Skip to main content

Capturing Semantic and Syntactic Information for Link Prediction in Knowledge Graphs

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11778))

Abstract

Link prediction has recently been a major focus of knowledge graphs (KGs). It aims at predicting missing links between entities to complement KGs. Most previous works only consider the triples, but the triples provide less information than the paths. Although some works consider the semantic information (i.e. similar entities get similar representations) of the paths using the Word2Vec models, they ignore the syntactic information (i.e. the order of entities and relations) of the paths. In this paper, we propose RW-LMLM, a novel approach for link prediction. RW-LMLM consists of a random walk algorithm for KG (RW) and a language model-based link prediction model (LMLM). The paths generated by RW are viewed as pseudo-sentences for LMLM training. RW-LMLM can capture the semantic and syntactic information in KGs by considering entities, relations, and order information of the paths. Experimental results show that our method outperforms several state-of-the-art models on benchmark datasets. Further analysis shows that our model is highly parameter efficient.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://github.com/chjianw/RW-LMLM.

References

  1. Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization. arXiv preprint arXiv:1607.06450 (2016)

  2. Bengio, Y., Ducharme, R., Vincent, P., Jauvin, C.: A neural probabilistic language model. J. Mach. Learn. Res. 3(Feb), 1137–1155 (2003)

    MATH  Google Scholar 

  3. Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collaboratively created graph database for structuring human knowledge. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, pp. 1247–1250. ACM (2008)

    Google Scholar 

  4. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: Advances in Neural Information Processing Systems, pp. 2787–2795 (2013)

    Google Scholar 

  5. Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Hruschka, E.R., Mitchell, T.M.: Toward an architecture for never-ending language learning. In: Twenty-Fourth AAAI Conference on Artificial Intelligence (2010)

    Google Scholar 

  6. Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2d knowledge graph embeddings. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  7. Dong, X., et al.: Knowledge vault: A web-scale approach to probabilistic knowledge fusion. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 601–610. ACM (2014)

    Google Scholar 

  8. Ebisu, T., Ichise, R.: Toruse: Knowledge graph embedding on a lie group. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  9. Fang, S., Xie, H., Zha, Z.J., Sun, N., Tan, J., Zhang, Y.: Attention and language ensemble for scene text recognition with convolutional sequence modeling. In: 2018 ACM Multimedia Conference on Multimedia Conference, pp. 248–256. ACM (2018)

    Google Scholar 

  10. Feng, J., Huang, M., Yang, Y., et al.: Gake: graph aware knowledge embedding. In: Proceedings of COLING 2016 the 26th International Conference on Computational Linguistics: Technical Papers, pp. 641–651 (2016)

    Google Scholar 

  11. Goikoetxea, J., Soroa, A., Agirre, E.: Random walks and neural network language models on knowledge bases. In: Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 1434–1439 (2015)

    Google Scholar 

  12. Guu, K., Miller, J.J., Liang, P.: Traversing knowledge graphs in vector space. In: Empirical Methods in Natural Language Processing, pp. 318–327 (2015)

    Google Scholar 

  13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.,pp. 770–778 (2016)

    Google Scholar 

  14. Kazemi, S.M., Poole, D.: Simple embedding for link prediction in knowledge graphs. In: Advances in Neural Information Processing Systems, pp. 4284–4295 (2018)

    Google Scholar 

  15. Lao, N., Cohen, W.W.: Relational retrieval using a combination of path-constrained random walks. Mach. Learn. 81(1), 53–67 (2010)

    Article  MathSciNet  Google Scholar 

  16. Lehmann, J., et al.: Dbpedia-a large-scale, multilingual knowledge base extracted from wikipedia. Semant. Web 6(2), 167–195 (2015)

    Google Scholar 

  17. Lin, Y., Liu, Z., Luan, H., Sun, M., Rao, S., Liu, S.: Modeling relation paths for representation learning of knowledge bases. In: Empirical Methods in Natural Language Processing, pp. 705–714 (2015)

    Google Scholar 

  18. Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings for knowledge graph completion. In: Twenty-ninth AAAI Conference on Artificial Intelligence (2015)

    Google Scholar 

  19. Liu, H., Wu, Y., Yang, Y.: Analogical inference for multi-relational embeddings. In: Proceedings of the 34th International Conference on Machine Learning, volu. 70, pp. 2168–2178. JMLR. org (2017)

