and S.

Validating an RDF graph means finding a faithful assignment. In case of graph G1

(see Fig. 1) and the set of shapes S1, it is impossible to validate the graph. alice would
need to be assigned to sStudent , but has no studiesAt relation. However, if the statement
(alice,type,Student) is removed, then the graph is valid since a faithful assignment
may assign sPerson to alice and bob, sStudent solely to bob and sUniversity to b1.

3 Shape Inference for Queries
In this section, we describe how to infer shapes from PCQs for all variables in a given
query. Given a query q with x ∈ vars(q), let sqx be the globally unique shape name
for variable x in query q. Then we assign the shape (sqx, ϕ, qx). We discard sub- or
superscripts if they are evident in context.

Our typing relation “:” for a PCQ q constructs a set of shapes Sq in the following
manner: For every subject var pattern x r v in the body of q (object var pattern v r x
respectively), we assign the constraint ≥1 r.v (≥1 r−.v). As target nodes, we use the
original query but projected on the particular variable. In case of variables on both
subject and object (x1 r x2), we infer two shapes sqx1

and sqx2
. We use shape references

to express the dependencies and infer the constraints ≥1 r.sqx2
and ≥1 r−.sqx1

. In case
of a conjunction (body1 ∧ body2 ), we infer the sets of constraints for each query body
individually and then combine the results using the operator ▷◁. The relation ▷◁ takes
two sets of shapes Sq1 and Sq2 combines them into a unique set performing a full outer
join on the shape names:

Sq1 ▷◁ Sq2 ={(sqxi
, ϕi ∧ ϕj , (xi)← body i ∧ bodyj)|(s

q
xi
, ϕi, (xi)← bodyi) ∈ Sq1

∧ (sqxi
, ϕj , (xi)← bodyj) ∈ Sq2} ∪

{(sqxi
, ϕi, qi)|(sqxi

, ϕi, qi) ∈ Sq1 ∧ ¬∃(s
q
xi
, ϕj , qj) ∈ Sq2} ∪

{(sqxj
, ϕj , qj)|¬∃(sqxj

, ϕi, qi) ∈ Sq1 ∧ (sqxj
, ϕj , qj) ∈ Sq2}
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Fig. 4 contains the complete set of rules for inferring sets of shapes from PCQs.

x r v : {(sqx,≥1 r.v, (x)← x r v)} (R-SUB-VAR)

v r x : {(sqx,≥1 r−.v, (x)← v r x)} (R-OBJ-VAR)

x1 r x2 : {(sqx1
,≥1 r.sqx2

, (x1)← x1 r x2), (s
q
x2
,≥1 r−.sqx1

, (x2)← x1 r x2)} (R-VARS)

body1 : Sq1 body2 : Sq2

body1 ∧ body2 : Sq1 ▷◁ Sq2

(R-CONJ)
body : Sq

(x)← body : Sq

(R-PROJ)

Fig. 4: Inference rules for inferring a set of shapes from the body of query q.

As an example, consider the query q = (x1, x2)← x1 type Student∧ x1 studiesAt x2

as used before. Then shape inference on the body assigns the following set of shapes:

(1) x1 type Student ∧ x1 studiesAt x2 : (2) ▷◁ (3)

= {(sqx1
,≥1 type.Student ∧ studiesAt.sqx2

, (x1)← x1 type Student ∧ x1 studiesAt x2),

(sqx2
,≥1 studiesAt

−.sqx1
, (x2)← x1 type Student ∧ x1 studiesAt x2)}

(2) x1 type Student : {(sqx1
,≥1 type.Student, (x1)← x1 type Student)}

(3) x1 studiesAt x2 : {(sqx1
,≥1 studiesAt.s

q
x2
, (x1)← x1 studiesAt x2),

(sqx2
,≥1 studiesAt

−.sqx1
, (x2)← x1 studiesAt x2)}

4 Soundness of Shape Inference for Queries

Shape inference for queries is sound if the shape constraints inferred for each variable
evaluate to true for all possible mappings of the variable.

