
From LTL to Unambiguous Büchi Automata via
Disambiguation of Alternating Automata

Simon Jantsch1, David Müller1, Christel Baier1, and Joachim Klein1

Technische Universität Dresden, Germany ?

Abstract. This paper proposes a new algorithm for the generation of
unambiguous Büchi automata (UBA) from LTL formulas. Unlike existing
tableau-based LTL-to-UBA translations, our algorithm deals with very
weak alternating automata (VWAA) as an intermediate representation.
It relies on a new notion of unambiguity for VWAA and a disambiguation
procedure for VWAA. We introduce optimizations on the VWAA level
and new LTL simplifications targeted at generating small UBA. We report
on an implementation of the construction in our tool Duggi and discuss
experimental results that compare the automata sizes and computation
times of Duggi with the tableau-based LTL-to-UBA translation of the
SPOT tool set. Our experiments also cover the analysis of Markov chains
under LTL specifications, which is an important application of UBA.

1 Introduction

Translations from linear temporal logic (LTL) to non-deterministic Büchi au-
tomata (NBA) have been studied intensively as they are a core ingredient in
the classical algorithmic approach to LTL model checking (see, e.g. [37,4,9]). In
the worst case, such translations produce automata that are exponentially larger
than the input formula. However, a lot of effort has been put into optimizing the
general case, which has turned LTL-to-NBA translations feasible in practice. Two
classes of algorithms have emerged as being especially well suited: tableau-based
decomposition of the LTL formula into an automaton (see, e.g. [18,11]), as repre-
sented by the SPOT family of tools [15], and translations via very weak alternating
automata (VWAA) [17], where LTL3BA [3] is the leading tool currently.

A property that has been studied in many areas of automata theory is unambi-
guity [10]. It allows non-deterministic branching but requires that each input word
has at most one accepting run. Prominent cases in which unambiguity can be
utilized include the universality check for automata (“Is every word accepted?”)
on finite words, which is PSPACE-complete for arbitrary non-deterministic finite
automata (NFA), but in P for unambiguous finite automata (UFA) [34]. Another

? The authors are supported by the DFG through the Collaborative Research Centers
CRC 912 (HAEC), the DFG grant 389792660 as part of TRR 248, the DFG-project
BA-1679/12-1, the Cluster of Excellence EXC 2050/1 (CeTI, project ID 390696704, as
part of Germany’s Excellence Strategy), and the Research Training Group QuantLA
(GRK 1763).

ar
X

iv
:1

90
7.

02
88

7v
1

 [
cs

.F
L

]
 5

 J
ul

 2
01

9

https://perspicuous-computing.science

2 Simon Jantsch et al.

example is model checking of Markov chains, which is in P if the specification is
given as an unambiguous Büchi automaton (UBA) [5], and PSPACE-hard for
arbitrary NBA [35]. Thus, using UBA leads to a single-exponential algorithm for
LTL model checking of Markov chains, whereas using deterministic automata
always involves a double-exponential lower bound in time complexity.

Every ω-regular language is expressible by UBA [1], but NBA may be exponen-
tially more succinct than UBA [23] and UBA may be exponentially more succinct
than any deterministic automaton [7]. Universality and language inclusion are in
P for subclasses of UBA [7,22], but the complexity is open for general UBA.

Although producing UBA was not the goal of the early translation from LTL
to NBA by Vardi and Wolper [37], their construction is asymptotically optimal
and produces separated automata, a subclass of UBA where the languages of
the states are pairwise disjoint. Separated automata can express all ω-regular
languages [8], but UBA may be exponentially more succinct [7]. LTL-to-NBA
translations have been studied intensively [17,18,16,13], but the generation of
UBA from LTL formulas has not received much attention so far. We are only
aware of three approaches targeted explicitly at generating UBA or subclasses.
The first approach by Couvreur et al. [12] adapts the algorithm of [37], but still
generates separated automata. LTL-to-UBA translations that attempt to exploit
the advantages of UBA over separated automata have been presented by Benedikt
et al. [6] and Duret-Lutz [14]. These adapt tableau-based LTL-to-NBA algorithms
([18] in the case of [6] and [11] in the case of [14]) and rely on transformations
of the form ϕ ∨ ψ ϕ ∨ (¬ϕ ∧ ψ) to enforce that splitting disjunctive formulas
generates states with disjoint languages, thus ensuring unambiguity.

To the best of our knowledge, the only available tool that supports the
translation of LTL formulas to UBA is ltl2tgba, which is part of the SPOT tool
set and implements the LTL-to-UBA algorithm of [14].

