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Abstract. Automatic abstraction is a powerful software verification technique. In
this paper, we elaborate an abstract domain for C strings, that is, null-terminated
arrays of characters. We describe the abstract semantics of basic string operations
and prove their soundness with regards to previously established concrete seman-
tics of those operations. In addition to a selection of string functions from the
standard C library, we provide semantics for character access and update, enabling
automatic lifting of arbitrary string-manipulating code into the domain.
The domain we present (called M-String) has two other abstract domains as its
parameters: an index (bound) domain and a character domain. Picking different
constituent domains allows M-String to be tailored for specific verification tasks,
balancing precision against complexity.
In addition to describing the domain theoretically, we also provide an executable
implementation of the abstract operations. Using a tool which automatically lifts
existing programs into the M-String domain along with an explicit-state model
checker, we have evaluated the proposed domain experimentally on a few simple
but realistic test programs.

1 Introduction

The C programming language is still very relevant [3]: a large number of systems of
critical importance are written in C, including server software and embedded systems.
Unfortunately, due to the way C programs are laid out in memory, they often contain
bugs that can be exploited by malicious parties to mount security attacks. Guaranteeing
correctness of such software is of great concern. In particular, we are interested in
ensuring correctness of C programs that manipulate strings. Incorrect string manipulation
can cause a number of catastrophic events, ranging from crashes in critical software
components to loss or exposure of sensitive data.

In the C programming language, strings are not a basic data type and operations
on them are provided as library functions [7]. Indeed strings are represented as zero-
terminated arrays of characters – due to the possible discrepancy between string size and
array (buffer) size, C programs which manipulate strings can suffer from buffer overflows
and related issues. A buffer overflow is a bug that affects C code which incorrectly tries
to access a buffer outside its bounds – an out-of-bounds write (a related bug – an out-of-
bounds read – is also a problem, even though not as immediately dangerous as a buffer
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overflow). Moreover, buffer overflows are usually exploitable and often can easily lead
to arbitrary code execution [25]. In the light of these facts, it is clearly important to
investigate methods to automatically reason about correctness of string manipulation
code in C programs. Automated code analysis tools can identify existing bugs, reduce
the risk of introducing new bugs and therefore help prevent costly security incidents.

In this paper, we present a sound approach for conducting string analysis in C
programs. In particular, we consider the M-String segmentation abstract domain [10].
We use it to perform abstraction-based model checking [9] of C programs, with focus on
string manipulation. The model checker is split into two parts, as proposed in [23]: a
program transformation which changes the program to execute in the abstract domain,
and a standard, explicit-state model checker which exhaustively explores the abstract
state space.

1.1 Related work

Static methods with the ability to automatically detect buffer overflows have been widely
studied in the literature and many different inference techniques were proposed and
implemented: constraint solvers for various theories (including string theories) and
techniques based on them (e.g. symbolic execution), tainted data-flow analysis, string
pattern matching analysis or annotation analysis [27]. Additionally, a large number of
bug hunting tools based on static analysis and the above mentioned techniques have been
implemented [1, 14, 16, 17, 29, 30].

For instance, in [19] authors introduced a performant backward compatible method
of bounds checking of C program, i.e., the representation of pointers is left unchanged
(thus differentiating the proposed schema from previously existing techniques), allowing
inter-operation between checked and unchecked code, with recompilation confined to
the modules where problems might occur. In [14], a static verifier of C strings has
been presented, namely CSSV. Contracts are supplied to the tool, which acts in 4
stages, reducing the problem of checking code that manipulates string to checking code
that manipulates integers. Finally, Splat, described in [31], is a tool that automatically
generates test inputs, symbolically reasoning about lengths of input buffers.

Briefly, static code analysis attempts to quickly approximate possible behaviours of
a program, without examining its actual executions. This way, static analysis reasons
about many of the possible runs of a program and provides a degree of assurance that the
property of interest holds (or that it is violated). However, with static analysis, neither
positive nor negative results are guaranteed to be correct [2].

To obtain a higher degree of confidence, a number of more expensive methods are
available in the software verification toolbox [15]. Model checking with abstraction and
refinement is one such high-assurance, high-precision method [9], though of course both
the precision and reliability come at a price in terms of computational complexity.

Various researchers have shown how the framework of abstract interpretation [12]
can be used to approximate semantics of string operations. The basic, well-known
domains are a string set domain, which simply keeps track of a set of strings – this is
specific instance of the general (bounded) set domain. Another is the character inclusion
domain (which keeps track of which characters appear in a string, but not in what order
or how many times), the prefix-suffix domain (which keeps track of the first and the last
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letter) and their various products. Another general-purpose string domain is the string
hash domain proposed in [24], based on a distributive hash function. A more complete
review of general-purpose string domains is readily available in the literature, e.g. [5,11].

Such general-purpose domains focus on the generic aspects of strings, without
accounting for the specifics of string handling in different programming languages. It
is, however, often beneficial to consider such specific aspects of string representation
when designing abstract domains for program analysis: indeed, M-String is a domain
tailored specifically for the representation of strings used in C programs. A number of
abstract string domains (and their combinations) for analysis of JavaScript programs
have been evaluated in [5]. Another domain that was conceived for JavaScript analysis
is the simplified regular expression domain defined in [26]. While dynamic languages
heavily rely on strings and their analysis benefits greatly from tailored abstract domains,
the specifics of the C approach to strings also deserves attention: the M-String domain,
tailored for modeling zero-terminated strings stored in character buffers in C programs
has first been described in [10]. In addition to theoretical work, a number of tools based
on the abovementioned abstract domains and their combinations have been designed and
implemented [18, 20, 26, 28].

