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Abstract. This paper presents an empirical study aiming at under-
standing the modeling style and the overall semantic structure of Linked
Open Data. We observe how classes, properties and individuals are used
in practice. We also investigate how hierarchies of concepts are struc-
tured, and how much they are linked. In addition to discussing the
results, this paper contributes (i) a conceptual framework, including
a set of metrics, which generalises over the observable constructs; (ii)
an open source implementation that facilitates its application to other
Linked Data knowledge graphs.

Keywords: Semantic Web · Linked Open Data · Empirical semantics

1 Analysing the Modeling Structure and Style of LOD

The interlinked collection of Linked Open Data (LOD) datasets forms the largest
publicly accessible Knowledge Graph (KG) that is available on the Web today.1

LOD distinguishes itself from most other forms of open data in that it has a
formal semantics. Various studies have analysed different aspects of the formal
1 This paper uses the following RDF prefix declarations for brevity, and uses the empty
prefix (:) to denote an arbitrary example namespace.

– dbo: http://dbpedia.org/ontology/.
– dul: http://www.ontologydesignpatterns.org/ont/dul/DUL.owl.
– foaf: http://xmlns.com/foaf/0.1/.
– org: http://www.w3.org/ns/org.
– rdfs: http://www.w3.org/2000/01/rdf-schema.
– owl: http://www.w3.org/2002/07/owl.

c© Springer Nature Switzerland AG 2019
C. Ghidini et al. (Eds.): ISWC 2019, LNCS 11778, pp. 57–74, 2019.
https://doi.org/10.1007/978-3-030-30793-6_4
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semantics of LOD. However, existing analyses have often been based on relatively
small samples of the ever evolving LOD KG. Moreover, it is not always clear
how representative the chosen samples are. This is especially the case when
observations are based on one dataset (e.g., DBpedia), or on a small number of
datasets that are drawn from the much larger LOD Cloud.

This paper presents observations that have been conducted across (a very
large subset of) the LOD KG. As such, this paper is not about the design of
individual ontologies, rather, it is about observing the design of the globally
shared Linked Open Data ontology. Specifically, this paper focuses on the globally
shared hierarchies of classes and properties, together with their usage in instance
data. This paper provides new insights about (i) the number of concepts defined
in the LOD KG, (ii) the shape of ontological hierarchies, (iii) the extent in which
recommended practices for ontology alignment are followed, and (iv) whether
classes and properties are instantiated in a homogeneous way.

In order to conduct large-scale semantic analyses, it is necessary to calcu-
late the deductive closure of very large hierarchical structures. Unfortunately,
contemporary reasoners cannot be applied at this scale, unless they rely on
expensive hardware such as a multi-node in-memory cluster. In order to han-
dle this type of large-scale semantic analysis on commodity hardware such as
regular laptops, we introduce the formal notion of an Equivalence Set Graph.
With this notion we are able to implement efficient algorithms to build the large
hierarchical structures that we need for our study.

We use the formalization and implementation presented in this paper to
compute two (very large) Equivalence Set Graphs: one for classes and one for
properties. By querying them, we are able to quantify various aspects of formal
semantics at the scale of the LOD KG. Our observations show that there is a
lack of explicit links (alignment) between ontological entities and that there is
a significant number of concepts with empty extension. Furthermore, property
hierarchies are observed to be mainly flat, while class hierarchies have varying
depth degree, although most of them are flat too.

This paper makes the following contributions:

1. A new formal concept (Equivalence Set Graph) that allows us to specify
compressed views of a LOD KG (presented in Sect. 3.2).

2. An implementation of efficient algorithms that allow Equivalence Set Graphs
to be calculated on commodity hardware (cf. Sect. 4).

3. A detailed analysis of how classes and properties are used at the level of the
whole LOD KG, using the formalization and implementation of Equivalence
Set Graphs.

The remaining of this paper is organized as follows: Sect. 2 summarizes
related work. The approach is presented in Sect. 3. Section 4 describes the algo-
rithm for computing an Equivalence Set Graph form a RDF dataset. Section 3.4
defines a set of metrics that are measured in Sect. 5. Section 6 discusses the
observed values and concludes.
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2 Related Work

Although large-scale analyses of LOD have been performed since the early years
of the Semantic Web, we could not find previous work directly comparable with
ours. The closest we found are not recent and performed on a much smaller scale.
In 2004, Gil and Garćıa [8] showed that the Semantic Web (at that time con-
sisting of 1.3 million triples distributed over 282 datasets) behaves as a Complex
System: the average path length between nodes is short (small world property),
there is a high probability that two neighbors of a node are also neighbors of one
another (high clustering factor), and nodes follow a power-law degree distribu-
tion. In 2008, similar results were reported by [14] in an individual analysis of
250 schemas. These two studies focus on topological graph aspects exclusively,
and do not take semantics into account.

In 2005, Ding et al. [6] analysed the use of the Friend-of-a-Friend (FOAF)
vocabulary on the Semantic Web. They harvested 1.5 million RDF datasets, and
computed a social network based on those data datasets. They observed that the
number of instances per dataset follows the Zipf distribution.

In 2006, Ding et al. [4] analysed 1.7 million datasets, containing 300 million
triples. They reported various statistics over this data collection, such as the
number of datasets per namespace, the number of triples per dataset, and the
number of class- and property-denoting terms. The semantic observation in this
study is limited since no deduction was applied.