    Google Scholar 

  20. Liu, P.J., et al.: Generating wikipedia by summarizing long sequences. arXiv preprint arXiv:1801.10198 (2018)

  21. Luo, Y., Wang, Q., Wang, B., Guo, L.: Context-dependent knowledge graph embedding. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pp. 1656–1661 (2015)

    Google Scholar 

  22. Mikolov, T., Chen, K., Corrado, G.S., Dean, J.: Efficient estimation of word representations in vector space. arXiv: Computation and Language (2013)

    Google Scholar 

  23. Mikolov, T., Karafiát, M., Burget, L., Černockỳ, J., Khudanpur, S.: Recurrent neural network based language model. In: Eleventh Annual Conference of the International Speech Communication Association (2010)

    Google Scholar 

  24. Nguyen, D.Q., Sirts, K., Qu, L., Johnson, M.: Neighborhood mixture model for knowledge base completion. In: Conference on Computational Natural Language Learning, pp. 40–50 (2016)

    Google Scholar 

  25. Nguyen, D.Q., Sirts, K., Qu, L., Johnson, M.: Stranse: a novel embedding model of entities and relationships in knowledge bases. arXiv preprint arXiv:1606.08140 (2016)

  26. Nickel, M., Tresp, V., Kriegel, H.P.: A three-way model for collective learning on multi-relational data. ICML 11, 809–816 (2011)

    Google Scholar 

  27. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 701–710. ACM (2014)

    Google Scholar 

  28. Press, O., Wolf, L.: Using the output embedding to improve language models. arXiv preprint arXiv:1608.05859 (2016)

  29. Qian, W., Fu, C., Zhu, Y., Cai, D., He, X.: Translating embeddings for knowledge graph completion with relation attention mechanism. In: IJCAI, pp. 4286–4292 (2018)

    Google Scholar 

  30. Radford, A., Narasimhan, K., Salimans, T., Sutskever, I.: Improving language understanding by generative pre-training. URL https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/languageunsupervised/language understanding paper. pdf (2018)

  31. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I.: Language models are unsupervised multitask learners (2019)

    Google Scholar 

  32. Schlichtkrull, M., Kipf, T.N., Bloem, P., van den Berg, R., Titov, I., Welling, M.: Modeling relational data with graph convolutional networks. In: Gangemi, A., et al. (eds.) ESWC 2018. LNCS, vol. 10843, pp. 593–607. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93417-4_38

    Chapter  Google Scholar 

  33. Socher, R., Chen, D., Manning, C.D., Ng, A.: Reasoning with neural tensor networks for knowledge base completion. In: Advances in Neural Information Processing Systems, pp. 926–934 (2013)

    Google Scholar 

  34. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  35. Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: a core of semantic knowledge. In: Proceedings of the 16th International Conference on World Wide Web, pp. 697–706. ACM (2007)

    Google Scholar 

  36. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

    Google Scholar 

  37. Tan, Z., Wang, M., Xie, J., Chen, Y., Shi, X.: Deep semantic role labeling with self-attention. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  38. Toutanova, K., Chen, D.: Observed versus latent features for knowledge base and text inference. In: Proceedings of the 3rd Workshop on Continuous Vector Space Models and their Compositionality, pp. 57–66 (2015)

    Google Scholar 

  39. Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embeddings for simple link prediction. In: International Conference on Machine Learning, pp. 2071–2080 (2016)

    Google Scholar 

  40. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

    Google Scholar 

  41. Vemula, A., Muelling, K., Oh, J.: Social attention: modeling attention in human crowds. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 1–7. IEEE (2018)

    Google Scholar 

  42. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on hyperplanes. In: Twenty-Eighth AAAI Conference on Artificial Intelligence (2014)

    Google Scholar 

  43. Yang, B., Yih, W.t., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases. arXiv preprint arXiv:1412.6575 (2014)

  44. Yang, F., Yang, Z., Cohen, W.W.: Differentiable learning of logical rules for knowledge base reasoning. In: Advances in Neural Information Processing Systems, pp. 2319–2328 (2017)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key Research and Development Program of China (2017YFB0803301).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Sha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, C., Yan, M., Yi, C., Sha, Y. (2019). Capturing Semantic and Syntactic Information for Link Prediction in Knowledge Graphs. In: Ghidini, C., et al. The Semantic Web – ISWC 2019. ISWC 2019. Lecture Notes in Computer Science(), vol 11778. Springer, Cham. https://doi.org/10.1007/978-3-030-30793-6_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30793-6_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30792-9

  • Online ISBN: 978-3-030-30793-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics