
Pretrained Transformers for Simple Question
Answering over Knowledge Graphs

Denis Lukovnikov1, Asja Fischer2, and Jens Lehmann1,3

1 University of Bonn, Germany
{lukovnik,jens.lehmann}@cs.uni-bonn.de

2 Ruhr University Bochum, Germany
asja.fischer@rub.de

3 Fraunhofer IAIS, Dresden, Germany
jens.lehmann@iais.fraunhofer.de

Abstract. Answering simple questions over knowledge graphs is a well-studied
problem in question answering. Previous approaches for this task built on re-
current and convolutional neural network based architectures that use pretrained
word embeddings. It was recently shown that finetuning pretrained transformer
networks (e.g. BERT) can outperform previous approaches on various natural
language processing tasks. In this work, we investigate how well BERT performs
on SIMPLEQUESTIONS and provide an evaluation of both BERT and BiLSTM-
based models in limited-data scenarios.

1 Introduction

Question Answering (QA) over structured data aims to directly provide users with an-
swers to their questions (stated in natural language), computed from data contained
in the underlying database or knowledge graph (KG). To this end, a knowledge graph
question answering (KGQA) system has to understand the intent of the given question,
formulate a query, and retrieve the answer by querying the underlying knowledge base.
The task of translating natural language (NL) inputs to their logical forms (queries) is
also known as semantic parsing. In this work, we focus on answering simple questions
(requiring the retrieval of only a single fact) over KGs such as Freebase [2].

The availability of large quantities of high-quality data is essential for successfully
training neural networks on any task. However, in many cases, such datasets can be dif-
ficult and costly to construct. Fortunately, the lack of data can be mitigated by relying
on transfer learning from other tasks with more data. In transfer learning, (neural net-
work) models are first trained on a different but related task, with the goal of capturing
relevant knowledge in the pretrained model. Then, the pretrained model is finetuned on
the target task, with the goal of reusing the knowledge captured in the pretraining phase
to improve performance on the target task.

Recently proposed transfer learning methods [8,17,18,5,15,10] show that significant
improvement on downstream natural language processing (NLP) tasks can be obtained
by finetuning a neural network that has been trained for language modeling (LM) over
a large corpus of text data without task-specific annotations. Models leveraging these
techniques have also shown faster convergence and encouraging results in a few-shot or

ar
X

iv
:2

00
1.

11
98

5v
1

 [
cs

.C
L

]
 3

1
Ja

n
20

20

2 Lukovnikov et al.

limited-data settings [8]. Owing to their benefit, the use of this family of techniques is
an emerging research topic in the NLP community [10]. However, it has received little
attention in KGQA research so far.

The main focus of our work is to investigate transfer learning for question answer-
ing over knowledge graphs (KGQA) using models pretrained for language modeling.
For our investigation, we choose BERT [5] as our pretrained model used for finetuning,
and investigate transfer from BERT using the SIMPLEQUESTIONS [3] task. BERT is
a deep transformer [20] network trained on a masked language modeling (MLM) task
as well as a subsequent sentence pair classification task. We use SIMPLEQUESTIONS
because it is a very well-studied dataset that characterizes core challenges of KGQA,
and is, to the best of our knowledge, the largest gold standard dataset for KGQA. The
large size of the dataset is particularly appealing for our study, because it allows us to
investigate performance for a wider range of sizes of the data used for training. Promis-
ing results with BERT for KGQA have been very recently reported on other KGQA
datasets [12]. However, we found a thorough investigation of the impact of data avail-
ability and an analysis of internal model behavior to be missing, which would help to
better understand model behavior in applications of KGQA.

The contributions of this work are as follows:

– We demonstrate for the first time the use of a pretrained transformer network (BERT)
for simple KGQA.We also propose a simple change in our models that yields a sig-
nificant improvement in entity span prediction compared to previous work.

– We provide a thorough evaluation of pretrained transformers on SIMPLEQUES-
TIONS for different amounts of data used in training and compare with a strong
baseline based on bidirectional Long-Short-Term-Memory [7] (BiLSTM). To the
best of our knowledge, our work is the first to provide an analysis of performance
degradation with reduced training data sizes for SIMPLEQUESTIONS and KGQA
in general.

– We try to provide an understanding of the internal behavior of transformer-based
models by analyzing the changes in internal attention behavior induced in the trans-
former during finetuning.

We perform our study using the general framework used in recent works [13,16],
where simple question interpretation is decomposed into (1) entity span detection, (2)
relation classification, and (3) a heuristic-based post-processing step to produce final
predictions. In this work, we particularly focus on the first two subtasks, providing
detailed evaluation results and comparison with a baseline as well as [13].

2 Approach

We follow the general approach outlined in BuboQA [13], which decomposes simple
question interpretation into two separate learning problems: (1) entity span detection
and (2) relation classification. Recent works on SIMPLEQUESTIONS show that this gen-
eral approach, followed by a heuristic-based entity linking and evidence integration step
can achieve state-of-the-art performance [13,16], compared to earlier works [11,4,6,24]
that investigated more complicated models.

In summary, our approach follows the following steps at test time:

Pretrained Transformers for Simple Question Answering over Knowledge Graphs 3

1. Entity Span Detection and Relation Prediction: The fine-tuned BERT model is used
to perform sequence tagging to both (1) identify the span s of the question q that
mentions the entity (see Section 2.2) and (2) predict the relation r used in q (see
Section 2.3). In the example “Where was Michael Crichton born?”, s would be
the span “Michael Crichton”. The tagger is trained using annotations automatically
generated from the training data and entity labels in Freebase.

2. Entity Candidate Generation: We retrieve entities whose labels are similar to the
predicted entity span s using an inverted index4 and rank them first by string similar-
ity (using fuzzywuzzy) and then by the number of outgoing relations. For our ex-
ample, the resulting set of entity candidates will contain the true entity for Michael
Crichton, the writer (corresponding to Freebase URI http://www.freebase.com/m/056wb).
Note that the true entity does not necessarily rank highest after the retrieval phase.

3. Query Ranking: Given the relations predicted in Step 1, and the set of entities from
Step 2, the entity-relation pairs are re-ranked as detailed in Section 2.4. After rank-
ing entity-relation pairs, we take the top-scoring pair, from which we can trivially
generate a query to retrieve the answer from the KG.

Whereas previous works experimented with recurrent and convolutional neural net-
work (RNN resp. CNN) architectures, we investigate an approach based on transform-
ers. Several existing works train separate models for the two learning tasks, i.e. entity
span detection and relation prediction. Instead, we train a single network for both tasks
simultaneously.

2.1 Background: Transformers and BERT

Transformers: Transformer [20] networks have been recently proposed for NLP tasks
and are fundamentally different from the previously common RNN and CNN architec-
tures. Compared to RNNs, which maintain a recurrent state, transformers use multi-
head self-attention to introduce conditioning on other timesteps. This enables the par-
allel computation of all feature vectors in a transformer layer, unlike RNNs, which
process the input sequence one time step at a time. And unlike RNNs, which have to
store information useful for handling long-range dependencies in its hidden state, the
transformer can access any timestep directly using the self-attention mechanism.

More specifically, transformers consists of several layers of multi-head self-attention
with feedforward layers and skip connections. Multi-head self-attention is an extension
of the standard attention mechanism [1], with two major differences: (1) attention is ap-
plied only within the input sequence and (2) multiple attention heads enable one layer
to attend to different places in the input sequence.

Let the transformer consist of L layers, each (l ∈ {1, . . . ,L}) producing N output
vectors xl+1

1 , . . . ,xl+1
N , which are then used as inputs in the l + 1-th transformer layer.

The inputs x1
1, . . . ,x

1
N to the first transformer layer are the embeddings of the input

tokens x1, . . . ,xT .

4The inverted index maps words to entities whose labels contain that word

http://www.freebase.com/m/056wb

4 Lukovnikov et al.

The attention scores of the l-th layer are computed as follows:

al,h,i, j = (xl
iW

(l,h)
Q)>(xl

jW
(l,h)
K) , (1)

αl,h,i, j =
eah,l,i, j

∑
N
k=1 eah,l,i,k

, (2)

where αl,h,i, j is the self-attention score for head h ∈ {1, . . . ,M} in layer l between posi-
tion i (corresponding to xl

i) and position j (corresponding to xl
j) and is implemented as

a softmax of dot products between the input vectors xl
i and xl

j, after multiplication with

the so called query and key projection matrices for head h of layer l (W (l,h)
Q and W (l,h)

K ,
respectively).

Intermediate representation vectors for each input position are computed as the con-
catenation of the M heads’ summary vectors, each computed as a αl,h,i, j-weighted sum
of input vectors xl

1, . . . ,x
l
N , which are first projected using the matrix W (l,h)

V :

hl
i = [

N

∑
j=1

αl,h,i, j ·xl
jW

(l,h)
V]h=1..M . (3)

The output of the l-th transformer layer (which is also the input to the l + 1-th layer)
is then given by applying a two-layer feedforward network with a ReLU activation
function on hl

i , that is:

xl+1
i = max(0,hl

iW
(l)
1 +b(l)1)W (l)

2 +b(l)2 . (4)

For more details, that were omitted here, we refer the reader to the work of Vaswani
et al. [20] and other excellent resources, like the Illustrated Transformer5.

BERT: Following previous work on transfer learning form pretrained transformer-
based language models [17], Devlin et al. [5] pretrain transformers on a large collection
of unsupervised language data, leading to a model called BERT. However, in contrast
to a classical, left-to-right language model used by OpenAI-GPT [17], BERT builds on
pretraining a masked language model (MLM). The MLM pretraining is done by ran-
domly masking words, i.e. by randomly replacing them with [MASK] tokens, feeding
the resulting partially masked sequence into the model and training the model to pre-
dict the words that have been masked out, given the other words. This enables BERT’s
feature vectors to include information both from the preceding tokens as well as the
following tokens, whereas the left-to-right LM pretraining of OpenAI-GPT constrained
the model to look only at the past. In addition to the MLM task, BERT is also pre-trained
on a sentence pair classification task. Specifically, it is trained to predict whether one
sentence follows another in a text. This pre-training task is useful for downstream tasks
such as entailment, which is formulated as classification of sentence pairs, but also for
single sentence classification.

5http://jalammar.github.io/illustrated-transformer/

http://jalammar.github.io/illustrated-transformer/

Pretrained Transformers for Simple Question Answering over Knowledge Graphs 5

BERT for text works as follows. Given a sentence (e.g. “What songs have Nobuo
Uematsu produced”), it is first tokenized to (sub)word level using a WordPiece [21]
vocabulary (→ [“What”, “songs”, “have”, “no”, “#buo”, “u”, “#ema”, “#tsu”, “pro-
duced”]). More common words are taken as words (“What”, “songs”, “have”), while un-
common words are split into subword units (“nobuo”→ [“no”, “#buo”]). This method
significantly reduces vocabulary size and the amount of rare words without dramatically
increasing sequence length. The input sequence is also padded with a [CLS] token at
the beginning and a [SEP] token at the end.