In 2006, a survey by Wang et al. [16] aimed at assessing the use of OWL
and RDF schema vocabularies in 1,300 ontologies harvested from the Web. This
study reported statistics such as the number of classes, properties, and instances
of these ontologies. Our study provides both an updated view on these statistics,
and a much larger scale of the observation (we analysed ontological entities
defined in ∼650k datasets crawled by LOD-a-lot [7]).

Several studies [2,5,9] analysed common issues with the use of owl:sameAs
in practice. Mallea et al. [11] showed that blank nodes, although discouraged
by guidelines, are prevalent on the Semantic Web. Recent studies [13] experi-
mented on analysing the coherence of large LOD datasets, such as DBpedia, by
leveraging foundational ontologies. Observations on the presence of foundational
distinctions in LOD has been studied in [1].

These studies have a similar goal as ours: to answer the question how knowl-
edge representation is used in practice in the Semantic Web, although the focus
may partially overlap. We generalise over all equivalence (or identity) constructs
instead of focusing on one specific, we observe the overall design of LOD ontolo-
gies, analysing a very large subject of it, we take semantics into account by
analysing the asserted as well as the inferred data.
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3 Approach

3.1 Input Source

Ideally, our input is the whole LOD Cloud, which is (a common metonymy for
identifying) a very large and distributed Knowledge Graph. The two largest
available crawls of LOD available today are WebDataCommons and LOD-a-lot.

WebDataCommons2 [12] consists of ∼31B triples that have been extracted
from the CommonCrawl datasets (November 2018 version). Since its focus is
mostly on RDFa, microdata, and microformats, WebDataCommons contains a
very large number of relatively small graph components that use the Schema.org3

vocabulary.
LOD-a-lot4 [7] contains ∼28B unique triples that are the result of merging

the graphs that have been crawled by LOD Laundromat [3] into one single graph.
The LOD Laundromat crawl is based on data dumps that are published as part
of the LOD Cloud, hence it contains relatively large graphs that are highly
interlinked. The LOD-a-lot datadump is more likely to contain RDFS and OWL
annotations than WebDataCommons. Since this study focuses on the semantics
of Linked Open Data, it uses the LOD-a-lot datadump.

LOD-a-lot only contains explicit assertions, i.e., triples that have been lit-
erally published by some data owner. This means that the implicit assertions,
i.e., triples that can be derived from explicit assertions and/or other implicit
assertions, are not part of it and must be calculated by a reasoner. Unfortu-
nately, contemporary reasoners are unable to compute the semantic closure over
28B triples. Advanced alternatives for large-scale reasoning, such as the use of
clustering computing techniques (e.g., [15]) require expensive resources in terms
of CPU/time and memory/space. Since we want to make running large-scale
semantic analysis a frequent activity in Linked Data Science, we present a new
way to perform such large-scale analyses against very low hardware cost.

This section outlines our approach for performing large-scale semantic anal-
yses of the LOD KG. We start out by introducing the new notion of Equivalence
Set Graph (ESG) (Sect. 3.2). Once Equivalence Set Graphs have been informally
introduced, the corresponding formal definitions are given in Sect. 3.3. Finally,
the metrics that will be measured using the ESGs are defined in Sect. 3.4.

3.2 Introducing Equivalence Set Graphs

An Equivalence Set Graph (ESG) is a tuple 〈V, E , peq, psub, pe, ps〉. The nodes
V of an ESG are equivalence sets of terms from the universe of discourse. The
directed edges E of an ESG are specialization relations between those equiva-
lence sets. peq is an equivalence relation that determines which equivalence sets
are formed from the terms in the universe of discourse. psub is a partial order
relation that determines the specialization relation between the equivalence sets.
2 See http://webdatacommons.org.
3 See https://schema.org.
4 See http://lod-a-lot.lod.labs.vu.nl.

http://webdatacommons.org
https://schema.org
http://lod-a-lot.lod.labs.vu.nl
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In order to handle equivalences and specializations of peq and psub (see below for
details and examples), we introduce pe, an equivalence relation over properties
(e.g., owl:equivalentProperty) that allows to retrieve all the properties that
are equivalent to peq and psub, and ps which is a specialization relation over
properties (e.g., rdfs:subPropertyOf) that allows to retrieve all the properties
that specialize peq and psub.

The inclusion of the parameters peq, psub, pe, and ps makes the Equiv-
alence Set Graph a very generic concept. By changing the equivalence rela-
tion (peq), ESG can be applied to classes (owl:equivalentClass), prop-
erties (owl:equivalentProperty), or instances (owl:sameAs). By changing
the specialization relation (psub), ESG can be applied to class hierarchies
(rdfs:subClassOf), property hierarchies (rdfs:subPropertyOf), or concept
hierarchies (skos:broader).

An Equivalence Set Graph is created starting from a given RDF Knowledge
Graph. The triples in the RDF KG are referred to as its explicit statements. The
implicit statements are those that can be inferred from the explicit statements.
An ESG must be built taking into account both the explicit and the implicit
statements. For example, if peq is owl:equivalentClass, then the following
Triple Patterns (TP) retrieve the terms ?y that are explicitly equivalent to a
given ground term :x:

{ :x owl:equivalentClass ?y } union { ?y owl:equivalentClass :x }

In order to identify the terms that are implicitly equivalent to :x, we also
have to take into account the following:

1. The closure of the equivalence predicate (reflexive, symmetric, transitive).
2. Equivalences (w.r.t. pe) and/or specializations (w.r.t. ps) of the equivalence

predicate (peq). E.g., the equivalence between :x and :y is asserted with the
:sameClass predicate, which is equivalent to owl:equivalentClass):

:sameClass owl:equivalentProperty owl:equivalentClass.
:x :sameClass :y.