Definition 4 (Soundness of shape inference). Given an RDF graph G, a PCQ q with
its variables xi ∈ vars(q) and the set of inferred shapes Sq = {(sqxi

, ϕxi , qsxi
)xi∈vars(q)},

a shape constraint is sound if there exists a faithful assignment σG,Sq such that

∀xi ∈ vars(q) : ∀µ ∈ JqKG : JϕxiKµ(xi),G,σG,Sq
= true

We show that the faithful assignment σG,Sq can be constructed by assigning all
shape names solely based on target nodes.

Theorem 1. For any graph G, a PCQ q and the set of shapes Sq inferred from q,
assignment σG,Sq is constructed such that for each shape (s, ϕs, qs) ∈ Sq and for each
graph node v ∈ NG:

1. If v ∈ JqsKG, then s ∈ σG,Sq (v),
2. If v ̸∈ JqsKG, s ̸∈ σG,Sq (v).

Such an assignment σG,Sq is faithful.
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Proof (Sketch). Intuitively, a node v is part of the query result due to the presence of
some relations for the node. The assigned constraints require the presence of the exact
same relations to evaluate to true. A induction over the query evaluation rules can there-
fore show that 1) all nodes that are in the query result fulfill the constraint whereas 2) a
node not being in the query result would also violate the constraint.

The faithful assignment σG,Sq constructed in the manner as explained above is
unique. This is expected as shape inference does not use negation.

Proposition 1. The assignment σG,Sq constructed as described above is unique.

Proof. Assume that a different faithful assignment σ′G,Sq exists. There must be at least
one node v for which σG,Sq (v) ̸= σ′G,Sq (v).

1. It is impossible that there is an s such that s ∈ σG,Sq (v) and s ̸∈ σ′G,Sq (v). σ
assigns shapes based on target nodes, v must be a target node for s and σ′ is not
faithful.

2. It cannot be that s ̸∈ σG,Sq (v) and s ∈ σ′G,Sq (v). v must fulfill the constraint ϕs of
shape s, otherwise σ′ would not be faithful. If that is the case, then σ is not faithful.
This contradicts Theorem 1.

Given a faithful assignment σG,S for a set of shapes S and assignment σG,Sq for
an inferred set of shapes, the two assignments can be combined by simply taking the
union σG,S(v)∪σG,Sq (v) for each graph node v ∈ NG. While not true for two arbitrary
assignments, it is true in this case because shape names of S and Sq are disjoint.

5 Core Language

Syntax Our core language (Fig. 5) is a simply typed call-by-value λ-calculus. A pro-
gram is a pair consisting of shapes written for the program S and a term. Terms (t)
include4 function application and if-then-else expressions. Constructs for lists are in-
cluded in the language: cons, nil, null, head and tail. Specific to our language is a
querying construct for querying an RDF graph with PCQs. To avoid confusion between
PCQ query variables and program variables, we refer to the variables of a query always
with the symbol l as they are treated as labels in the program. We assume labels to be
either simple user-defined labels as commonly used in records, query variables or prop-
erty paths. Labels are used for projection. In case of a projection for a record, the value
associated with label is selected. When evaluating queries, evaluation rules turn query
results into lists of records whereas answer variables are used as record labels. Lastly, in
case of a projection for a graph node, the label is interpreted as a property path and the
graph is traversed accordingly. Even though not explicitly mentioned in the syntax, we
sometimes add parenthesis to terms for clarification. Values (val ) include graph nodes,
record values, nil and cons to represent lists, λ-abstractions and the two boolean values
true and false. λ-abstractions indicate the type of their variable explicitly.

4 Since they show no interesting effects, let statements and a fixpoint operator allowing for
recursion, e.g., as necessary to define a map function are omitted. They are contained in the
extended version.
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P ::= (program)
S, t (program shapes and term)

t ::= (term)
t t (application)
| if t then t else t (if-then-else)
| cons t t (list constructor)
| null t (test for empty list)
| head t (head of list)
| tail t (tail of list)
| query q (query)
| t.l (projection)
| {li = ti∈1...n

i } (record)
| x (variable)
| val (value)

val ::= (values)
v (graph node)
| {li = val i∈1...n

i } (record)
| nil[T ] (empty list)
| cons val val (list constructor)
| λ(x : T ).t (abstraction)
| true (true)
| false (false)

T ::= (types)
s (shape name)
| T → T (function type)
| T list (list type)
| {li : T i∈1...n

i } (record type)
| bool (boolean)

Γ ::= (context)
∅ (empty context)
| Γ , x : T (type binding)

Fig. 5: Abstract syntax of λSHACL.