The WordPiece token sequence is then embedded into a sequence of vectors. Posi-
tion6 (and sequence type7) embedding vectors are added to the token embeddings. The
resulting embedding vectors are fed through the transformer, which uses several lay-
ers of multi-head self-attention and feedfoward layers, as described above. The output
vectors for each token can be used for sequence tagging tasks, while the vector asso-
ciated with the [CLS] token at the beginning of the sequence is assumed to capture
relevant information about the input sequence as a whole, since it has been pre-trained
for sentence pair classification.

2.2 Entity span prediction

In this step, we intend to identify the span of tokens in the input question referring
to the subject entity mentioned in it. Previous works treated this problem as a binary
I/O sequence tagging problem, and explored the use of BiLSTM, conditional random
fields (CRFs), and combined BiLSTM-CRF taggers. The sequence tagging model is
trained to classify each token in the input sequence as belonging to the entity span (I) or
not (O). Instead, we treat span prediction as a classification problem, where we predict
the start and end positions of the entity span using two classifier heads. This approach
assumes that only one entity is mentioned in the question and that its mention is a single
contiguous span. Formally, the start-position classifier has the following form:

p(i = START|x1, . . . ,xN) =
exL+1

i
>

wSTART

∑
N
j=1 e

xL+1
j
>

wSTART
, (5)

where xL+1
i is the feature vector produced by BERT’s topmost (L-th) layer for the i-th

token of the sequence and wSTART is the parameter vector of the start position classifier.
End position prediction works analogously, applying a different parameter vector, wEND.

2.3 Relation prediction

Relation prediction can be considered a sequence classification task since the SIMPLE-
QUESTIONS task assumes there is only a single relation mentioned in the question.
Thus, for relation prediction, we use BERT in the sequence classification setting where

6The use of self-attention requires explicit position indication since this information can not
be implicitly inferred, like in RNNs.

7BERT uses two sequence types: first-sentence and second-sentence, where the latter is only
used for sentence-pair inputs and is thus irrelevant for our task.

6 Lukovnikov et al.

we take the feature vector xL+1
CLS = xL+1

1 produced for the [CLS]8 token at the beginning
of the input sequence and feed it through a softmax output layer to get a distribution
over possible relations:

p(r = Ri|x1, . . . ,xN) =
exL+1

CLS
>wRi

∑
NR
k=1 exL+1

CLS
>wRk

, (6)

where wRi is the vector representation of relation Ri
9.

Previous works [16,23,24] propose using the question pattern instead of the full
original question in order to reduce noise and overfitting. They do this by replacing the
predicted entity span with a placeholder token. Doing this would require training a sep-
arate model for relation prediction and introduce dependency on entity span prediction.
In our BERT-based approach, we chose to train a single model to perform both entity
span prediction and relation prediction in a single pass. Thus, we do not replace the
entity span for relation prediction. We also experimented with training a separate trans-
former with (1) setting the attention mask for all self-attention heads such that the entity
tokens are ignored and (2) replacing the entity mention with a [MASK] token. However,
both methods failed to improve relation classification accuracy in our experiments.

Training a separate relation classifier network without entity masking yields results
equivalent to simply training a single network for both entity span prediction and rela-
tion prediction.

2.4 Logical Form Selection

To get the final logical forms, we take the top K (where K=50 in our experiments) entity
candidates during entity retrieval and for each, we take the highest-scored relation that is
connected to the entity in the knowledge graph. We rank the entity-predicate candidate
pairs first based on the string similarity of any of their entity labels/aliases with the
identified span, breaking ties by favouring entity-predicate pairs with predicates with
higher prediction probability under the BERT model, and the remaining ties are broken
by entity in-degree (the number of triples the entity participates in as an object).

3 Experimental Setup

We use the small uncased pretrained BERT model from a PyTorch implementation of
BERT10. The whole transformer network and original embeddings were finetuned dur-
ing training. For training, the Adam optimizer [9] was employed and we experimented
with different learning rate schedules. Most of the final results reported use a cosine

8Before using BERT, the input sequence is first tokenized into WordPieces, a [CLS] token
at the beginning and a [SEP] token is added at the end.

9The vector wRi is a trainable parameter vector, unique for relation Ri (and is thus not pre-
sented by subsymbolic encodings as it is for example the case in [24,11]).

10https://github.com/huggingface/pytorch-pretrained-BERT

https://github.com/huggingface/pytorch-pretrained-BERT

Pretrained Transformers for Simple Question Answering over Knowledge Graphs 7

annealing learning rate schedule with a short warmup phase of approximately 5% of
total training updates. We indicate if reported results rely on a different schedule.

We used PyTorch 1.0.1 and trained on single Titan X GPU’s. The source code is
provided at https://github.com/SmartDataAnalytics/semparse-sq.

3.1 Metrics

To evaluate the entity span prediction model, we compute the average11 F1 and span
accuracy12 on word level. Since BERT operates on subword-level (WordPiece), we first
need to obtain word-level metrics. To do this, we first transform the predictive distri-
butions over subword units to distributions over words by summing the probabilities
assigned to subword units of a word. Then, we take the argmax over the resulting dis-
tribution over words.

We also compute F1 on word level over the entire dev/test datasets to compare our
numbers to BuboQA [13]. Even though the difference between the dataset-wide F1 and
the averaged F1 is small, we believe the latter is more informative, since the contribution
of every example is equal and independent of the span lengths.13 (lower entropy of the
predictive categorical distribution)

For relation classification, we report classification accuracy.

3.2 Baseline

As a baseline, we use a BiLSTM start/end classifier for entity span prediction and a
BiLSTM sequence classifier for relation prediction. The BiLSTM start/end classifier
works on word level and uses the same Glove [14] embeddings as BuboQA [13]. We
use the same output layer form as our BERT-based model, where instead of performing
a binary I/O tagging of the input sequence, we simply predict the beginning and end
positions of the span using a softmax over sequence length (see also Eq. 5). Using this
small change significantly improves the performance of our baseline for entity span
prediction, as shown in Section 4.

For relation classification, we use a different BiLSTM, taking the final state as the
question representation vector and using it in a classifier output as in BuboQA [13] –
comprising of an additional forward layer, a ReLU, a batch normalization layer and a
softmax output layer. We did not replace the entity mentions with an entity placeholder
(like [16]), and instead fed the original sequences into the relation classification encoder.

Even though these BiLSTM baselines are quite basic, previous work has shown they
can be trained to obtain state-of-the-art results [13,16].

Both BiLSTMs were trained using a cosine annealing learning rate schedule as the
one used to train our BERT-based model.

11F1, precision and recall are computed separately for each example based on span overlaps
and then averaged across all examples in the dev/test set.

12Span accuracy is one only for examples where all token memberships are predicted correctly.
13The implementation of F1 in BuboQA’s evaluation code seems to be computing F1 based

on precision and recall computed over the dataset as a whole, thus letting examples with longer
spans contribute more towards the final score.

https://github.com/SmartDataAnalytics/semparse-sq

8 Lukovnikov et al.

As shown in Section 4, our baselines perform better than or on par with equivalent
networks used in BuboQA [13].

3.3 Effect of Limited Training Data

In order to further illustrate the usefulness of fully pretrained models for SIMPLEQUES-
TIONS and KGQA, we perform a series of experiments to measure how performance
degrades when fewer examples are available for training. SIMPLEQUESTIONS is a fairly
large dataset containing 75k+ training examples. With abundant training data available,
a randomly initialized model is likely to learn to generalize well, which might make the
advantage of starting from a fully pretrained model less pronounced. The large size of
SIMPLEQUESTIONS makes it possible to study a wider range of limited-data cases than
other, smaller datasets.

We run experiments for both BERT and our baseline BiLSTM with different frac-
tions of the original 75k+ training examples retained for training. Examples are retained
such that the number of relations not observed during training is minimized, favouring
the removal of examples with most frequently occurring relations. We assume that this
strategy, compared to random example selection, should not have a big effect on en-
tity span prediction accuracy but should minimize errors in relation prediction due to
unseen relation labels, and create more balanced datasets for more informative perfor-
mance assessment. We report span accuracy and relation accuracy on the validation set
of SIMPLEQUESTIONS as a function of the fraction of data retained in Table 3. For
relation prediction, we only report experiments where the retained examples cover all
relations observed in the full training dataset at least once.

4 Results and Analysis

For the two learning tasks, we observe significant improvements from using BERT, as
shown in Table 1a for entity span prediction and Table 1b for relation prediction (see
Section 4.1). Section 4.2 talks about experiments with fewer training data, Section 4.3
shows component performance on the test set. Final results for the whole simple QA
task are discussed in Section 4.4. Finally, we conclude with an analysis of the attentions
in the transformer in Section 4.5.

4.1 Full data results

From Table 1a, we can see that BERT outperforms our BiLSTM baseline by almost
2% accuracy (evaluated on validation set), although the difference in F1 is smaller.
Compared to BuboQA [13], we obtain much higher dataset-wide F1 scores, which we
attribute to our start/end prediction rather than I/O tagging used by previous works,
including BuboQA.

The improvement is less pronounced in relation classification accuracies (see Ta-
ble 1b), where our baseline BiLSTM achieves the same results as those reported by
BuboQA [13] for a CNN. Our BERT-based classifier beats our BiLSTM by almost 1%
accuracy.

Pretrained Transformers for Simple Question Answering over Knowledge Graphs 9

Accuracy Avg. F1 F1*

BiLSTM [13] – – 93.1
CRF [13] – – 90.2

BiLSTM (ours) 93.8 97.0 97.1
BERT (ours) 95.6 97.8 97.9

(a) Entity span prediction.

Accuracy

BiGRU [13] 82.3
CNN [13] 82.8

BiLSTM (ours) 82.8
BERT (ours) 83.6

(b) Relation prediction.
Table 1: Component performance evaluation results, trained on all available training
data, measured on validation set. (a) Entity span prediction performance, measured by
span accuracy, average span F1 and dataset-wide F1 (F1*), all on word level. (b) Rela-
tion prediction performance, measured by accuracy (R@1).

Table 2 shows entity retrieval performance for different numbers of candidates,
compared against the numbers reported in [13]. The recall at 50 is 2.71% higher. Please
note that we also use entity popularity during retrieval to break ties that occur when
multiple retrieved entities have the same name (and thus the same string similarity—
the main sorting criterion).

4.2 Effect of Limited Training Data

From the limited-data experiments for entity span prediction shown in Table 3 (top
part), we can conclude that a pretrained transformer is able to generalize much bet-
ter with fewer examples. In fact, with only 1% of the original training data used (757
examples), BERT reaches a best span prediction accuracy of 85.4% on the valida-
tion set, corresponding to an average F1 of 93.2. In contrast, our BiLSTM baseline
achieves only 74.0% span prediction accuracy on the validation set, corresponding
to 88.6 F1. In an extremely data-starved scenario, with only 0.03% of the original
dataset—corresponding to just 22 training examples—the best validation accuracy we
observed for BERT was 62.5%, corresponding to 80.9 F1. In the same setting, we were
not able to obtain more than 33.1% accuracy with our BiLSTM baseline. Overall, we
can clearly see that the degradation in performance with less data is much stronger for
our Glove-based BiLSTM baseline.

R@N BiLSTM BiLSTM BERT
[13] (ours) (ours)

1 67.8 76.45 77.17
5 82.6 87.46 88.18
20 88.7 91.47 92.13
50 91.0 93.07 93.71
150 – 94.88 95.40

Table 2: Entity recall on validation set.