3. Equivalences (w.r.t. pe) and/or specializations (w.r.t. ps) of predicates (i.e. pe
and ps) for asserting equivalence or specialization relations among properties.
E.g., the equivalence between :x and :y is asserted with the :sameClass
predicate, which is a specialization of owl:equivalentClass according to
:sameProperty, which it itself a specialization of owl:equivalentProperty:

:sameProperty rdfs:subPropertyOf owl:equivalentProperty.
:sameClass :sameProperty owl:equivalentClass.
:x :sameClass :y.

The same distinction between explicit and implicit statements can be made
with respect to the specialization relation (psub). E.g., for an Equivalence Set
Graph that uses rdfs:subClassOf as its specialization relation, the following
TP retrieves the terms ?y that explicitly specialize a given ground term :x:
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?y rdfs:subClassOf :x.

In order to identify the entities that are implicit specializations of :x, we
must also take the following into account:

1. The closure of the specialization predicate (reflexive, anti-symmetric, transi-
tive).

2. Equivalences (w.r.t. pe) and/or specializations (w.r.t. ps) of the specialization
predicate (psub). E.g, :y is a specialization of :x according to the :subClass
property, which is itself a specialization of the rdfs:subClassOf predicate:

:subClass rdfs:subPropertyOf rdfs:subClassOf.
:y :subClass :x.

3. Equivalences (w.r.t. pe) and/or specializations (w.r.t. ps) of predicates (i.e. pe
and ps) for asserting equivalence or specialization relations among properties:

:subProperty rdfs:subPropertyOf rdfs:subPropertyOf.
:subClass :subProperty rdfs:subClassOf.
:y :subClass :x.

Although there exist alternative ways for asserting an equivalence (specializa-
tion) relation between two entities e1 and e2 (e.g., e1 = e2�∃p.� implies e1 � e2),
we focused on the most explicit ones, namely, those in which e1 and e2 are con-
nected by a path having as edges peq (psub) or properties that are equivalent
or subsumed by peq (called Closure Path cf. Definition 2). We argue that for
statistical observations explicit assertions provide acceptable approximations of
the overall picture.

Figure 1 shows an example of an RDF Knowledge Graph (Fig. 1a). The equiv-
alence predicate (peq) is owl:equivalentClass; the specialization predicate
(psub) is rdfs:subClassOf, the property for asserting equivalences among predi-
cates (pe) is owl:equivalentProperty, the property for asserting specializations
among predicates (ps) is (rdfs:subPropertyOf). The corresponding Equiva-
lence Set Graph (Fig. 1b) contains four equivalence sets. The top node represents
the agent node, which encapsulates entities in DOLCE and W3C’s Organization
ontology. Three nodes inherit from the agent node. Two nodes contain classes
that specialize dul:Agent in the DOLCE ontology (i.e. dul:PhysicalAgent
and dul:SocialAgent). The third node represents the person concept, which
encapsulates entities in DBpedia, DOLCE, and FOAF. The equivalence of these
classes is asserted by owl:equivalentClass and :myEquivalentClass. Since
foaf:Person specialises org:Agent (using :mySubClassOf which specialises
rdfs:subClassOf) and dul:Person specialises dul:Agent the ESG contains
an edge between the person and the agent concept.
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dbo:Person
foaf:Person

dul:Person

dul:Agent

org:Agent

dul:SocialAgent dul:PhysicalAgent

:myEquivalentClass

owl:equivalentClass

:mySubClassOf

rdfs:subClassOf

rdfs:subClassOf rdfs:subClassOf

owl:equivalentClass

owl:equivalentClass

:myEquivalentClass

owl:equivalentProperty

rdfs:subClassOf:mySubClassOf
rdfs:subPropertyOf

(a) RDF Knowledge Graph

dul:Agent, org:Agent

dul:PhysicalAgent dbo:Person,
dul:Person,
foaf:Person

dul:SocialAgent

(b) Equivalence Set Graph

Fig. 1. An example of an RDF Knowledge Graph and its corresponding Equivalence
Set Graph.

3.3 Formalizing Equivalence Set Graphs

This section contains the formalization of ESGs that were informally introduced
above. An ESG must be configured with ground terms for the following param-
eters: (i) peq: the equivalence property for the observed entities; (ii) psub: the
specialization property for the observed entities; (iii) pe the equivalence property
for properties; (iv) ps the specialization property for properties.

Definition 1 specifies the deductive closure over an arbitrary property p with
respect to pe and ps. This is the set of properties that are implicitly equivalent
to or subsumed by p. It is worth noticing that, in the general case, a deductive
closure for a class of (observed) entities depends on all the four parameters:
peq and psub are needed for retrieving equivalences and specializations among
entities, and pe and ps are need for retrieving equivalences and specializations of
peq and psub. It is easy to see that when the subject of observation are properties
peq and psub coincide with pe and ps respectively.

Definition 1 (Deductive Closure of Properties). Cpe,ps
pe,ps(p) is the deductive

closure of property p with respect to pe and ps.