Proofs of all theorems and lemmas can be found in the appendix.

Contribution. We describe a novel LTL-to-UBA construction. It relies on an
intermediate representation of LTL formulas using VWAA and adapts the known
translation from VWAA to NBA by Gastin and Oddoux [17]. We introduce a
notion of unambiguity for VWAA, show that the subsequent translation steps
preserve it and that checking whether a VWAA is unambiguous is PSPACE-
complete (Section 3). To the best of our knowledge, unambiguity for alternating
automata has not been considered before.

We present a disambiguation procedure for VWAA that relies on intermedi-
ate unambiguity checks to identify ambiguous states and local disambiguation
transformations for the VWAA (Section 4). It has the property that an already
unambiguous VWAA is not changed. Figure 1 gives an overview of our LTL-
to-UBA algorithm. Apart from the main construction, we introduce novel LTL
rewrite rules and a heuristic, both of which are aimed at producing small UBA
and may also benefit existing tools (see Figure 2). The heuristic is targeted at
states with a certain structure, defined using the concepts of purely-universal
and alternating formulas (Section 5). Finally, we report on an implementation of
our construction in our tool Duggi and compare it to the existing LTL-to-UBA

From LTL to Unambiguous Büchi Automata 3

VWAA A t-GBA GA trim(GA ⊗ GA)

UBA U

∃ ambiguous
state s?

LTL ϕ
as in [17]

product
construction

“yes”
disambiguate s

“no”
degeneralize(GA)

Fig. 1: The LTL-to-UBA step. A sequence of unambiguity checks and disam-
biguation transformations are applied and ultimately a UBA is returned. We use
trim(GA ⊗ GA) to check whether unambiguity is achieved or more iterations are
necessary.

LTL
ϕ

LTL Simplification

SPOT Duggi

LTL-to-UBA

SPOT Duggi

Formula
Rewriting
+ tableau

Automata
Transformations

Post processing (SPOT)

WDBA minimization,
bisimulation

UBA
U

Fig. 2: Overview of the general LTL-to-UBA generation algorithm. The LTL
simplification step, the actual LTL-to-UBA translation step, and the automaton
post processing step can be combined freely. We propose novel rewriting rules
for LTL and a LTL-to-UBA translation, both implemented in our tool Duggi.

translator ltl2tgba. We also compare Duggi with ltl2tgba in the context of
Markov chain analysis under LTL specifications (Section 6).

2 Preliminaries

This section introduces our notation and standard definitions. The set of infinite
words over a finite alphabet Σ is denoted by Σω and we write w[i] to denote
the i-th position of an infinite word w ∈ Σω, and w[i..] to denote the suffix
w[i]w[i+1] We write B+(X) to denote the set of positive Boolean formulas
over a finite set of variables X. A minimal model of a formula f ∈ B+(X) is a
set M ⊆ X such that M |= f , but no M ′ ⊂M satisfies M ′ |= f . LTL is defined
using U (“Until”)and © (“Next”). Additionally we use syntactical derivations ♦
(“Finally”), � (“Globally”), and R (“Release”) (see [4,19] for details).

Alternating automata on infinite words. An alternating ω-automaton A
is a tuple (Q,Σ,∆, ι, Φ) where Q is a non-empty, finite set of states, Σ is a finite
alphabet, ∆ : Q×Σ → B+(Q) is the transition function, ι ∈ B+(Q) is the initial
condition and Φ is the acceptance condition. Additionally, we define the function

δ : Q×Σ → 22
Q

which assigns to a pair (q, a) ∈ Q×Σ the set of minimal models
of ∆(q, a) and the set I ⊆ 2Q as the set of minimal models of ι. We denote

4 Simon Jantsch et al.

by A(ι′) the automaton (Q,Σ, δ, ι′, Φ) and we write A(Q0) for A(
∧
q∈Q0

q), if
Q0 ⊆ Q. We call the number of the reachable states of an automaton A its size.

A run of A for w ∈ Σω is a directed acyclic graph (dag) (V,E) [27], where

1. V ⊆ Q× N, and E ⊆
⋃

0≤l(Q× {l})× (Q× {l+1}),
2. {q : (q, 0) ∈ V } ∈ I,
3. for all (q, l) ∈ V : {q′ : ((q, l), (q′, l+1)) ∈ E} ∈ δ(q, w[l]),
4. for all (q, l) ∈ V \ (Q× {0}) there is a q′ such that ((q′, l−1), (q, l)) ∈ E.