Types (T ) include shape names (s) as well as type constructors for function (T →
T ), list (T list) and record types ({li : T i∈1...n

i }). We assume primitive data types such
as integers and strings, but omit routine details. To illustrate them, we include booleans
in our syntax. As common in simply typed λ-calculi, we also require a context Γ for
storing type bindings for λ-abstractions.

As an example, remember the program in Lst. 1 which queried for all instances
of Student. Assuming that map is defined using basic recursion, the program can be
expressed as

map (λ(y : {x : sStudent}).y.x.age) (query (x1)← x type Student)

In this program, the function (λ-abstraction) has one variable y whose type is a record.
The record consists of a single label x, representing the answer variable of the query.
The type of x is the shape sStudent . The term y.x in the body of the function constitutes
an access to the record label. Accessing the age in the next step constitutes a projec-
tion that traverses the graph. Type-checking rightfully rejects this program as nodes
conforming to sStudent may not have a age relation.

Semantics The operational semantics is defined using a reduction relation, which ex-
tends the standard ones. As types do not influence run-time behavior, shapes do not
occur in the evaluation rules. However, we define the reduction rules with respect to an
RDF graph G. Reduction of lists, records and other routine terms bear no significant
differences from reduction rules as, e.g., defined in [19] (c.f. Fig 6, reduction rules for
lists are only contained in the technical report). Reduction rules for queries and node
projections are summarized by rules E-QUERY and E-PROJNODE in Fig. 6. A term
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(G⇒ SP , t)→ (G⇒ t) (E-PROGRAM)
G⇒ t1 → t′1

G⇒ t1t2 → G⇒ t′1t2
(E-APP1)

G⇒ t2 → t′2

G⇒ val1t2 → G⇒ val1t
′
2

(E-APP2)
G⇒ t1 → G⇒ t′1

G⇒ t1.l→ G⇒ t′1.l
(E-PROJ)

G⇒ (λx : T.t1)val2 → G⇒ [x 7→ val2]t1 (E-APPABS)

G⇒ if true then t2 else t3 → G⇒ t2 (E-IF-TRUE)

G⇒ if false then t2 else t3 → G⇒ t3 (E-IF-FALSE)

G⇒ t1 → t′1

G⇒ if t1 then t2 else t3 → G⇒ if t′1 then t2 else t3
(E-IF)

G⇒ tj → t′j

G⇒ {li = val i∈1...,j−1
i , lj = tj , lk = tk∈j+1...n

k } →
G⇒ {li = val i∈1...,j−1

i , lj = t′j , lk = tk∈j+1...n
k }

(E-RCD)

G⇒ {li = val i∈1...n
i }.lj → G⇒ val j (E-PROJRCD)

q = (l1, . . . , ln)← body JqKG = {µ1, . . . , µm}
(G⇒ query q)→ G⇒ cons {li = µ1(li)

i∈1,...,n}, . . . ,
cons {li = µm(li)

i∈1,...,n}, nil

(E-QUERY)

J(x)← l(v, x)KG = {µ1, . . . , µn}
G⇒ v.l→ G⇒ cons µ1(x) . . . cons µn(x) nil

(E-PROJNODE)

Fig. 6: Reduction rules of λSHACL.

representing a query can be directly evaluated to a list of records. Query evaluationJqKG returns a list of mappings. As in other approaches (e.g., [2]), each query result be-
comes a record of the list. For each record, labels are created for each variable whereas
the value of the record is the value provided by the mapping. A projection on a given
graph node is evaluated as a query by turning the property path expression l into a query
pattern. However, instead of a record a plain list of graph nodes is returned.

Any term t which cannot be reduced any further (i.e. no rule applies to the term
anymore) is said to be in normal form. When evaluation is successful, then the term has
been reduced to a value val. Any term that is in normal form but not a value is said to
be stuck. As usual [19], we use “stuckness” as a simple notion of a run-time error.
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6 Type system

The most distinguishing feature of the type system is the addition of shape names as
types in the language. As each shape name requires a proper definition, our typing
relation “:” is defined with respect to a set of shapes. Likewise, a typing context Γ
is required to store type bindings for λ-abstractions. Since certain constructs such as
queries create new shapes during the type checking process, the typing relation does
not only assign a type to a term but also a set of newly created shapes which in turn
may contain definitions of shape names that are being used as types.