Definition 2 (Closure Path). p+⇐⇒ denotes any path, consisting of one or
more occurrences of predicates from Cpe,ps

pe,ps(p).

Once the four custom parameters have been specified, a specific Equivalence
Set Graph is determined by Definitions 3 and 4.

Definition 3 (ESG Nodes). Let G be the graph merge [10] of an RDF Knowl-
edge Graph. The set of nodes of the corresponding Equivalence Set Graph is:

Vpeq,psub
pe,ps := {v = {e1, . . . , en} | (∀ei, ej ∈ v)(eipeq+⇐⇒ ej ∈ G)}

Definition 4 (ESG Edges). Let G be the graph merge of an RDF Knowledge
Graph. The set of edges of the corresponding Equivalence Set Graph is:

Epeq,psub
pe,ps := {(v = {v1, . . . , vn}, z = {z1, . . . , zn}) |

(∃vi ∈ v)(∃zj ∈ z)(∃p ∈ Cpe,ps
pe,ps(psub))(〈vi, p, zj〉 ∈ G)}
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Definitions 5 and 6 define the concept of closure.

Definition 5 (Specialization Closure). Let G be the graph merge of an
RDF Knowledge Graph. The specialization closure of G is a function that maps
an entity e onto the set of entities that implicitly specialise e:

H+peq,psub
pe,ps (e) := {e′ | e′psub+

=⇒ e ∈ G}

Definition 6 (Equivalence and Specialization Closure). Let G be a graph
merge of an RDF Knowledge Graph, the equivalence and specialization closure
of G is a function that given an entity e returns all the entities that are either
implicitly equivalent to e, or implicitly specialize e. I.e.:

Cpeq,psub
pe,ps (e) := {e′ | (∃v ∈ Vpeq,psub

pe,ps )(e ∈ v ∧ e′ ∈ v)} ∪ H+peq,psub
pe,ps (e)

3.4 Metrics

In this section we define a set of metrics that can be computed by querying
Equivalence Set Graphs.

Number of Equivalence Sets (ES), Number of Observed Entities (OE),
and Ratio (R). The number of equivalence sets (ES) is the number of nodes in
an Equivalence Set Graph, i.e., |Vpeq,psub

pe,ps |. Equivalence sets contain equivalent
entities (classes, properties or individuals). The number of observed entities (OE)
is the size of the universe of discourse: i.e. |{e ∈ v | v ∈ Vpeq,psub

pe,ps }|. The ratio ES
OE

(R) between the number of equivalence sets and the number of entities indicates
to what extent equivalence is used among the observed entities. If equivalence is
rarely used, R approaches 1.0.

Number of Edges (E). The total number of edges is |Epeq,psub
pe,ps |.

Height of Nodes. The height h(v) of a node v is defined as the length of the
longest path from a leaf node until v. The maximum height of an ESG is defined
as Hmax = argmaxv∈V h(v). Distribution of the height : for n ranging from 0 to
Hmax we compute the percentage of nodes having that height (i.e. H(n)).

Number of Isolated Equivalent Sets (IN), Number of Top Level Equiv-
alence Sets (TL). In order to observe the shape and structure of hierarchies
in LOD, we compute the number Isolated Equivalent Sets (IN) in the graph,
and the number of Top Level Equivalence Sets (TL). An IES is a node without
incoming or outgoing edges. A TL is a node without outgoing edges.

Extensional Size of Observed Entities. Let c be a class in LOD, and t a
property in the deductive closure of rdf:type. We define the extensional size
of c (i.e. S(c)) as the number of triples having c as object and t as predicate
(i.e. S(c) =

∑
t∈C |{〈e, t, c〉|∃e.〈e, t, c〉 ∈ G}| where C is Cpe,ps

pe,ps). We define the
extensional size of a property p (i.e. S(p)) as the number of triples having p as
predicate (i.e. S(p) = |{〈s, p, o〉|∃p, o.〈s, p, o〉 ∈ G}|).
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Extensional Size of Equivalence Sets. We define two measures: direct exten-
sional size (i.e. DES) and indirect extensional size (i.e. IES). DES is defined as
the sum of the extensional size of the entities belonging to the set. The IES is
its DES summed with the DES of all equivalence sets in its closure.

Number of Blank Nodes. Blank nodes are anonymous RDF resource used (for
example) within ontologies to define class restrictions. We compute the number
of blank nodes in LOD and we compute the above metrics both including and
excluding blank nodes.

Number of Connected Components. Given a directed graph G, a strongly
connected component (SCC) is a sub-graph of G where any two nodes are con-
nected to each other by at least one path; a weakly connected component (WCC)
is the undirected version of a sub-graph of G where any two nodes are connected
by any path. We compute the number and the size of SCC and WCC of an ESG,
to observe its distribution. Observing these values (especially on WCC) provides
insights on the shape of hierarchical structures formed by the observed entities,
at LOD scale.

4 Computing Equivalence Set Graphs

In this Section we describe the algorithm for computing an equivalence set graph
from a RDF dataset. An implementation of the algorithm is available online5.