Finally, combining many domains in a single analysis can often substantially improve
precision over either of the individual domains. However, combining domains naively
requires a quadratic number of translation functions. A solution to this problem, with
special focus on string domains, has been proposed in [4]. Moreover, analysis of strings
based on abstract interpretation is not limited to designing abstract string domains – an
analysis for programs which process structured text, based on grammar inference, was
proposed in [21]. A related approach based on over-approximation of string expressions
using regular grammars (widened from context-free grammars constructed via static
analysis) is described in [8].

1.2 Paper contribution

In this paper we define the semantics of the M-String abstract domain, based on the
concrete semantics presented in [10], both in human-readable and in executable form. Ad-
ditionally, we have extended LART [23], a tool which can perform automatic abstraction
on programs, with support for more complicated (non-scalar) domains, which allowed
us to also integrate the M-String domain. By using the extended version of LART along
with DIVINE 4 [6], an explicit state model checker based on LLVM, we can automatically
verify correctness of string operations in C programs. We demonstrate this capability by
analysing a number of C programs, ranging from quite simple to moderately complex,
including parsers generated by bison, a tool which translates context-free grammars
into C parsers. The main contribution of this paper is in demonstrating the actual impact
of an ad-hoc segmentation-based abstract domain on model checking of C programs.

2 M-String

M-String (M) [10] is an ad hoc segmentation-based abstract domain designed for string
analysis in C programs, based on a refinement of the segmentation approach to array
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representation proposed in [13]. In [13], the array’s content is abstracted by consecutive,
non-overlapping segments covering all array elements. In [10] the authors took advantage
of this representation and defined a domain that abstracts C-like strings, distinguishing
the so-called string of interest3 of a character array from the rest of its content.

The goal of the domain is to infer the presence of common string manipulation
errors that may result in buffer overflows or, more generally, that may lead to undefined
behaviours. Additionally, keeping track of the content of the char array after the first null
character allows us to reduce false positives: in particular, rewriting the first null character
in the string is not always a bug, since further null characters may follow. Finally, M-
String, like the array segmentation-based representation defined in [13], is parametric
with respect to the abstraction of the array elements value, and the representation of
array indices.

2.1 Concrete domain

Let A be a finite set of characters representable by the character encoding in use and let
C= A∗ be the set of all the possible character arrays. Then, the operational semantics
of character array variables (c ∈ C) are concrete array environments µ ∈Rm mapping
character array names c ∈ C to their values µ(c) ∈M,Rv×E×E×M×Z, where:

– Rv , X→X is the environment which maps names x ∈ X to values ρ(x) ∈ X ,
– E is the expressions domain,
– M : Z→ Z×A, and Z is the integers domain.

For more details we invite the reader to refer to [10, 13]. Moreover, we highlight
the fact that the concrete domain we present is used as a framework that helps us in
constructing the abstract representation, and it is not how the (concrete) values are
actually represented in programs. That said, let c be an array of characters. Its concrete
value is a quintuple µ(c) = (ρ,c.low,c.high,Mc,Nc) ∈M where ρ ∈Rv and:

– c.low,c.high ∈ E are expressions whose values [[c.low]]ρ and [[c.high]]ρ respec-
tively represent the integer lower bound and the integer upper bound of c,

– Mc is a function that maps an index i to a pair Mc(i) = 〈i,v〉 of the index i and the
corresponding character array element value v, i.e. Mc : Ic→ Pc such that:

Ic = {i : i ∈ [[[c.low]]ρ, [[c.high]]ρ)}
Pc = {〈i,v〉 : i ∈ [[[c.low]]ρ, [[c.high]]ρ ∧c[i] = 'v'}

– Nc is the set of indexes which map to the string terminating characters, i.e. Nc =
{i ∈ [[[c.low]]ρ, [[c.high]]ρ) |Mc = 〈i, '\0'〉}.

Example 1. Let s= ''Hello\0'' be a character array then, its concrete value is given by
µ(s) = (ρ,0,6,Ms,Ns), where Ps is the set {(0, 'H'),(1, 'e'),(2, 'l'),(3, 'l'),(4, 'o'),(5,
'\0')} and Ns corresponds to the singleton {5}.

3 The string of interest of a character array is the sequence of characters up to the first null
one (included). In the case in which the null character occurs at the first index of a character
array, then its string of interest is defined as “null”. If the null character does not occur in the
array, then its string of interest is defined as “undefined”. Otherwise, the string of interest is
considered to be “well-defined”.
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2.2 Abstract domain

The M-String (M) abstract domain approximates sets of character arrays with a pair
of segmentations that highlight the nature of their strings of interest. The elements of
the domain are split segmentation abstract predicates. Segments capture sequences of
identical abstract values, and are delimited by so-called segment bounds. More precisely,
the M-String abstract domain is given by M(B,C,R). R denotes the abstraction of scalar
variable environments. C is the abstraction of the character array elements, and it is
equipped with is_null, a special monotonic function lifting abstract elements in C to a
value in the set {true, false, maybe}. B denotes the abstraction of segment bounds,
equipped with the following operations: equality (=B), ordering (6B), least upper bound
between subsequent segment bounds (tB[bi,bi+1)), addition (+B), and subtraction (−B).
The M-String abstract domain is the complete lattice (M,6M,⊥M,>M,uM,tM) where:

– M, (Ms,Mns)∪{⊥M,>M}
• Ms corresponds to

⋃
{Ssb×S

k
sm×Sse | k > 0}∪Sse ∪{ /0}, and it represents

the segmentation of the string of interest of a given character array, where,
[Ssb = {B×C}, Ssm = {B×C×{ ,?}}, Sse = {B×{ }}]

• Mns corresponds to
⋃
{Snsb×S

k
nsm×Snse | k > 0}∪{ /0}, and it represents the

segmentation of the content of a given character array after its string of interest,
or character arrays that do not contain the null terminating character. Here,

[Snsb = Ssb, Snsm = Ssm, Snse = {B×{ ,?}}]
In particular:
1. bi ∈ B denotes the segment bounds, such that i = 1, ...,n and n > 1 (notice that

b1 and bn respectively represent the array lower bound and the array upper
bound),

2. pi ∈ C are abstract predicates, chosen in an abstract domain C, denoting possible
values of pairs 〈i,v〉 in a segment (i.e. C[[〈i,v〉]]ρ),

3. the question mark ? indicates the preceding segment might be empty, while
indicates a non-empty segment

The elements inM are m = (s,ns) (i.e. split segmentation abstract predicates). Let
c ∈ C be an array of characters, and µ(c) be its concrete value; for instance, if the
string of interest of c is null (i.e. min(Nc) = 0) then: m is equal to (b1 , /0) if the size
of c is equal to 1, (b1 ,b2 p2b3?3 p3b4?4...bn?n) otherwise. In the rest of the paper
we will refer to the s and to the ns parameters of a given abstract string m by m.s
and m.ns respectively.

– Let m1 and m2 be two abstract values in the M-String domain then: m1 6M m2⇔
m1 =⊥M ∨ m1 ≡ m2 ∨ unify(m1,m2) = m2. Notice that m1 and m2 are equivalent
when they represent the same set of character arrays. Here, “unify” is a sound upper
bound operator (originally defined in [13] and tweaked in [10] to modify two split
segmentations so that they coincide).
Take m1 and m2 to be compatible if their parameters have common lower and upper
bounds of s and ns. Then, unify(m1,m2) = (unify(s1,s2),unify(ns1,ns2)) if m1 and
m2 are compatible, >M otherwise.

– ⊥M, >M are special elements denoting the bottom/top element of the lattice.
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– tM represents the join operator, that defines the least upper bound between two
abstract elements, such that: m1tM m2 = unify(m1,m2) if m1 and m2 are compatible,
>M otherwise. Then the character abstract domain join is applied segment-wise.

Abstraction Let X be a set of concrete character array values. The abstraction function
on the M-String abstract domain αM maps X to ⊥M in the case in which X is empty,
otherwise to the pair of segmentations that best over-approximate values in X.

Concretization The concretization function on the M-String abstract domain γM maps
an abstract element to a set of character arrays values as follows: γM(⊥M) = /0, otherwise
γM(m) is the set of all possible character arrays values represented by a split segmentation
abstract predicate m. The formalization is quite complex, and the reader may refer to
Appendix A.1.

Example 2. Let S= {s1,s2,s3} be a set of character arrays, such that: s1 =''car\0xx'',
s2 =''bay\0xx'', and s3 =''day\0xx''. The abstract value of S in M, instantiated with
the standard constant propagation domain (CP), is given by s = αM({µ(x) | x ∈ S}) =
({0} >CP {1} 'a' {2} >CP {3},{4} 'x' {6}). The concretization function of s, i.e. γM(s)
maps s to the set of all possible character arrays values of length 6 that contain a string
of interest of length 4, and having the character 'a' at position 1 and the character 'x' at
position 4 and 5.

2.3 Abstract semantics

In [10] authors restricted their focus on a small representative set of operators which
are part of the string.h library of the C programming language (i.e. strcpy, strcat,
strlen, strchr, strcmp and the “assignment to an array element” operator), and
they defined the concrete semantics of those operators. We recall the character arrays
concrete semantics (slightly modified from the one presented in [10]). In particular,
S is the semantics that, given a statement and eventually some concrete character
arrays values inM, returns a concrete character array resulting from that operation,
i.e. S : Stm×M→M∪{null} where, null denotes unknown values. Moreover, for
strlen and strcmp we give the semantics L : Stm×M→ Z∪{>Z}.

Below we present the abstract semantics of the strcat, strlen and strchr opera-
tors, and we prove their soundness (the reader interested in the definitions of the abstract
semantics and of the proofs of soundness of the complete set of operators introduced
above may refer to Appendix A.4). We denote by SM and LM the abstract counterparts
of S and L respectively, such that: SM : Stm×M→M and LM : Stm×M→ B.

Additional operators We present some additional abstract operators useful to define
the abstract semantics. Their complete algorithms are defined in Appendix A.3.

Length operators (minLen, maxLen, Len) We introduce the notions of minimum and
maximum length of a split segmentation abstract predicate, and the length of the strings
of interest that it represents. Precisely, we define: minLen(m) = min{len(x) | x∈ γM(m)},
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maxLen(m) = max{len(x) | x ∈ γM(m)}, and Lenm.s = max{len(x) | x ∈ γ?M(m.s)} (see
Appendix A.1 for the definition of γ?M), where len(x) denotes the size of a concrete
character array value.