For the typing rules, we require the definition function lub that computes the least
upper bound of two types. The exact definition can be found in the technical report.
Intuitively, in case of two shapes s1 and s2, we rely on disjunction s1 ∨ s2 as a least
upper bound.

Typing rules The typing rules for constructs unrelated to querying are mainly the stan-
dard ones as common in simply typed λ-calculi, except all rules are defined with respect
to a set of shapes and return a set of newly created shapes (see Fig. 7). Basic rules, such
as for boolean values (rules T-TRUE and T-FALSE) simply return empty sets of shapes
as they do not create new shapes. Several rules take possible extensions of the set of
shapes into account. E.g., rule T-PROGRAM takes the set of shapes as defined by the
program SP and the pre-defined set of shapes S and uses the union of both to analyze
the term t.

New shapes are mainly created when either the least upper bound judgement is used
or one of the two query expressions (either query or projections) are used (see rules T-
QUERY and T-NPROJ in Fig. 7). In case of a query statement (rule T-QUERY), the
shape inference rules as described in Section 3 are being used to construct the set Sq

which is being returned as newly created shapes. The actual type of a query then com-
prises a list of records. Each record contains one label per answer variable whereas the
type of each label is the respective shape name for the query variable. Likewise, pro-
jections on graph nodes (T-NODEPROJ) create a new shape name s′ using a function
genName based on the old shape name s with the appropriate constraint ≥1 l−.s. The
newly created definition is returned as a set with the actual type of the expression being
s list.

Subtyping Subtyping rules are summarized in Fig. 8. We rely on a standard subtyping
relation. A term t of type T1 is also of type T2, if T1 <: T2 is true (T-SUB). Any type
is always a subtype of itself (S-RELF). If T1 is a subtype of T2 and T2 is a subtype
of T3, then T1 is also a subtype of T3 (S-TRANS). Subtyping for lists and functions
is reduced to subtyping checks for their associated types. A list T1 list is a subtype of
T2 list if T1 is a subtype of T2 (S-LIST). Function types are in a subtyping relation
(S-FUNC) if their domains are in a flipped subtyping relationship (“contra-variance”)
and their co-domains are in a subtyping relationship (“co-variance”). Record type is a
subtype of another record if 1) it has the the same plus more fields (S-RCDWIDTH), 2)
it is a permutation of the supertype (S-RCDPERM) and 3) if the types of the fields are
in a subtype relation (S-RCDDEPTH).
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S ∪ SP , Γ ⊢ t1 : T1, S1

S, Γ ⊢ SP , t1 : T1, S1

(T-PROGRAM)

S, Γ ⊢ t1 : T11 → T12, S1 S, Γ ⊢ t2 : T11, S2

S, Γ ⊢ t1t2 : T12, S1 ∪ S2

(T-APP)

S, Γ ⊢ t1 : bool, S1

S, Γ ⊢ t2 : T2, S2 S, Γ ⊢ t3 : T3, S3 lub(T2, T3, S ∪ S2 ∪ S3) = Tlub , Slub

S, Γ ⊢ if t1 then t2 else t3 : Tlub , S1 ∪ S2 ∪ S3 ∪ Slub

(T-IF)

S, Γ ⊢ nil[T ] : T list, ∅ (T-NIL)
S, Γ ⊢ t1 : T list, S1

S, Γ ⊢ tail t1 : T list, S1

(T-TAIL)

S, Γ ⊢ t1 : T1, S1 S, Γ ⊢ t2 : T1 list, S2

S, Γ ⊢ cons t1 t2 : T1 list, S1 ∪ S2

(T-CONS)

S, (Γ, x : T1) ⊢ t : T2, S2

S, Γ ⊢ λ(x : T1).t : T1 → T2, S2

(T-ABS)
x : T ∈ Γ

S, Γ ⊢ x : T, ∅
(T-VAR)

S, Γ ⊢ true : bool, ∅ (T-TRUE) S, Γ ⊢ false : bool, ∅ (T-FALSE)