Selecting Entities to Observe. The first step of the procedure for computing
an ESG is to select the entities to observe, from the input KG. To this end, a
set of criteria for selecting these entities can be defined. In our study we want
to observe the behaviour of classes and properties, hence our criteria are the
followings: (i) A class is an entity that belongs to rdfs:Class. We assume that
the property for declaring that an entity belongs to a class is rdf:type. (ii) A
class is the subject (object) of a triple where the property has rdfs:Class as
domain (range). We assume that the property for declaring the domain (range)
of a property is rdfs:domain (rdfs:range). (iii) A property is the predicate
of a triple. (iv) A property is an entity that belongs to rdf:Property. (v) A
property is the subject (object) of a triple where the property has rdf:Property
as domain (range). We defined these criteria since the object of our observation
are classes and properties, but the framework can be also configured for observing
other kinds of entities (e.g. individuals).

As discussed in Sect. 3.2 we have to take into account possible equiva-
lences and/or specializations of the ground terms, i.e. rdf:type, rdfs:range,
rdfs:domain and the classes rdfs:Class and rdf:Property.

Computing Equivalence Set Graph. As we saw in the previous section,
for computing an ESG a preliminary step is needed in order to compute the
deductive closure of properties (which is an ESG itself). We can distinguish two
cases depending if condition peq = pe and psub = ps holds or not. If this condition

5 https://w3id.org/edwin/repository.

https://w3id.org/edwin/repository


66 L. Asprino et al.

holds (e.g. when the procedure is set for computing the ESG of properties), then
for retrieving equivalences and specializations of peq and psub the procedure has
to use the ESG is building (cf. UpdatePSets). Otherwise, the procedure has
to compute an ESG (i.e. Cpe,ps

pe,ps) using pe as peq and ps as psub. We describe how
the algorithm works in the first case (in the second case, the algorithm acts in
a similar way, unless that Pe and Ps are filled with Cpe,ps

pe,ps(peq) and Cpe,ps
pe,ps(psub)

respectively and UpdatePSets is not used).
The input of the main procedure (i.e. Algorithm 1) includes: (i) a set Pe of

equivalence relations. In our case Pe will contain owl:equivalentProperty for
the ESG of properties, and (the deductive closure of) owl:equivalentClass
for the ESG of classes; (ii) a set Ps of specialisation relations. In our case Ps

will contain rdfs:subPropertyOf for the ESG of properties, and (the deductive
closure of) rdfs:subClassOf for the ESG of classes. The output of the algorithm
is a set of maps and multi-maps which store nodes and edges of the computed
ESG:

ID a map that, given an IRI of an entity, returns the identifier of the ES it
belongs to;

IS a multi-map that, given an identifier of an ES, returns the set of entities it
contains;

H (H−) a multi-map that, given an identifier of an ES, returns the identifiers
of the explicit super (sub) ESs.

The algorithm also uses two additional data structures: (i) P ′
e is a set that stores

the equivalence relations already processed (which are removed from Pe as soon
as they are processed); (ii) P ′

s is a set that stores the specialisations relations
already processed (which are removed from Ps as soon as they are processed).

The algorithm repeats three sub-procedures until Pe and Ps become empty:
(i) Compute Equivalence Sets (Algorithm 2), (ii) Compute the Specialisation
Relation among the Equivalence Sets (Algorithm4), (iii) Update Pe and Ps (i.e.
UpdatePSets).

Algorithm 2 iterates over Pe, and at each iteration moves a property p from
Pe to P ′

e, until Pe is empty. For each triple 〈r1, p, r2〉 ∈ G, it tests the following
conditions and behaves accordingly:

1. r1 and r2 do not belong to any ES, then: a new ES containing {r1, r2} is
created and assigned an identifier i. (r1,i) and (r2,i) are added to ID, and (i,
{r1, r2}) to IS;

2. r1 (r2) belongs to the ES with identifier i1 (i2) and r2 (r1) does not belong
to any ES. Then ID and IS are updated to include r2 (r1) in i1 (i2);

3. r1 belongs to an ES with identifier i1 and r2 belongs to an ES with identifier
i2 (with i1 
= i2). Then i1 and i2 are merged into a new ES with identifier
i3 and the hierarchy is updated by Algorithm3. This algorithm ensures both
the followings: (i) the super (sub) set of i3 is the union of the super (sub) sets
of i1 and i2; (ii) the super (sub) sets that are pointed by (points to) (through
H or H−) i1 or i2, are pointed by (points to) i3 and no longer by/to i1 or i2.
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The procedure for computing the specialization (i.e. Algorithm4) moves p
from Ps to P ′

s until Ps becomes empty. For each triple 〈r1, p, r2〉 ∈ G the algo-
rithm ensures that r1 is in an equivalence set with identifier i1 and r2 is in an
equivalence set with identifier i2:

1. If r1 and r2 do not belong to any ES, then IS and ID are updated to include
two new ESs {r1} with identifier i1 and {r2} with identifier i2;

2. if r1 (r2) belongs to an ES with identifier i1 (i2) and r2 (r1) does not belong
to any ES, then IS and ID are updated to include a new ES {r2} ({r1}) with
identifier i2 (i1).

At this point r1 is in i1 and r2 is in i2 (i1 and i2 may be equal) and then i2 is
added to H(i1) and i1 is added to H−(i2).