10 Lukovnikov et al.

0.03% 0.2% 1% 2.5% 5% 10% 25% 50% 75% 100%
(22) (151) (757) (1k9) (3k8) (7k6) (18k9) (37k9) (56k8) (75k7)

Entity Span
BiLSTM 33.1 64.5 74.0 78.1 82.5 85.5 90.1 92.0 93.4 93.8
BERT 62.5 79.1 85.4 88.9 90.8 92.4 94.2 94.9 95.5 95.6

Relation
BiLSTM – – – 26.5 41.0 56.3 72.4 79.0 81.3 82.8
BERT – – – 29.6* 48.6 67.5 76.5 80.1 82.6 83.6

Table 3: Entity span detection accuracies (top half) and relation prediction accuracies
(bottom half) as a function of fraction of training data retained. Evaluated on the entire
validation set. (*) indicates a cosine learning rate schedule with restarts — in extremely
low data scenarios for relation classification, this seems to yield better results than the
cosine learning rate schedule without restarts that is used everywhere else.

Limited-data experiments for relation prediction (shown in Table 3) (bottom part)
reveals that relation classification is more challenging for both our BiLSTM and BERT-
based models. However here too, BERT seems to degrade more gracefully than our
Glove+BiLSTM baseline.

4.3 Performance on test set

After identifying good hyperparameters for both our BiLSTM baseline and our BERT-
based model using the validation set, we evaluated our models using the same evaluation
metrics on the test set. Results for both entity span prediction and relation prediction on
the test set are reported in Table 4.14 As shown in Table 4, the test set results are close
to the validation set results for both models.

4.4 Final results

In Table 5, we compare our final predictions against previous works on SIMPLEQUES-
TIONS. With our simple entity linking and logical form selection procedure (see Sec-
tion 2.4), we achieve 77.3% accuracy on the test set of SIMPLEQUESTIONS, beating

Entity Span Relation
Accuracy Avg. F1 Accuracy

BiLSTM 93.2 96.7 82.4
BERT 95.2 97.5 83.5

Table 4: Component results on test set.

14Note that the test set contains “unsolvable” entries, where the correct entity span has not
been identified in pre-processing. For these examples, we set the accuracy and F1 to zero.

15[19] is not included in the comparison because neither [13] or [16] could reproduce the
reported results (86.8%).

Pretrained Transformers for Simple Question Answering over Knowledge Graphs 11

Approach Accuracy

MemNN [3] 61.6
Attn. LSTM [6] 70.9
GRU [11] 71.2
BuboQA [13] 74.9
BiGRU [4] 75.7
Attn. CNN [23] 76.4
HR-BiLSTM [24] 77.0
BiLSTM-CRF [16] 78.1

BERT (ours) 77.3

Table 5: Final accuracy for the full prediction task on the test set of SIMPLEQUES-
TIONS. 15

all but one of the existing approaches. We suspect that the final score can be further
improved by finding better rules for logical form selection, however that is not the goal
of this study.

Investigating the entity and relation prediction accuracies separately, we find accu-
racies of 82.7% for entities and 86.6% for relations. Comparing the 86.6% for relation
accuracy after re-ranking (Section 2.4) to the 83.5% (Table 4) relation accuracy before
the re-ranking confirms that re-ranking has helped to reduce errors. By analyzing the
22.7% of test examples that were predicted incorrectly, it turned out that in 35% of
those cases both a wrong relation and a wrong entity had been predicted, in 41% only
the entity was wrong and 24% had only a wrong relation. Of all the cases where the
entity was predicted wrong, in 28.6% cases this resulted from the correct entity missing
in the candidate set. Entity retrieval errors are also correlated with relation errors: of
the cases where the correct entity was not among the retrieved candidates, 71.2% had a
wrongly predicted relation, against 55.7% for cases where the correct entity was among
the candidates.

4.5 Attention analysis

One of the advantages of using transformers is the ability to inspect the self-attention
weights that the model uses to build its representations. Even though this does not com-
pletely explain the rules the model learned, it is a step towards explainable decision
making in deep learning, and a qualitative improvement upon RNNs. In an attempt to
understand how the model works, before and after fine-tuning, we manually inspected
the attention distributions used by the transformer network internally during the encod-
ing process.

We compute the average of the 144 attention distributions produced by the M = 12
different attention heads in each of the L = 12 layers of the employed BERT network:

βi, j =
∑

L
l=1 ∑

M
h=1 αl,h,i, j

L ·M
, (7)

12 Lukovnikov et al.

[C
LS

]
wh

at
so

ng
s

ha
ve no

##
bu

##
o u

##
em

a
##

ts
u

pr
od

uc
ed ?

[S
EP

]

[CLS]
what

songs
have

no
##bu

##o
u

##ema
##tsu

produced
?