We define V (i) = {s : (s, i) ∈ V }, called the i-th layer of V . A run is called
accepting if every infinite path in it meets the acceptance condition.

A word is accepted by A if there exists an accepting run for it. We denote the
set of accepted words of A by L(A). We distinguish between Büchi, generalized
Büchi and co-Büchi acceptance conditions. A Büchi condition is denoted by
Inf(Qf) for a set Qf ⊆ Q. An infinite path π = q0 q1 . . . meets Inf(Qf) if
Qf ∩ inf(π) 6= ∅, where inf(π) denotes the set of infinitely occurring states in π. A
co-Büchi condition is denoted by Fin(Qf) and π meets Fin(Qf) if Qf∩inf(π) = ∅.
An infinite path π meets a generalized Büchi condition

∧
i∈F Inf(Qi) if it meets

Inf(Qi) for all i ∈ F . A transition-based acceptance condition uses sets of
transitions T ⊆ Q×Σ ×Q instead of sets of states to define acceptance of paths.

We call a subset C ⊆ Q a configuration and say that C is reachable if it is a
layer of some run. A configuration C is reachable from a state q, also written
as q −→∗C, if C is a reachable configuration of A(q). Analogously, C ′ ⊆ Q is
reachable from C ⊆ Q, or C −→∗C ′, if C ′ is a reachable configuration of A(C).
A configuration C is reachable via u if there is a run (V,E) for a word uw, with
u ∈ Σ∗, w ∈ Σω, such that C = V (|u|). We extend this notion to reachability
from states and configurations via finite words in the expected way and write
q

u−→∗C ′ and C
u−→∗C ′. We define L(C) = L(A(C)).

The underlying graph of A has vertices Q and edges {(q, q′) : ∃a ∈ Σ.∃S ∈
δ(q, a). q′ ∈ S}. We say that A is very weak if every strongly connected component
of its underlying graph consists of a single state and A has a co-Büchi acceptance.
If |C0| = 1 for every C0 ∈ I, and |Cδ| = 1 for every Cδ ∈ δ(q, a) with (q, a) ∈
Q × Σ, we call A non-deterministic. As a non-deterministic automaton has
only singleton successor sets, its runs are infinite sequences of states. Finally,
an automaton A is trimmed if L(q) 6= ∅ holds for every state q in A, and we
write trim(A) for the automaton that we get by removing all states with empty
language in A. For the non-alternating automata types that we consider, trim(A)
can be computed in linear time using standard graph algorithms.

From LTL to NBA. We use the standard translation from LTL to VWAA
where the states of the VWAA correspond to subformulas of ϕ and the transition
relation follows the Boolean structure of the state and the LTL expansion
laws [36,30]. It has been used as a first step in an LTL-to-NBA translation
in [17], whose construction we follow. We recall this construction in Appendix A.
Additionally, we use the optimizations proposed in [3]. We also maintain the
following invariant, as proposed in [17]: for all (q, a) ∈ Q×Σ and successor sets
S1, S2 ∈ δ(q, a), such that S1 6= S2, it holds that S1 6⊆ S2.

From LTL to Unambiguous Büchi Automata 5

A VWAA A can be transformed into a transition-based generalized Büchi
automaton (t-GBA) by a powerset-like construction, where the non-deterministic
choices of A are captured by non-deterministic choices of the t-GBA, and the
universal choices are captured by the powerset.

Definition 1. Let A = (Q,Σ,∆, ι,Fin(Qf)) be a VWAA. The t-GBA GA is the
tuple (2Q, Σ, δ′, I,

∧
f∈Qf Inf(Tf)), where

– δ′(C, a) =
⊗

q∈C δ(q, a), where T1 ⊗ T2 = {C1 ∪ C2 : C1 ∈ T1, C2 ∈ T2}
– Tf = {(C, a,C ′) : f 6∈ C ′ or there exists Y ∈ δ(f, a) and f 6∈ Y ⊆ C ′}

Theorem 2 (Theorem 2 of [17]). Let A be a VWAA and GA be as in Defini-
tion 1. Then, L(A) = L(GA).

The size of GA may be exponential in |Q| and the number of Büchi conditions
of GA is |Qf |. Often a Büchi automaton with a (non-generalized) Büchi acceptance
is desired. For this step we follow the construction of [17], which translates GA
into an NBA NGA of at most |Qf | · 2|Q| reachable states.