The procedure UpdatePSets (the last called by Algorithm 1) adds to Pe

(Ps) the properties in the deductive closure of properties in P ′
e (P ′

s). For each
property p in P ′

e (P ′
s), UpdatePSets uses ID to retrieve the identifier of the ES

of p, then it uses H− to traverse the graph in order retrieve all the ESs that are
subsumed by ID(p). If a property p′ belongs to ID(p) or to any of the traversed
ESs is not in P ′

e (Ps), then p′ is added to Pe (Ps).
Algorithm Time Complexity. Assuming that retrieving all triples having

a certain predicate and inserting/retrieving values from maps costs O(1). The
algorithm steps once per each equivalence or subsumption triple. FixHiearchy
costs in the worst case O(neq) where neq is the number of equivalence triples
in the input dataset. nsub is the number of specialization triples in the input
dataset. Hence, time complexity of the algorithm is O(n2

eq + nsub).
Algorithm Space Complexity. In the worst case the algorithm needs to

create an equivalence set for each equivalence triple and a specialization relation
for each specialization triple. Storing ID and IS maps costs ∼2n (where n is the
number of observed entities from the input dataset), whereas storing H and H−

costs ∼ 4n2. Hence, the space complexity of the algorithm is O(n2).

5 Results

In order to analyse the modeling structure and style of LOD we compute two
ESGs from LOD-a-lot: one for classes and one for properties. Both graphs are
available for download6. We used a laptop (3 Ghz Intel Core i7, 16 GB of RAM).
Building the two ESGs took ∼11 h, computing their extension took ∼15 h.
Once the ESG are built, we can query them to compute the metrics defined
in Sect. 3.4 and make observations at LOD scale within the order of a handful of
seconds/minutes. Queries to compute indirect extensional dimension may take
longer, in our experience up to 40 min.

The choice of analysing classes and properties separately reflects the distinc-
tions made by RDF(S) and OWL models. However, this distinction is sometimes
overlooked in LOD ontologies. We observed the presence of the following triples:

6 https://w3id.org/edwin/iswc2019 esgs.

https://w3id.org/edwin/iswc2019_esgs
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Algorithm 1. Main Procedure
1: procedure Main(Pe, Ps)

2: P
′
e = P

′
s = ∅

3: Init ID: IRI → IDIS

4: Init IS: IDIS → IS
5: Init H: IDIS → 2IDIS

6: Init H−: IDIS → 2IDIS

7: Init C: IDIS → 2IDIS

8: Init C−: IDIS → 2IDIS

9: while Pe �= ∅||Ps �= ∅ do
10: ComputeESs( )
11: ComputeHierarchy( )
12: UpdatePSets( )
13: end while
14: end procedure
15: procedure UpdatePSets( )
16: for p′

e ∈ P ′
e||p′

s ∈ P ′
s do

17: for pe s.t. Cpe,ps
pe,ps(p

′
e) do

18: Add pe to Pe if pe /∈ P ′
e

19: end for
20: for ps s.t. Cpe,ps

pe,ps(p
′
s) do

21: Add ps to Ps if ps /∈ P ′
s

22: end for
23: end for
24: end procedure

Algorithm 2. Compute Equivalence Sets
1: procedure ComputeESs( )
2: for pe ∈ Pe do
3: Remove p from Pe and Put p in P

′
e

4: for 〈r1, pe, r2〉 ∈ G do
5: if ID(r1) = ∅ ∧ ID(r2) = ∅ then
6: Let i be a new identifier
7: Put (r1, i) and (r2, i) in ID
8: Put (i, {r1, r2}) in IS
9: else if ID(r1) = i1 ∧ ID(r2) = ∅ then
10: Put (r2, i1) in ID and Put r2 in IS(i1)
11: else if ID(r1) = ∅ ∧ ID(r2) = i2 then
12: Put (r1, i2) in ID and Put r1 in IS(i2)
13: else if ID(r1)=i1∧ID(r2)=i2∧i1 �=i2 then
14: Let IS3 ← IS(i1) ∪ IS(i1)
15: Let i3 be a new identifier
16: Put (i3, IS3) in IS
17: Put (r3, i3) in ID for all r3 ∈ IS3

18: Remove (i1, IS(i1)) from IS
19: Remove (i2, IS(i2)) from IS
20: FixHierarchy(i1,i2,i3)
21: end if
22: end for
23: end for
24: end procedure

rdfs:subPropertyOf rdfs:domain rdf:Property . # From W3C
rdfs:subClassOf rdfs:domain rdfs:Class . # From W3C
rdfs:subClassOf rdfs:subPropertyOf rdfs:subPropertyOf . # From BTC

The first two triples come from RDFS vocabulary defined by W3C, and the third
can be found in the Billion Triple Challenge datasets7. These triples imply that
if a property p1 is subsumed by a property p2, then p1 and p2 become classes.
Since our objective is to observe classes and property separately we can not
accept the third statement. For similar reasons, we can not accept the following
triple:

rdf:type rdfs:subPropertyOf rdfs:subClassOf . # From BTC

which implies that whatever has a type becomes a class. It is worth noticing
that these statements does not violate RDF(S) semantics, but they do have far-
reaching consequences for the entire Semantic Web, most of which are unwanted.