[SEP]

0.0 5.84 3.76 3.89 1.58 1.43 2.69 1.31 1.32 2.48 3.44 10.5 0.0

0.0 7.7 8.0 6.4 1.45 0.934 1.37 0.978 0.988 1.25 3.5 8.84 0.0

0.0 8.43 9.49 7.79 1.48 1.24 1.98 1.14 1.02 2.51 7.14 4.25 0.0

0.0 8.22 7.94 7.26 4.58 1.72 3.42 1.13 1.14 1.91 7.81 6.2 0.0

0.0 2.03 2.83 4.2 4.16 8.04 4.45 2.25 2.11 3.23 3.19 2.38 0.0

0.0 1.09 1.81 1.8 6.4 3.39 6.86 2.66 1.39 3.71 2.11 1.46 0.0

0.0 1.79 3.25 4.15 2.88 6.83 6.35 5.37 2.95 5.98 4.51 2.71 0.0

0.0 1.3 1.79 1.84 2.2 3.12 6.55 4.42 7.61 4.89 2.49 2.08 0.0

0.0 1.11 1.43 1.73 1.93 1.69 3.51 6.83 3.3 9.0 2.37 1.58 0.0

0.0 1.46 2.81 2.53 1.83 2.48 4.22 2.44 7.74 4.72 5.83 2.47 0.0

0.0 3.44 9.18 7.12 1.36 1.33 2.75 1.32 1.7 4.26 7.23 6.68 0.0

0.0 10.5 4.4 4.74 1.17 1.05 1.71 1.39 1.28 2.36 5.58 9.54 0.0

0.0 1.56 1.6 1.61 1.12 1.06 1.27 0.998 1.06 1.33 1.99 3.22 0.0

(a) Before fine-tuning

[C
LS

]
wh

at
so

ng
s

ha
ve no

##
bu

##
o u

##
em

a
##

ts
u

pr
od

uc
ed ?

[S
EP

]

[CLS]
what

songs
have

no
##bu

##o
u

##ema
##tsu

produced
?

[SEP]

0.0 3.21 8.73 3.93 1.43 1.84 3.34 1.7 2.14 5.41 15.9 3.36 0.0

0.0 2.79 11.8 5.36 2.23 1.36 2.09 1.46 1.76 3.56 14.1 6.03 0.0

0.0 3.07 3.82 6.65 2.45 1.67 1.94 1.65 2.27 5.48 10.6 2.52 0.0

0.0 3.26 9.21 4.4 5.54 3.01 4.27 1.56 2.17 4.56 14.9 3.41 0.0

0.0 1.33 2.18 4.58 4.07 7.91 3.11 2.27 2.08 2.85 2.72 1.38 0.0

0.0 0.99 2.12 2.41 7.69 3.4 6.26 2.91 1.72 5.13 8.46 0.885 0.0

0.0 1.24 3.19 3.69 4.1 7.91 4.13 6.84 4.0 6.87 10.8 1.47 0.0

0.0 0.908 1.74 2.27 2.8 3.8 7.32 2.51 7.35 5.34 6.56 1.23 0.0

0.0 1.01 2.53 2.13 1.93 1.86 3.74 7.22 3.39 8.79 8.71 0.932 0.0

0.0 1.02 2.85 2.17 1.85 2.71 3.75 2.38 7.65 4.45 13.5 1.2 0.0

0.0 1.5 4.25 3.82 1.68 1.37 2.0 1.28 2.55 6.27 3.54 4.94 0.0

0.0 5.61 6.22 3.92 1.54 1.27 1.91 1.54 1.89 4.11 19.1 3.82 0.0

0.0 1.23 1.35 1.38 1.26 0.919 1.07 1.01 1.13 1.43 6.16 2.31 0.0

(b) After fine-tuning

Fig. 1: Average attention distribution for the example “What songs have Nobuo Uematsu
produced?”, (a) before training on our tasks (vanilla pretrained BERT) , and (b) after
training on our tasks (finetuned BERT). The numbers are scaled to values between 0
and 100, and are computed by averaging of the attention distributions over all heads in
all layers, and multiplying the average by 100. We set the scores for [CLS] and [SEP]
tokens to zero in the plots since they always receive a much higher average attention
weight than the actual words from the sentence and thus would dominate the plot.

where αl,h,i, j are the attention probabilities as computed in Eq. 2, Here, βi, j’s are the av-
erage attention scores; these values are displayed in Figures 1 and 2 (multiplied by 100
for scaling). More concretly, we compare this average attention signature of a (vanilla)
BERT network before fine-tuning it with the attention signature of a BERT model fine-
tuned for our tasks (recall that we trained a single model to perform both border detec-
tion and relation classification simultaneously). By comparing the attentions before and
after training on our tasks, we can identify differences in internal behavior of the model
that arose during training.

In Figure 1, the average of all attention distributions is shown for an example ques-
tion for two versions of the transformer model: pre-trained (vanilla) BERT and BERT
fine-tuned for our tasks. While in general, the average attention distribution roughly
follows the same patterns after fine-tuning, we can see that the behavior of the attention
mechanism responsible for building the representation of the [CLS] token is signif-
icantly different. We found that, before fine-tuning, the representation building of the
[CLS] token generally focuses on punctuation and less strongly, on other words. After
finetuning, [CLS]’s representation is strongly focused on words that characterise the
relation conveyed by the sentence. For example, for the question “Who wrote Gulliver’s
travels?” (see Figure 2, first example), the attention is shifted towards the word “wrote”,
which specifies the authorship relationship of the intended answer with the subject en-

Pretrained Transformers for Simple Question Answering over Knowledge Graphs 13

[C
LS

]
wh

o
wr

ot
e gu

##
lli

##
ve

r ' s
tra

ve
ls ?

[S
EP

]

<Vanilla>
<Finetuned>

0.0 5.8 4.34 1.92 1.34 1.92 2.07 2.0 2.75 12.4 0.0

0.0 7.85 14.3 2.27 2.01 2.87 3.5 3.14 4.85 4.62 0.0

[C
LS

]
wh

o is
ch

ar
le

s
da

rw
in ' s

fa
th

er ?
[S

EP
]

<Vanilla>
<Finetuned>

0.0 4.45 5.31 1.9 3.33 1.71 1.5 2.24 11.3 0.0

0.0 4.39 4.27 3.45 6.36 2.79 4.03 16.0 4.0 0.0

[C
LS

]
wh

o
wo

n
th

e
da

rw
in

aw
ar

ds th
is

ye
ar ?

[S
EP

]

<Vanilla>
<Finetuned>

0.0 6.36 3.02 3.48 4.31 2.94 3.46 2.36 12.2 0.0

0.0 7.77 10.5 4.71 4.96 8.6 3.71 4.32 4.01 0.0

[C
LS

]
wh

o is th
e

pr
es

id
en

t of th
e

un
ite

d
st

at
es

[S
EP

]

<Vanilla>
<Finetuned>

0.0 12.0 4.72 3.56 3.82 2.3 2.57 1.54 3.95 0.0

0.0 7.2 5.41 5.26 10.9 4.87 4.19 2.41 5.19 0.0

[C
LS

]
wh

o le
t

th
e

do
gs ou

t ?
[S

EP
]

<Vanilla>
<Finetuned>

0.0 6.23 3.98 3.5 3.78 2.58 13.4 0.0

0.0 9.84 14.5 4.3 5.65 4.48 4.78 0.0

[C
LS

]
wh

at
re

le
as

e
do

es th
e

re
le

as
e

tra
ck

ca
rd

ia
c

ar
re

st
co

m
e

fro
m

[S
EP

]

<Vanilla>
<Finetuned>

0.0 5.46 3.28 3.98 3.63 2.84 4.29 1.82 1.81 2.63 4.86 0.0

0.0 2.56 9.92 4.28 3.7 5.09 8.05 3.8 4.84 3.6 4.36 0.0

[C
LS

]
wh

o
pr

od
uc

ed ev
e - ol

##
ut

io
n ?

[S
EP

]

<Vanilla>
<Finetuned>

0.0 6.05 4.07 2.73 3.64 2.74 3.51 12.5 0.0

0.0 7.92 16.6 5.76 3.75 3.69 6.35 3.8 0.0

[C
LS

]
wh

ich
ar

tis
t

re
co

rd
ed

m
os

t of us ar
e

sa
d ?

[S
EP

]

<Vanilla>
<Finetuned>

0.0 8.04 2.68 5.08 1.88 2.0 2.28 1.89 2.42 11.0 0.0

0.0 4.24 10.3 10.1 2.42 2.77 4.34 4.29 4.43 3.45 0.0

Fig. 2: Average attention distributions for the [CLS] token for several examples.
<Vanilla> is pretrained BERT before finetuning. <Finetuned> is BERT fine-
tuned on our tasks. The numbers are scaled to values between 0 and 100, and are
computed by averaging of the attention distributions over all heads in all layers, and
multiplying the average by 100.

tity (Gulliver’s Travels) mentioned in the question. We provide several other examples
of this kind of attention change in Figure 2.

This change in internal attention behavior can be explained by the fact that sequence
classification for relation prediction is done based on the representation built for the
[CLS] token and attending to relation-specifying words more would produce more
useful features for the classifier.

5 Related Work

Bordes et al. [3] propose a memory network (MemNN)-based solution to SIMPLE-
QUESTIONS. They use bag-of-words representations for triples and question and train
a model that predicts the right triple by minimizing a margin-based ranking loss as de-
fined in the section above. They compute scores between questions and whole triples,
including the triple objects. However, triple objects are answers and thus might not
be present in the question, which may affect the performance adversely. The same
work introduces the SIMPLEQUESTIONS dataset, consisting of approximately 100,000
question-answer pairs.

Follow-up works on SIMPLEQUESTIONS typically predict the subject entity and
predicate separately, (unlike [3], which ranks whole triples). [6] explore fully character-
level encoding of questions, entities and predicates, and use an attention-based de-
coder [1]. [11] explore building question representations on both word- and character-

14 Lukovnikov et al.

level. [24] explore relation detection in-depth and propose a hierarchical word-level
and symbol-level residual representation. Both [4] and [11] improve upon them by in-
corporating structural information such as entity type for entity linking. [4] and [23]
propose an auxiliary BiRNN+CRF sequence labeling model to determine the span of
the entity. The detected entity span is then used for filtering entity candidates. Further,
[13] investigates different RNN and CNN-based relation detectors and a BiLSTM and
CRF-based entity mention detectors. [16] estimates the upper-bound on accuracy for
SIMPLEQUESTIONS, which is less than 83.4% due to unresolvable ambiguities (which
is caused by the question lacking information to correctly disambiguate entities). Both
[16] and [13] first identify the entity span, similarly to previous works, but disambiguate
the entity without using neural networks. With extensive hyperparameter tuning, rela-
tively basic models and simple heuristics, [16] outperformed previous approaches.

[22] proposes a semi-supervised method for semantic parsing based on a structured
variational autoencoder that treats logical forms as tree-structured latent variables, and
also performs experiments in limited data settings (on ATIS and DJANGO).

6 Conclusions

As demonstrated by our experiments, BERT significantly outperforms a strong BiL-
STM baseline on the learning problems of relation classification and entity span pre-
diction for simple questions. Moreover, the pre-trained transformer shows less perfor-
mance decrease when confronted with fewer training data, as can be seen in our limited-
data study, which to the best of our knowledge is the first ever conducted for the SIM-
PLEQUESTIONS data set. The final results on the whole SIMPLEQUESTIONS task are
competitive with the current state-of-the-art.

Our comparison of a fully pre-trained transformer to a BiLSTM-based model where
only the word embeddings have been pretrained (Glove) might not yield a fair compar-
ison between the two architectures (transformer vs BiLSTM). Further insights could be
gained by analyzing the performance of a BiLSTM, which has also been pretrained as a
language model (maybe combined with other tasks) in the future. Here instead, our aim
was to provide evidence that the use of neural networks pre-trained as language model
is beneficial for knowledge graph-based question answering, in particular for SIMPLE-
QUESTIONS, a usecase not included in the original BERT evaluation and, to the best of
our knowledge, not yet explored in the literature.

Even though BERT improves upon our BiLSTM baseline on SIMPLEQUESTIONS,
the improvements in the full data scenario might not justify the significantly longer
training and inference times and memory requirements. These practical concerns, how-
ever, could be mitigated by practical tweaks and future research. Furthermore, with
fewer data the performance increases w.r.t. the baseline become more spectacular, indi-
cating that using pre-trained networks like BERT might be essential for achieving rea-
sonable performance in limited data scenarios. Such scenarios are common for datasets
with more complex questions. Therefore, we believe pretrained networks like BERT can
have a bigger impact for complex KGQA (even when training with all data available).

Pretrained Transformers for Simple Question Answering over Knowledge Graphs 15

Acknowledgements

We acknowledge support by the European Union H2020 Framework Project Cleopatra
(GA no. 812997). Futhermore, this work has been supported by the Fraunhofer-Cluster
of Excellence “Cognitive Internet Technologies” (CCIT).

References

1. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align
and translate. arXiv preprint arXiv:1409.0473 (2014)

2. Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collaboratively cre-
ated graph database for structuring human knowledge. In: Proceedings of the 2008 ACM
SIGMOD international conference on Management of data. pp. 1247–1250. AcM (2008)

3. Bordes, A., Usunier, N., Chopra, S., Weston, J.: Large-scale simple question answering with
memory networks. arXiv preprint arXiv:1506.02075 (2015)

4. Dai, Z., Li, L., Xu, W.: Cfo: Conditional focused neural question answering with large-
scale knowledge bases. In: Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers). vol. 1, pp. 800–810 (2016)

5. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

6. He, X., Golub, D.: Character-level question answering with attention. In: Proceedings of the
2016 Conference on Empirical Methods in Natural Language Processing. pp. 1598–1607
(2016)

7. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation 9(8), 1735–
1780 (1997)

8. Howard, J., Ruder, S.: Universal language model fine-tuning for text classification. In: Pro-
ceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Vol-
ume 1: Long Papers). pp. 328–339 (2018)

9. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

10. Liu, X., He, P., Chen, W., Gao, J.: Multi-task deep neural networks for natural language
understanding. arXiv preprint arXiv:1901.11504 (2019)

11. Lukovnikov, D., Fischer, A., Lehmann, J., Auer, S.: Neural network-based question answer-
ing over knowledge graphs on word and character level. In: Proceedings of the 26th inter-
national conference on World Wide Web. pp. 1211–1220. International World Wide Web
Conferences Steering Committee (2017)

12. Maheshwari, G., Trivedi, P., Lukovnikov, D., Chakraborty, N., Fischer, A., Lehmann, J.:
Learning to rank query graphs for complex question answering over knowledge graphs. In:
International Semantic Web Conference. Springer (2019)

13. Mohammed, S., Shi, P., Lin, J.: Strong baselines for simple question answering over knowl-
edge graphs with and without neural networks. In: Proceedings of the 2018 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, Volume 2 (Short Papers). vol. 2, pp. 291–296 (2018)

14. Pennington, J., Socher, R., Manning, C.: Glove: Global vectors for word representation. In:
Proceedings of the 2014 conference on empirical methods in natural language processing
(EMNLP). pp. 1532–1543 (2014)

15. Peters, M.E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., Zettlemoyer, L.:
Deep contextualized word representations. In: Proc. of NAACL (2018)

16 Lukovnikov et al.

16. Petrochuk, M., Zettlemoyer, L.: Simplequestions nearly solved: A new upperbound and base-
line approach. arXiv preprint arXiv:1804.08798 (2018)

17. Radford, A., Narasimhan, K., Salimans, T., Sutskever, I.: Improving language understanding
by generative pre-training

18. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I.: Language models are
unsupervised multitask learners. Tech. rep.

19. Ture, F., Jojic, O.: No need to pay attention: Simple recurrent neural networks work! In:
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing.
pp. 2866–2872 (2017)

20. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł.,
Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing
Systems. pp. 5998–6008 (2017)

21. Wu, Y., Schuster, M., Chen, Z., Le, Q.V., Norouzi, M., Macherey, W., Krikun, M., Cao, Y.,
Gao, Q., Macherey, K., et al.: Google’s neural machine translation system: Bridging the gap
between human and machine translation. arXiv preprint arXiv:1609.08144 (2016)

22. Yin, P., Zhou, C., He, J., Neubig, G.: Structvae: Tree-structured latent variable models for
semi-supervised semantic parsing. In: Gurevych, I., Miyao, Y. (eds.) Proceedings of the 56th
Annual Meeting of the Association for Computational Linguistics, ACL 2018, Melbourne,
Australia, July 15-20, 2018, Volume 1: Long Papers. pp. 754–765. Association for Compu-
tational Linguistics (2018), https://aclanthology.info/papers/P18-1070/
p18-1070

23. Yin, W., Yu, M., Xiang, B., Zhou, B., Schütze, H.: Simple question answering by atten-
tive convolutional neural network. In: Proceedings of COLING 2016, the 26th International
Conference on Computational Linguistics: Technical Papers. pp. 1746–1756 (2016)

24. Yu, M., Yin, W., Hasan, K.S., dos Santos, C., Xiang, B., Zhou, B.: Improved neural relation
detection for knowledge base question answering. In: Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics (Volume 1: Long Papers). vol. 1, pp.
571–581 (2017)

https://aclanthology.info/papers/P18-1070/p18-1070
https://aclanthology.info/papers/P18-1070/p18-1070

	Pretrained Transformers for Simple Question Answering over Knowledge Graphs