S, Γ ⊢ t1 : T1 list, S1

S, Γ ⊢ null t1 : bool, S1

(T-NULL)
S, Γ ⊢ t1 : T1 list, S1

S, Γ ⊢ head t1 : T, S1

(T-HEAD)

for each i S, Γ ⊢ ti : Ti, Si

S, Γ ⊢ {li = t1∈1...n
i } : {li : T i∈1...n

i },
n∪

i=1

Si

(T-RCD)

S, Γ ⊢ t1 : {li : T i∈1,...,n
i }, S1

S, Γ ⊢ t1.li : Ti, S1

(T-RCDPROJ)

q = (l1, . . . , ln)← body

vars(q) = {l1, . . . , ln, . . . lm} q : Sq = {(sqli , ϕ
q
li
, qqsli

)i∈1...m}

S, Γ ⊢ query q : {(li : sqli)
i∈1...n} list, Sq

(T-QUERY)

S, Γ ⊢ t1 : s, S1 genName(s) = s′ S ∪ {s′,≥1 l−.s, ∅} ⊢ s <: s′

S, Γ ⊢ t1.l : s
′ list, S1 ∪ {s′,≥1 l−.s, ∅}

(T-NPROJ)

Fig. 7: Typing rules for λSHACL.

Subtyping relations between two shapes s1 and s2 are defined via faithful assign-
ments. An assignment σ : NG → 2NS is a function that assigns shape names to graph
nodes. We require the opposite direction—a function σinv assigning nodes to shapes.
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Definition 5 (Inverse assignments). Let G be an RDF data graph, S a set of shapes
and σG,S a faithful assignment for G and S. Then σG,S

inv is a total function σG,S
inv : NS →

2NG mapping shape names to subsets of NG such that for all graph nodes v ∈ NG and
all shape names s ∈ NS: s ∈ σG,S(v) iff v ∈ σG,S

inv (s)

For a given set of shapes S, two shapes s1 and s2 are in a subtyping relation if, for
all possible RDF graphs G ∈ G and all faithful assignments ΣG,S for S and G, it holds
that σinv

G,S(s1) ⊆ σinv
G,S(s2) (S-SHAPE). That is, the sets of nodes conforming to the two

shapes are in a subset relation for all possible RDF graphs conform to the set of shapes.

S, Γ ⊢ t1 : T1, S1 S ⊢ T1 <: T2

S, Γ ⊢ t1 : T2, S1

(T-SUB) S ⊢ T <: T (S-REFL)

S ⊢ T1 <: T2 S ⊢ T2 <: T3

S ⊢ T1 <: T3

(S-TRANS)

S ⊢ T21 <: T11 S ⊢ T12 <: T22

S ⊢ T11 → T12 <: T21 → T22

(S-FUNC)
S ⊢ T1 <: T2

S ⊢ T1 list <: T2 list
(S-LIST)

S ⊢ {li : T i∈1...n+k
i } <: {li : T i∈1...n

i } (S-RCDWIDTH)

{kj : T j∈1...n
j } is a permutation of {li : T i∈1...n

i }
S ⊢ {kj : T j∈1...n

j } <: {li : T i∈1...n
i }

(S-RCDPERM)

for each i Ti <: T ′
i

S ⊢ {li : T i∈1...n
i } <: {li : T ′i∈1...n

i }
(S-RCDDEPTH)

∀G ∈ G : ∀σinv
G,S ∈ Σinv

G,S : σinv
G,S(s1) ⊆ σinv

G,S(s2)

S ⊢ s1 <: s2
(S-SHAPE)

Fig. 8: Subtyping rules.

Algorithmic subtyping Algorithmic solutions to standard subtyping rules such used in
Fig. 8 are, e.g., described by [19]. In the case of subtyping for shapes, algorithmic ap-
proaches similar to subsumption checking in description logics [1] can be employed.
That is, s1 must be a subtype of s2 if it can be shown that no graph exists that con-
tains a node v for which s1 ∈ σG,S(v) but s2 ̸∈ σG,S(v). As of now, we compare
constraint sets which is sound but incomplete. We don’t know whether a complete al-
gorithm exists, although we plan to investigate a transformation into a description logic
based reasoning problem.

Type elaboration Types do not play any role during the evaluation of terms. They are
only used during the type checking process. This is by design, as run-time type checks
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. . .
S, Γ ⊢ t1 : t′1, T1 list, S1

S, Γ ⊢ head t1 : head t′1, T1, S1

(T-HEAD)

S, Γ ⊢ t1 : t′1, s, S1

S ∪ S′ ∪ {stmp ,=1 l.⊤, ∅} ⊢ s <: stmp genName(s) = s′

S, Γ ⊢ t1.l : head t′1.l, s
′, S1 ∪ {s′,≥1 l−.s, ∅}

(T-NPROJ-1)

S, Γ ⊢ t1 : t′1, s, S1 S ∪ S′ ∪ {stmp ,=1 l.⊤, ∅} ̸⊢ s <: stmp

S ∪ S′ ∪ {stmp ,≥1 l.⊤, ∅} ⊢ s <: stmp genName(s) = s′

S, Γ ⊢ t1.l : t
′
1.l, s

′ list, {s′,≥1 l−.s, ∅}
(T-NPROJ-2)

Fig. 9: Type system with type elaboration (excerpt).

incur overhead and should be avoided, in particular if the type check is computationally
expensive. However, the evaluation relation only evaluates terms of the form v.l (node
projections) into lists of graph nodes (c.f. rule E-PROJNODE of Fig. 6 and T-NPROJ of
Fig. 7), even though a shape may hint that there is only one successor (e.g., studiesAt
of shape sStudent ). As the evaluation rules have no information about types, the type
system must annotate or transform terms such that they can be treated differently during
run-time. This process is called type elaboration [19]. The typing relation “:” then takes
a set of shapes S and a typing context Γ and returns a term t, a type T and a set
of newly introduced shapes S′. This is exemplified by the rules in Fig. 9. Most rules
simply return the term without modifications (e.g., rule T-HEAD). However, in case of
node projections where it can be shown that there is only a single successor, a head is
automatically added to the term (rule T-NPROJ-1). Otherwise, the term is not modified
(rule T-NPROJ-2).

7 Type Soundness

A term t is said to be well-typed if the type system assigns a type. We show the sound-
ness of the λSHACL type system by proving that a well-typed term does not get stuck
during evaluation. As with other languages, there are exceptions to this rule, e.g., down-
casting in object-oriented languages, c.f. [10]. For λSHACL, this exception concerns
lists. We show that if a program is well-typed, then the only way it can get stuck is by
reaching a point where it tries to compute head nil or tail nil. Furthermore, terms must
be closed, meaning that all program variables are bound by function abstractions [19].
We proceed in two steps, by showing that a well-typed term is either a value or it can
take a step (progress) and by showing that if that term takes a step, the result is also
well-typed (preservation).

Lemma 1 (Canonical Forms Lemma). Let val be a well-typed value. Then the fol-
lowing observations can be made:

1. If val is a value of type s, then val is of the form v.
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2. If val is value of type T1 → T2, then val is of the form λ(x : T1).t2.
3. If val is a value of type T list, then val is either of the form cons val . . . or nil.
4. If val is a value of type {li : T i∈1...n

i }, then val is of the form {li = val i∈1...n
i }.

5. If val is a value of type bool, then val is either of the form true or false.

Given Lemma 1, we can show that a well-typed term is either a value or it can take
a step.

Theorem 2 (Progress). Let t be a closed, well-typed term. If t is not a value, then there
exists a term t′ such that t → t′. If S, Γ ⊢ t : T, S′, then t is either a value, a term
containing the forms head nil or tail nil, or there is some t′ with t→ t′.

Proof (Sketch). The theorem can be shown by induction on the derivation of S, Γ ⊢
t : T, S. Queries (t = query q) are straightforward as no sub-term exists. For node
projections (t1.l with the type of t1 being a shape name), Lemma 1 tells us that it must
ultimately reduce to a graph node. In that case rule E-PROJNODE applies. The full
proof can be found in the tech report.

Given that a well-typed term can take a step, we now need to show that taking a step
according to the evaluation rules preserves the type.

Theorem 3 (Preservation). Let t be a term and T a type. If S, Γ ⊢ t : T, S′ and
t→ t′, then S, Γ ⊢ t′ : T, S′.