Equivalence Set Graph for Properties. We implemented the algorithm pre-
sented in Sect. 4 to compute the ESG for properties contained in LOD-a-lot [7]. Our
input parameters to the algorithm are: (i) Peq = {owl:equivalentProperty}; (ii)

7 https://github.com/timrdf/DataFAQs/wiki/Billion-Triples-Challenge.

https://github.com/timrdf/DataFAQs/wiki/Billion-Triples-Challenge
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Algorithm 3
1: procedure FixHierar-

chy(i1, i2, i3)
2: H(i3) = H(i1) ∪ H(i2)
3: H−(i3) = H−(i1) ∪ H−(i2)
4: for i11 ∈ H(i1) do
5: Remove i1 from H−(i11)
6: Add i3 to H−(i11)
7: end for
8: for i11 ∈ H−(i1) do
9: Remove i1 from H(i11)
10: Add i3 to H(i11)
11: end for
12: for i21 ∈ H(i2) do
13: Remove i2 from H−(i21)
14: Add i3 to H−(i21)
15: end for
16: for i21 ∈ H−(i2) do
17: Remove i2 from H(i21)
18: Add i3 to H(i21)
19: end for
20: end procedure

Algorithm 4
1: procedure ComputeHierarchy( )
2: for ps ∈ Ps do
3: Remove p from Ps and put p in P

′
s

4: for 〈r1, ps, r2〉 do
5: if ID(r1) = ∅ ∧ ID(r2) = ∅ then
6: Let i1 and i2 be new identifiers
7: Put (r1, i1) and (r2, i2) in ID
8: Put (i1, {r1}) and (i2, {r2}) in IS
9: else if ID(r1) = i1 ∧ ID(r2) = ∅ then
10: Let i2 be a new identifier
11: Put (r2, i2) in ID and (i2, {r2}) in IS
12: else if ID(r1) = ∅ ∧ ID(r2) = i2 then
13: Let i1 be a new identifier
14: Put (r1, i1) in ID
15: Put (i1, {r1}) in IS
16: end if
17: Put (i1, H(i1) ∪ {i2}) in H
18: Put (i2, H

−(i2) ∪ {i1}) in H−

19: end for
20: end for
21: end procedure

Ps = {rdfs:subPropertyOf}. Since owl:equivalentProperty is neither equiva-
lent to nor subsumed by any other property in LOD-a-lot, the algorithm used only
this property for retrieving equivalence relations. Instead, for computing the hier-
archy of equivalence sets the algorithm used 451 properties which have been found
implicitly equivalent to or subsumed by rdfs:subPropertyOf.

Table 1 presents the metrics (cf. Sect. 3.4) computed from the equivalence set
graph for properties. It is quite evident that the properties are poorly linked. (i)
The ratio (R) tends to 1, indicating that few properties are declared equivalent
to other properties; (ii) the ratio between the number of equivalence sets (ES)
and the number of isolated sets (IN) is 0.88, indicating that most of properties
are defined outside of a hierarchy; (iii) the height distribution of ESG nodes (cf.
Fig. 2a) shows that all the nodes have height less than 1; (iv) the high number
of Weakly Connected Components (WCC) is close to the total number of ES.
Figure 2c shows that the dimension of ESs follows the Zipf’s law (a trend also
observed in [6]): many ESs with few instances and few ESs with many instances.
Most properties (∼90%) have at least one instance. This result is in contrast
with one of the findings of Ding and Finin in 2006 [4] who observed that most
properties have never been instantiated. We note that blank nodes are present
in property hierarchies, although they cannot be instantiated. This is probably
due to some erroneous statement.

Equivalence Set Graph for Classes. From the ESG for properties we extract
all the properties implicitly equivalent to or subsumed by owl:equivalentClass
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Table 1. Statistics computed on the equivalent set graph for properties and classes,
from LOD-a-lot. They include the metrics defined in Sect. 3.4. IES(n) indicates the
Number of Equivalent Sets having indirect size n or greater. The term entity is here
used to refer to classes and properties.

Metrics Property Class

# of Observed Entities OE 1,308,946 4,857,653

# of Observed Entities without BNs OEbn 1,301,756 3,719,371

# of Blank Nodes (BNs) BN 7,190 1,013,224

# of Equivalence Sets (ESs) ES 1,305,364 4,038,722

# of Equivalence Sets (ESs) without BNs ESbn 1,298,174 3,092,523

Ratio between ES and OE R .997 .831

Ratio between ES and OE without BNs Rbn .997 .831

# of Edges E 147,606 5,090,482

Maximum Height Hmax 14 77

# Isolated ESs IN 1,157,825 288,614

# of Top Level ESs TL 1,181,583 1,281,758

# of Top Level ESs without BNs TLbn 1,174,717 341,792

# of OE in Top Level ESs OE-TL 1,185,591 1,334,631

# of OE in Top Level ESs without BNs OE-TLbn 1,178,725 348,599

Ratio between TL and OE-TL RTL .996 .960

Ratio between TL and OE-TL without BNs RTLbn .996 .980

# of Weakly Connected Components WCC 1,174,152 449,332

# of Strongly Connected Components SCC 1,305,364 4,038,011

# of OE with Empty Extension OE0 140,014 4,024,374

# of OE with Empty Extension without BNs OE0bn 132,824 2,912,700

# of ES with Empty Extension ES0 131,854 3,060,467

# of ES with Empty Extension without BNs ES0bn 124,717 2,251,626

# of ES with extensional size greater than 1 IES(1) 1,173,510 978,255

# of ES with extensional size greater than 10 IES(10) 558,864 478,746

# of ES with extensional size greater than 100 IES(100) 246,719 138,803

# of ES with extensional size greater than 1K IES(1K) 79,473 30,623

# of ES with extensional size greater than 1M IES(1M) 1,762 3,869

# of ES with extensional size greater than 1B IES(1B) 34 1,833

# of OE-TL with Empty Extension OE-TL0 26,640 1,043,099

# of OE-TL with Empty Extension w/o BNs OE-TL0bn 19,774 83,674

# of TL with Empty Extension TL0 18,884 869,443

# of TL with Empty Extension w/o BNs TL0bn 12,071 66,805
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(2 properties) and put them in Peq, the input parameter of the algorithm.
Ps includes 381 properties that are implicitly equivalent to or subsumed by
rdfs:subClassOf.