Segment concatenation (⊕) Let bpb′ and uru′ be two segments (b,b′,u,u′ ∈ B and
p,r ∈ C) then, their concatenation is defined as follows: bpb′⊕ uru′ such that bpb′⊕
uru′ = bpb′ru∗ where u∗ = b′+(u′−u). In the case in which the right hand side operand
is a segmentation, then all the segment bounds belonging to it are modified accordingly.
Question marks, if present, are left unchanged.

Abstract semantics of strcat: If the input (m1 and m2 respectively) approximate
character arrays that contain a well-defined or null string of interest, and if the minLen
of m1 is greater than or equal to the the sum of Lenm1.s and Lenm2.s minus one then the
strcat returns m′1 where m2.s has been appended to m1.s and the following segments
are modified accordingly. Otherwise it returns >M.

Let m.s[bi]
s (m.ns[bi]

s) be the left hand side parameter (the right hand side parameter)
of m starting from the i-th segment bound. Conversely, m.s[bi]u (m.ns[bi]u) is the left
hand side parameter (the right hand side parameter) of m up to the i-th segment bound.
Then SM[[strcat]](m1,m2) is equal to:

– m′1 if m1 6= ( /0,ns), m2 6= ( /0,ns) and minLen(m1)> (Lenm1.s +Lenm2.s−1);
– >M otherwise, where:
1. If m1=(b1 p1...bi ,ns)∧m2=(b1 ,ns)⇒m′1 = (m1.s[bi]u⊕m2.s,m1.ns)
2. If m1=(b1 p1...bi ,ns)∧m2=(b1 p1...bi ,ns)⇒m′1 = (m1.s[bi]u⊕m2.s,m1.ns[b∗]s),

where b∗ = (bim2
−B b1m2

)+B bim1
+B 1

Notice that, question marks, if present, are left unchanged.

Abstract semantics of strlen: If the input split segmentation abstract predicate (m)
approximates character arrays that contain a well-defined or null string of interest then
the strlen operator returns the least upper bound between the segment bounds which
limit a certainly or maybe is_null segment abstract predicate. Otherwise it returns >B.

Let x be an abstract character value (i.e. C[[v]]ρ) appearing in a generic segment
abstract predicate p. Formally, LM[[strlen]](m) is equal to:

–
⊔

B
∀bi∈m.s

{tB[bi,bi+1) | x occurs in pi∧x may be null} if m 6= ( /0,ns);

– >B otherwise, where tB[bi,bi+1) is a shorthand for bi tB bi + 1tB bi + 2tB ...tB

bi+1−1, and it returns the set of elements in the interval [bi,bi+1).

Abstract semantic of strchr: If the input split segmentation abstract predicate (m)
approximates character arrays that contain a well-defined or null string of interest, and
if the abstract character we are looking for (x ∈ C) appears in m.s then the strchrx
operator returns a split segmentation abstract predicate denoting the sub-segmentation
of its left hand side input parameter starting from the first occurrence of x. Otherwise it
returns >M. Formally, S[[strchrx]](m) is equal to:

– (b1 , /0) if m = (b1 ,ns) and x is null;
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– (bi , /0) if m = (b1 p1...bi ,ns) and x is null;
– (s[bk]

s, /0) if m = (b1 p1...bi ,ns), x may be not null and ∃k : k = min{z ∈ [1, i) : x
appears in pz};

– >M otherwise.

Theorem 1 (Soundness of the abstract semantics). SM and LM are sound over-
approximations of S and L respectively. Formally,

γM(SM[[stm]](m))⊇ {S[[stm]](c) : c ∈ γM(m)}
γB(LM[[stm]](m))⊇ {L[[stm]](c) : c ∈ γM(m)}

where c = µ(c) denotes the concrete value of c.

Proof. We prove the soundness separately for each operator.
– See Appendix A.4 (Theorem 2) for the strcat proof of soundness.
– Consider the unary operator strlen, and let m be a split segmentation abstract pred-

icate. We have to prove that γB(LM[[strlen]](m))⊇{L[[strlen]](c) : c∈ γM(m)}.
The strlen of c, if c contains a well-formed string, returns an integer value n denot-
ing the length of the sequence of characters before the first null one,>Z otherwise, by
definition of L. Then n belongs to γB(LM[[strlen]](m)) because LM[[st-rlen]](m)
is equal to the least upper bound of all the segment bounds in m.s (included their
inner values) in which a certainly or maybe null value is contained, if m highlights
the presence of well-formed strings; otherwise, the abstract operator returns >B, by
definition of LM.

– Consider the unary operator strchrx, and let m be a split segmentation abstract
predicate. We have to prove that γM(SM[[strchrx]](m)) ⊇ {S[[strchrx]](c) : c ∈
γM(m)}. The strchrx of c returns, if x is present in c, a sub-array of c (i.e. sub.c)
that goes from the first occurrence of x in c to the first occurrence of the null-
terminating character included, null otherwise, by definition of S. Then sub.c be-
longs to γM(SM[[strchrx]](m)) because SM[[strchrx]](m), if m highlights the pres-
ence of well-formed strings and x appears in m.s, is equal to a sub-segmentation of
m.s that goes from the first appearance of x in m.s to the end of m.s, and αC(x) = x;
otherwise, the abstract operator returns >M, by definition of SM.