Proof (Sketch). As with progress, the proof is an induction over the typing relation
S, Γ ⊢ t : T, S′. For each term, possible ways of reducing it are distinguished and it is
shown that in each case the type does not change. For queries, this is immediate. In case
of node projections, t1 either took a step, in which case the typing rule applies again,
or it is a graph node v with type s. Each v′ which is reached via the node projection
conforms to the newly created shape s′ with its constraint ≥1 l−.s. Therefore, the type
is also preserved.

As a direct consequence of Theorems 2 and 3, a well-typed, closed term does not
get stuck during evaluation.

8 Related Work

The presented approach is generally related to the validation of RDF as well as the
integration of RDF into programming languages. RDF validation has seen an increase
in interest. Among them are inference-based approaches such as [23,16], in which OWL
expressions are used as integrity constraints by relying on a closed-world assumption.
The fact that constraints are OWL expressions puts these approaches closer to [15] than
the approach described here. A validation approach that is relatively similar to SHACL
is ShEx [4]. ShEx also uses shapes to group constraints, but removes property path
expressions and features well-defined recursion. We chose SHACL over ShEx due to
SHACL being a W3C recommendation. Due to the similarity between SHACL and
ShEx, the integration process for the latter is very similar. In fact, the definition for
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recursion used in ShEx even simplifies some aspects as there is no need for the notion
of faithful assignments.

In terms of integration of RDF into programming languages, we consider differ-
ent approaches. Generic representations, e.g., the OWL API [9] or Jena [5], use types
on a meta-level (e.g., Statement) that do not allow a static type-checker to verify a
program. This leaves correctness entirely on the hands of the programmer. Mapping ap-
proaches use schematic information of the data model to create types in the target lan-
guage. Type checking can offer some degree of verification. An early example of this is
OWL2Java [12], a more recent one is LITEQ [14]. However, mapping approaches based
on ontologies come with their own limitations. OWL relies on a open-world assump-
tion, in which missing information is treated as incomplete data rather than constraint
violations. As shown in the introduction, structural information does therefore not nec-
essarily imply the presence of data relationships. This is problematic for type-checkers
as they rely on a closed world. The most powerful approaches create new languages or
extend existing ones to accomodate the specific requirements of the data model. Exam-
ples include rule-based programming [11] as well as a transformation and validation
language [21]. However, both are untyped. Typed approaches to linked data is provided
by [8,6]. Zhi# [17], an extension of the C# language provides an integration for OWL
ontologies, albeit it only considers explicitly given statements. Contrary to that, [15,22]
provides an integration of OWL ontologies also considering implicit statements. How-
ever, as shown in the introduction, programmers cannot rely on structural restrictions
given by OWL ontologies whereas SHACL enforces its structural restriction with a
closed-world assumption.

9 Summary and Future Work

In this paper, we have presented an approach for type checking programs using SHACL.
We have shown that by using SHACL shapes as types, type safety can be achieved. This
helps in writing less error-prone programs, in particular when facing evolving RDF
graphs. The work can be extended in several directions.

First, an implementation of the presented approach is highly desirable. Comparably
to [22], we plan on implementing the approach in Scala using compiler plugins that
add new compilation phases. Shape names constitute a new form of types. As shape
names are known before compilation, they can be syntactically integrated using auto-
matically generated type aliases to a base type. This allows for type checking shape
types in a separate compilation phase that runs after the standard Scala type inference
and type checker phases. As there is little interaction between normal Scala types and
shape types, issues only arise when code converts e.g., literals into standard Scala types.
However, this can be solved through minor code transformations before the type check-
ing phase. Lastly, transformations based on type elaboration can also run as a separate
phase. As shape types do not influence run-time behavior, compilation produces stan-
dard JVM byte code. However, one noteworthy limitation of using type aliases to rep-
resent shape names is that method overloading based on shape names is not possible.
Resolving this issue requires better integration techniques which remain as future work.

Second, finding sound and complete methods for deciding shape subsumption is an
interesting problem that requires future research. This is an important step as it defines
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practical boundaries in terms of the parts of SHACL that can be used for type check-
ing. Lastly, the supported subset of SPARQL queries is relatively small and should be
extended by missing features such as union of queries or filter expressions. This raises
questions about the parts of SPARQL that can be described with SHACL shapes.
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