Table 1 reports the metrics (cf. Sect. 3.4) computed from the ESG for classes.
Although class equivalence is more common than property equivalence, the value
of R is still very high (0.83), suggesting that equivalence relations among classes
are poorly used. Differently from properties, classes form deeper hierarchies: the
maximum height of a node is 77 (compared to 14 for properties), only 7% of nodes
are isolated and only 31% are top level nodes, we observe from Fig. 2a that the
height distribution has a smoother trend than for properties but still it quickly
reaches values slightly higher than 0. We observe that (unlike properties) most
of class ES are not instantiated: only 31.7% of ES have at least one instance.
A similar result emerges from the analysis carried out in 2006 by Ding and
Finin [4] who reported that 95% of semantic web terms (properties and classes)
have no instances (note that in [4] no RDFS and OWL inferencing was done).
It is worth noticing that part (800K) of these empty sets contain only black
node that cannot be directly instantiated. As for properties, the dimension of
ES follows the Zipf’s distribution (cf. Fig. 2d), a trend already observed in the
early stages of the Semantic Web [4]. We also note that blank nodes are more
frequent in class hierarchies than in property hierarchies (25% of ES of classes
contain at least one blank node).

6 Discussion

We have presented an empirical study aiming at understanding the modeling
style and the overall semantic structure of the Linked Open Data cloud. We
observed how classes, properties and individuals are used in practice, and we
also investigated how hierarchies of concepts are structured, and how much they
are linked.

Even if our conclusions on the issues with LOD data are not revolutionarily
(the community is in general aware of the stated problems for Linked Data),
we have presented a framework and concrete metrics to obtain concrete results
that underpin these shared informal intuitions. We now briefly revisit our main
findings:

LOD Ontologies are Sparsely Interlinked. The values computed for metric
R (ratio between ES and OE) tell us that LOD classes and properties are sparsely
linked with equivalence relations. We can only speculate as to whether ontology
linking is considered less important or more difficult than linking individuals, or
whether the unlinked classes belong to very diverse domains. However, we find
a high value for metric TL (top level ES) with an average of ∼1.1 classes per
ES. Considering that the number of top level classes (without counting BN) is
∼348k, it is reasonable to suspect a high number of conceptual duplicates. The
situation for properties is even worse: the average number of properties per TL
ES is 1 and the number of top level properties approximates their total number.



72 L. Asprino et al.

Height

H
(n

)/
E

S

(a) Height distribution of ES

WCC Size

N
um

b
er

 o
f W

C
C

s

Classes Properties

(b) Distribution of the size of Weakly
Connected Components. The function
shows how manyWCC have a certain size.

Indirect Extensional Size of ES

N
um

b
er

 o
f E

S
s

(c) Distribution of IES for properties: the
extension size of property ES. The func-
tion indicates how many ES have a certain
extension size.

Indirect Extensional Size of ES

N
um

b
er

 o
f E

S
s

(d) Distribution of IES for classes: the ex-
tension size of class ES. The function in-
dicates how many ES have a certain ex-
tension size.

Fig. 2. (a) shows the normalised number of nodes per height, (b) shows the number
of weakly connected component per component size, (c) and (d) show the number of
ESs per indirect extensional size. (b), (c) and (d) are in logarithmic scale.

LOD ontologies are also linked by means of specialisation relations
(rdfs:subClassOf and rdfs:subPropertyOf). Although the situation is less
dramatic here, it confirms the previous finding. As for properties, ∼88.7% of ES
are isolated (cf. IN). Classes exhibit better behaviour in this regard, with only
7% of isolated classes. This confirms that classes are more linked than properties,
although mostly by means of specialisation relations.

LOD Ontologies are Mostly Flat. The maximum height of ESG nodes is 14
for properties and 77 for classes. Their height’s distribution (Fig. 2a) shows that
almost all ES (∼100%) belong to flat hierarchies. This observation, combined
with the values previously observed (cf. IN and R), reinforces the claim that
LOD must contain a large number of duplicate concepts.

As for classes, ∼50% of ES have no specialising concepts, i.e., height = 0
(Fig. 2a). However, a bit less than the remaining ES have at least one specialising
ES. Only a handful of ES reach up to 3 hierarchical levels. The WCC distribution
(Fig. 2b) confirms that classes in non-flat hierarchies are mostly organised as
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siblings in short-depth trees. We speculate that ontology engineers put more
care into designing their classes than they put in designing their properties.

LOD Ontologies Contain Many Uninstantiated Concepts. We find that
properties are mostly instantiated (∼90%), which suggests that they are defined
in response to actual need. However, most classes – even not counting blank
nodes – have no instances: ∼67% of TL ES have no instances. A possible inter-
pretation is that ontology designers tend to over-engineer ontologies beyond their
actual requirements, with overly general concepts.

6.1 Future Work

We are working on additional metrics that can be computed on ESGs, and
on extending the framework to analyse other kinds of relations (e.g. disjoint-
ness). We are also making a step towards assessing possible relations between
the domain of knowledge addressed by LOD ontologies and the observations
made.
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