3 Program abstraction

Adapting M-String to the analysis of real-world C programs requires, first of all, a
procedure that identifies string operations automatically. A subset of such operations
then needs to be performed using abstract operations, carried out on a suitable abstract
representation. The technique that captures this approach is known as abstract interpreta-
tion. A typical implementation is based on an interpreter in the programming language
sense: it executes the program by directly performing the operations written down in the
source code. However, instead of using concrete values and concrete operations on those
values, part (or the entirety) of the computation is performed in an abstract domain,
which over-approximates the semantics of the concrete program.
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Fig. 1: The figure depicts a comparison of interpretation/compilation-based approaches.
In interpretation-based approach, entire abstract interpretation is performed during
runtime. A virtual machine (VM) interprets bitcode operations abstractly and maintain
an abstract state. Consequently, it generates an abstract state-space for a model-checking
algorithm (MC). On the other hand, compilation-based approach instruments abstract
operations into the compiled program and provides their implementation as a library. A
virtual machine then executes the instrumented program as regular bitcode.

Since in this paper, we focus on string abstraction, we would like to be able to
perform the remainder of the program (i.e. the portions that do not work with strings)
concretely. In fact, we only want to abstract some of the strings and string operations
in the program, since the domain at hand is an approximation: in cases, where the
program works with strings that exhibit minimal variation, e.g. string literals, using the
M-String representation would not offer any benefit, and could actually hurt performance
or introduce spurious counterexamples.

These considerations lead us to conclude that it would be beneficial to re-use, or
rather re-purpose, existing tools which work with explicit programs to implement abstract
interpretation in a modular fashion. A design in this style (compilation-based abtract
interpretation) was proposed and implemented in [23].

However, as presented, the approach was limited to abstracting scalar values. In this
paper, we extend this approach to work with strings and other domains that represent
more complex objects.

3.1 Compilation-based approach

To perform abstraction, instead of (re-)interpreting instructions abstractly, we transform
abstract instructions into equivalent explicit code, which implements the abstract compu-
tation. The transformation occurs before model checking (or other dynamical analysis),
during the compilation process.

The transformed program can be further analyzed or processed without special
knowledge of the abstract domains in use, because those are now encoded directly in
the program. Comparison of this compilation-based approach and the approach of more
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traditional abstract interpreters (an interpretation-based approach) is shown in Figure 1.
In compilation-based approach, we consider two levels of abstraction:

1. static, concerning the syntax and the type system,
2. dynamic, or semantic, concerning execution and values.

LART performs syntactic (static) abstraction on LLVM bitcode [22]. The goal of syntactic
abstraction is to replace some of the LLVM instructions in the program with their abstract
counterparts. We illustrate syntactic abstraction in Figure 2.

3.2 Syntactic abstraction

During syntactic abstraction, LART performs a data flow analysis, starting from anno-
tated abstract values (abstract) as the roots. The result of this analysis is the set of all
operations that may come into contact with an abstract value. These are then substituted
by their abstract counterparts (a_strcat, a_strlen). An abstract instruction takes
abstract values as its inputs and produces an abstract value as its result. The specific
meaning of those abstract instructions and abstract values then defines the semantic
abstraction.

To formulate syntactic abstraction unambiguously, we take advantage of the static
type system of LLVM. By assigning types to program variables, we can maintain a
precise boundary between concrete and abstract values in our program.

We recognize a set of concrete scalar types S. We give a map Γ that inductively
defines finite (non-recursive) algebraic types over the set of given scalars. To be specific,
the set of all types Γ (T ) derived from a set of scalars T is defined as follows:
1. T ⊆ Γ (T ), meaning each scalar type is included in Γ (T ),
2. if t1, . . . , tn ∈ Γ (T ) then also the product type is in Γ (T ): (t1, . . . , tn) ∈ Γ (T ),n ∈ N,
3. if t1, . . . , tn ∈ Γ (T ) then also disjoint union is in Γ (T ): t1 | t2 | · · · | tn ∈ Γ (T ),n ∈N,
4. if t ∈ Γ (T ) then t∗ ∈ Γ (T ), where t∗ denotes pointer type.

Concrete program:
a:str ← abstract ()
b:str ← string ()
c:str ← strcat(a,b)
l:int ← strlen(c)

Transformed program:
a:a_str ← a_string ()
b:str ← string ()
c:a_str ← a_strcat(a,b)
l:a_int ← a_strlen(c)

Fig. 2: Syntactic abstraction.

In syntactic abstraction, we extend the con-
crete set of types by abstract types. From these,
we generate admissible types using Γ . Depending
on the level of abstraction, we define a different
set of basic abstract types. In the case of scalar
abstraction, a set of basic abstract types contains
abstract scalar types A. Correspondence between
abstract and concrete scalars is given by a bijective
map Λ : S→ A. Finally, each value, which exists
in the abstracted program, has an assigned type of
Γ (S∪A). In particular, this means that the abstrac-
tion works with mixed types – products and unions with both concrete and abstract fields.
Likewise, it is possible to form pointers to both abstract values and to mixed aggregates.

3.3 Aggregate domains

Scalars in a program are simple values which cannot be further decomposed into mean-
ingful constituent parts. A typical example would be an integer, or a pointer. However,
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programs typically also work with more complex data, that we can think of as com-
positions – aggregates – of multiple scalar values. Depending on the nature of such
aggregates, we can classify them as arrays, which contain a variable number of items
which all belong to a single type, records (structures), which contain a fixed number
of items in a fixed layout, but each of these can be of a different type. The items in
such aggregates can be (and often are) scalars, but more complicated aggregates are also
possible: arrays of records, records which in turn contain other records, and so on.

In contrast to scalar domains, which deal with scalar values, an aggregate domain
represents composite data, in the spirit of the above definition. An abstract aggregate
domain approximates (concrete) aggregate values by keeping track of certain properties
of the aggregate, for instance the length of an array, or a set of scalars that appear in
the array. In the case of M-String, the information it tracks is a segmentation, where
segments are represented using their bounds and a single value abstracting their content.

Aggregate domains could be equipped with quite arbitrary operations, though there
are two that stand out, because they are in some sense universal, and those are byte-wise
access and modification (update) of the content of the aggregate. The universality of
those operations stems from the fact that in a low-level representation of a program, all
operations with aggregate values take this form. In LLVM, it is possible (though not
guaranteed), that access to the aggregate is encoded at a slightly higher level: as extraction
and modification of entire scalars (as opposed to individual bytes). For M-String, though,
this distinction is not important: the scalars stored in C strings are individual bytes.
It should be also noted that the access and update form the interface between scalars
and aggregates (even in the case of byte-oriented access, since bytes are also scalars).
Therefore, the types of those two operations contain a single aggregate and (at least) a
single scalar domain. Some (or all) of those domains may be abstract domains.

Syntactic abstraction has to handle aggregate domains differently from scalar do-
mains. In LLVM, aggregate values are usually represented using pointers of a specific
(aggregate) type. For this reason, aggregate abstraction starts from the types that repre-
sent its objects. In the case of arrays, those are concrete pointers into those arrays: let us
call them P∗, where P ⊆ Γ (S). We use the set of abstract pointers A∗ to represent the
types of abstract values in an aggregate domain. Thus the set of admissible types in the
abstract program is generated by Γ (S∪A∗). Like in scalar domains, we define a natural
correspondence between pointers to concrete values P∗ as a bijective map Λ : P∗→ A∗.

Please note that pointers in general contain two pieces of information: they determine
the object and an offset into that object. In explicit programs, this distinction is not
very important, since those two parts are represented uniformly and often cannot be
distinguished at all. The distinction, however, becomes important when we deal with
abstract aggregate values. In this case, the object portion of the pointer is concrete,
since it determines a single specific abstract object. However, the offset may or may
not be concrete – depending on the specific abstract aggregate domain, it may be more
advantageous to represent the offset abstractly. In either case, however, all memory access
through such a pointer needs to be treated as an abstract access or update operation.

In LLVM, there are two basic memory access operations – load and store, which
correspond to the access and update operations. Rather importantly, memory access is
always explicit – memory is never directly used in a computation. We use this fact in the
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design of aggregate abstraction, where we can assume that access to the content of an
aggregate will always go through a pointer associated with the abstract object.

3.4 Semantic abstraction

Where syntactic abstraction was concerned with the syntax of operations, their types and
the types of values and variables, semantic abstraction is concerned with the runtime
values that appear during the computation performed by a program. While syntactic ab-
straction introduced the maps Λ and Λ−1 to transfer between concrete and abstract types,
semantic abstraction introduces lift and lower: operations (instructions) which convert
between concrete and abstract values. They represent a realization of the abstraction (α)
and concretization (γ) functions.

While lift and lower form a boundary between concrete and abstract scalar computa-
tion, the access and update operations of an aggregate domain form a boundary between
scalar and aggregate domains. We kindly refer to [23], where a reader may find how
LART transforms an abstract program into an executable form.

3.5 Abstract operations

After syntactic abstraction, the program temporarily contains abstract instructions. Ab-
stract instructions take abstract values as operands and give back abstract values as
their results. However, after transformation, we require that the resulting program is
semantically valid LLVM bitcode. Hence, it is crucial that each abstract instruction can
be realized as a suitable sequence of concrete instructions. This makes it possible to
obtain an abstract program that does not actually contain any abstract instructions and
execute it using standard (concrete, explicit) methods.

In detail, syntactic abstraction replaces concrete instructions with their abstract
counterparts: an instruction with type (t1, . . . , tn) → tr is substituted by an abstract
instruction of type (Λ(t1), . . . ,Λ(tn))→Λ(tr). Moreover, lift and lower are inserted as
needed. The implementation is free to decide which instructions to abstract and where to
insert value lifting and lowering, so long as it obeys type constraints.

Additionaly, in string abstraction, we also want to abstract function calls such as
strcat, strcpy etc. From the perspective of abstraction, we treat these functions as
single operations that take abstract values and produce results. Therefore, we can process
them in the same way as instructions. For example, by transforming strcat of type
(str, str)→ str we obtain strcata of type (Λ(str), Λ(str))→ Λ(str). Afterwards, all
abstract operations are realized using concrete subroutines [23].

We could have also transformed standard library functions (strcat, strcmp, etc.)
instruction by instruction using only abstract access and update of a content, but in this
way we would lose a certain degree of precision in the abstraction, the exact amount
depending on the operation.

4 Instantiating M-String

M-String, as a content domain, enables a parametrization of string abstraction. To be
specific, it supports the parametrization of string segmentation representation in which
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we can substitute different domains of bounds and characters. As a representation of
string values, we can use a scalar domain equipped with the correct operations, and the
same holds for bounds of segments as described in section 2.

An implementation of a particular M-String instance can be automatically derived
from a parametric description, given well-defined abstract domains C for characters
and B to represent segment bounds. M-String also requires that both C and B support
certain operations that appear in the generic implementation of the abstract operations.
These are mainly basic arithmetic and relational operators. For further details of the
implementation, see the appendix of this paper.

4.1 Symbolic scalar values

In program verification, it is common practice to represent certain values symbolically
(for instance inputs from the environment). This type of representation enables a verifi-
cation procedure to consider all the possible values with a reasonably small overhead.
computation is implemented using abstraction of the same type as described here: com-
putations on scalar values are lifted into the term domain, which simply keeps track of
values using terms (expressions) in form of abstract syntax trees. Those trees contain
atoms (unconstrained values) and operators of the bitvector logic. The term domain
additionally keeps track of any constraints derived from the control flow of the program
(a path condition). A more detailed description is presented in [23].

Paired with a constraint solver for the requisite theory,4 the term domain coincides
with symbolic computation. The solver makes it possible to detect computations that
have reached the bottom of the term domain (those are the infeasible paths through the
program) and also to check for equality or subsumption of program states. With those
provisions, the bitvector theory is completely precise (i.e. it is not an approximation, but
rather models the program state faithfully).

4.2 Concrete characters, symbolic bounds

For evaluation purposes, we have instantiated the M-String domain by setting C, the
domain of the individual characters, to be the concrete domain (i.e. characters are
represented by themselves) and B, the domain of segment bounds, to be symbolic 64b
integers. The main motivation for this instantiation is a balance between simplicity on
one hand (both the domains we used for parameters were already available in the tools
we used) and the ability to describe strings with undetermined length and structure.

At the implementation level (as explained in more detail in the following section),
the domain continues to be parametric: the specific domains we picked could be easily
swapped for other domains (an immediate candidate would be using both symbolic
characters and symbolic bounds). Compared to the theoretical description of M-String,
the implementation uses a slightly simplified representation using a pair of arrays (cf.
Figure 3), where the specific type of characters and bounds is given by the parameter
domains C and B respectively.

4 For scalars in C programs, we use the bitvector theory.
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a . . . a c . . . c \0 a . . . \0 . . .

segment

b1 b2 b3 b4 b5 b6 Characters:

a c \0 a \0

Bounds:

b1 b2 b3 b4 b5 b6

Fig. 3: M-String value with symbolic bounds, where string of interest is from b1 to b3.Word Sequence Alternation
verification(s) verification(s) verification(s)

states 8 64 1024 4096 LART(s) states 8 64 1024 4096 LART(s) states 8 64 1024 4096 LART(s)
strcmp 163 12.8 14.7 17.1 27.2 0.85 12 0.55 0.67 1.15 1.79 0.65 744 63.4 110 129 141 0.77
strcpy 36 1.67 1.63 2.18 2.48 0.51 9 0.36 0.27 0.51 0.83 0.88 74 3.62 4.9 5.3 4.36 0.46
strcat 477 32.2 33.4 31.9 33.4 0.92 25 2.28 2.5 2.79 3.19 0.93 2406 208 218 220 205 0.95
strchr 24 0.28 0.35 0.53 1.14 0.88 6 0.03 0.08 0.13 0.26 0.56 45 0.54 0.54 0.92 1.89 0.83
strlen 26 0.45 0.46 0.69 1.31 0.86 6 0.09 0.11 0.17 0.33 0.86 53 1.01 1.21 1.94 2.33 0.82

Table 1: Benchmarks of abstract operations were evaluated on three types of M-Strings
(Word, Sequence, and Alternation) – see section 5 for description. The table depicts the
number of states in the state space of the verified program, verification time in seconds
for the different length of inputs and an average time of a transformation (LART).

M-String, when instantiated like this, is particularly suitable for representing strings
with runs of a single character of variable length, i.e. the strings of the form akblcm...
where relationships between k, l,m, ... can be specified using standard arithmetic and
relational operators and each of a,b,c is a specific letter. This in turn allows M-String to
be used for checking program behaviour on broad classes of input strings described this
way. A more detailed account of this approach can be found in Section 5.

4.3 Implementation

We have implemented the abstract semantics of operations in the M-String domain as a
C++ library, in a form that allows programs to be automatically lifted into this domain
by LART and later model-checked with DIVINE. An abstract domain definition in LART
consists of a C++ class that describes both the representation (in terms of data) and the
operations (in terms of code) of the abstract domain.

The abstract domain is equipped with a set of essential operations, which appear
in all programs that work with strings: these are lift, update and access. All other
operations which involve strings can be, in principle, derived automatically using the
same procedure that is applied to user programs. However, abstracting only access and
update causes either a loss of precision or a blowup in complexity. For this reason, we
also include hand-crafted implementations of the following abstract operations: strcmp,
strcpy, strcat, strchr, and strlen. These are all based on the abstract semantics
of the respective operations as described in Section 2 and in the Appendix A.4.

A more complete description of the implementation of LART and DIVINE, their
source code, and the Appendices A.1–A.4 which describe the technical details of the
MString domain can be found online.5

5 Experimental evaluation

For evaluation purposes, we have picked three scenarios. In first of those, we show that
the provided implementation of basic string functions is more efficient than lifting them

5 https://divine.fi.muni.cz/2019/mstring
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Word Sequence Alternation
length 4 8 16 4 8 16 4 8 16

strcmp 18.5s 90 597s 1228 2410s 11416 3.82s 14 12s 32 32.2s 68 70.7s 348 T – T –
strcpy 8.4s 45 99s 438 775s 4410 5.7s 14 17.5s 24 71.8s 44 11.6s 80 168s 928 3230s 19234
strcat 75.5s 303 T – T – 23.7s 35 117s 149 769s 737 249s 1085 T – T –
strchr 12.4s 39 166s 245 934s 1265 4.34s 8 16.5s 12 158s 20 13.4s 57 316s 815 T –
strlen 0.5s 27 7.9s 169 811s 1365 0.27s 8 0.6s 14 1.7s 20 1.8s 48 69s 357 3250s 5307

Table 2: The table depicts the verification results of functions from pdclib. For each
type of input M-String of a given length, we present duration of verification and the size
of the state space. T denotes a timeout of the verification.

automatically based on the access and update operations. In the second scenario, we anal-
yse various implementations of the same string functions by lifting them automatically
and checking that their outputs match the ones we expect based on the concrete semantics
of those operations – in this case, the inputs are provided in the form of specific abstract
(M-String) values. In the last scenario, we have picked a few real-world programs to
demonstrate that M-String can be successfully used in analysis of moderately complex C
code. To this end, we have chosen two context-free grammars and used them to generate
C parsers using the bison and flex tools, again providing abstract strings as inputs to
the generated parsers. All experiments were performed with an identical set of resource
constraints: 1 hour of CPU time, 80 GB of RAM and 4 CPU cores.6

Abstract operations: The first set of benchmarks covers resource usage measurements of
M-String operations. Results are presented in Table 1. We run each operation separately
on three different M-String inputs with a single parameter, length:

– Word is a string of the form aib jck, i+ j+ k ≤ length,
– Sequence has the form alength, and
– Alternation is aib jakbl , i+ j+ k+ l ≤ length.

We have measured how much time we spend in the abstract operations which are part
of the M-String domain and compare them to the same programs, but with the functions
abstracted automatically, using only the M-String definitions of access and update.

One of the results is that the size of the state space does not depend on the length
of the string when using the operations from M-String. This is because the number
of segments does not change and the operations perform the same amount of work.In
comparison, analysis of automatically lifted implementations of the same functions7

does not terminate in a 1-hour time limit for strings of length 64 and more. This is
caused by the fact that the concrete implementations need to iterate over each character
individually, while the M-String implementation directly works with segments.

C standard library: The second scenario deals with correctness of various concrete
implementations of the same set of standard library functions. Namely, we used 3 sources:
pdclib, musl-libc and µCLibc. The results are very similar, hence we only present
results for pdclib – data for the remaining 2 are part of the supplementary material.

6 The processor used to run the benchmarks was Intel Xeon E5-2630 clocked at 2.60GHz. To
make reproduction of the benchmarks easier, we provide instructions and scripts in the online
supplementary material.

7 The implementations were taken from pdclib, a public-domain libc implementation.
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Numeric Expression Grammar
length 10 20 25 35
Add. 40.2s 416 319s 3548 622s 13k T –
Ones 5.5s 62 8.1s 196 29.7s 402 189s 2186
Alter. 708s 105 582s 11k T – T –

BP Grammar
length 10 50 100 1000
Value 6.58s 38 44.4s 238 90.4s 488 1100s 4988
Loop 1.53s 23 3.28s 23 4.88s 23 33.3s 23

Wrong 7.34s 82 27.9 442 67.7s 892 311s 8992

Table 3: Evaluation on parsers of mathematical expressions (ME) and simple programs
(BP). Inputs for ME were of 3 forms: Addition is a string with two numbers with +
between them, Ones is a sequence of ones, and Alternation represent a number with
multiple digits. Inputs for BP were of the form: Value constructs a constant, while Loop
is a program with a single bounded loop and Wrong is a program with a syntax error.

In these benchmarks, we compare the results of the abstract implementation with
the result of the automatically abstracted (originally concrete) implementation of each
function and check that they give identical results.

Results show that analysis of strings with alternating characters is more expensive.
This is because a segment might disappear and two segments are merged into one: the
SMT queries arising from those events are hard to solve, because of the large number of
possible overlaps in the segment bounds.

The library implementations access and update the string one character at a time,
resulting in large SMT formulas – this causes the blowup in analysis time and hence
timeouts with longer strings.

Bison grammar: In the last scenario, we analyse two parsers generated by bison. First
is a parser for numerical expressions which consist of binary operators and numbers (see
Table 3). The second example is a parser for a simple programming language.

Like with the previous scenarios, inputs which contain long sequences of the same
character perform the best, especially when contrasted with a similar task performed on
an input with alternating digits.

6 Conclusion

We have presented a segmentation-based abstract domain for approximating C strings.
The main novelty of the domain lies in its focus on string buffers, which consist of
two parts: the string of interest itself, and a tail of allocated and possibly initialized but
unused memory. This paradigm allows for precise modeling of string functions from the
standard C library, including their often fragile handling of terminating zeroes and buffer
bounds. In principle, this allows the M-String domain to identify string manipulation
errors with security consequences, such as buffer overflows.

In addition to presenting the domain theoretically, we have implemented the abstract
semantics in executable form (as C++ code) and combined them with a tool that auto-
matically lifts string-manipulating code in existing C programs to the M-String domain.
Since M-String is a parametric domain – the domains for both segment content and
segment bounds can be freely chosen – we have instantiated M-String (for evaluation
purposes) with concrete characters and with symbolic (bitvector) bounds.
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