3 Unambiguous VWAA

In this section we introduce a notion of unambiguity for VWAA and show that
unambiguous VWAA are translated to UBA by the translation presented in Sec-
tion 2. We define unambiguity in terms of configurations of the VWAA, which are
strongly related to the states of the resulting NBA. Let A = (Q,Σ,∆, ι,Fin(Qf))
be a fixed VWAA for the rest of this section.

Definition 3. A is unambiguous if it has no distinct configurations C1, C2 that
are reachable via the same word u ∈ Σ∗ and such that L(C1) ∩ L(C2) 6= ∅.

The standard definition of unambiguity is that an automaton is unambiguous
if it has at most one accepting run for any word. In our setting runs are dag’s
and we do allow multiple accepting runs for a word, as long as they agree on
the configurations that they reach for each prefix. In this sense it is a weaker
notion. However, the notions coincide on non-deterministic automata as the edge
relation of the run is then induced by the sequence of visited states.

Theorem 4. Let NGA be the NBA for A, obtained by the translation from
Section 2. If A is unambiguous, then NGA is unambiguous.

We show that every step in the translation from VWAA to NBA preserves
unambiguity. First, we establish the following correspondance:

Lemma 5. If A is unambiguous, then for every accepting run r = Q0Q1 . . . of
GA for w ∈ Σω there exists an accepting run ρ = (V,E) of A for w such that
Qi = V (i) for all i ≥ 0.

6 Simon Jantsch et al.

Table 1: The adapted expansion laws for U and R are the result of applying the
disjunction rule to the classic expansion laws.

expansion law adapted expansion law

ϕU ψ Γ ≡ ψ ∨ (ϕ ∧©Γ) Γ ≡ ψ ∨ (ϕ ∧ ¬ψ ∧©Γ)
ϕRψ Γ ≡ ψ ∧ (ϕ ∨©Γ) Γ ≡ ψ ∧ (ϕ ∨ (¬ϕ ∧©Γ))

Intuitively, the lemma states that if A is unambiguous, then every accepting
run r of GA can be matched by an accepting run ρ of A such that the states of r
are the layers of ρ. The proof is not immediate and requires A to be unambiguous.

A direct consequence of Lemma 5 is that if A is unambiguous, then so is
GA. The degeneralization construction in [17] makes |Qf |+ 1 copies of GA. As
the next copy is uniquely determined by the current state and word label, it
preserves unambiguity. In combination with Lemma 7 we obtain Theorem 4.

We now show that deciding whether a VWAA is unambiguous is PSPACE-
complete. The idea for proving hardness is to reduce LTL satisfiability, which is
known to be PSPACE-hard, to VWAA emptiness (this follows directly by the
LTL → VWAA translation) and VWAA emptiness to VWAA unambiguity. The
second step uses the following trick: a VWAA A accepts the empty language if
and only if the disjoint union of A with itself is unambiguous.

To check wether VWAA is unambiguous we first show that for every accepting
run of A, we find a matching accepting run of GA, which follows directly from
the definition of GA:

Lemma 6. For every accepting run ρ = (V,E) of A for w ∈ Σω there exists an
accepting run r = Q0Q1 . . . of GA for w, such that Qi = V (i) for all i ≥ 0.

Lemma 5 and Lemma 6 give us the following:

Lemma 7. A is unambiguous if and only if GA is unambiguous.

However, checking whether GA is unambiguous can be done in space polyno-
mial in the size of A, and we conclude:

Theorem 8. Deciding whether a VWAA is unambiguous is PSPACE-complete.

4 Disambiguating VWAA

Our disambiguation procedure is inspired by the idea of “separating” the language
of successors for every non-deterministic branching. A disjunction ϕ ∨ ψ is
transformed into ϕ∨ (¬ϕ∧ψ) by this principle. The rules for U and R are derived
by applying the disjunction rule to the expansion law of the corresponding
operator (see Table 1). These rules are applied by ltl2tgba in its tableau-based
algorithm to guarantee that the resulting automaton is unambiguous, and have
also been proposed in [6].

From LTL to Unambiguous Büchi Automata 7

In our approach we define corresponding transformations for non-deterministic
branching in the VWAA. Furthermore, we propose to do this in an “on-demand”
manner: instead of applying these transformation rules to every non-deterministic
split, we identify ambiguous states during the translation and only apply the
transformations to them. This guarantees that we return the automaton produced
by the core translation, without disambiguation, in case it is already unambiguous.

The main steps of our disambiguation procedure are the following:

1. A preprocessing step that computes a complement state s̃ for every state s.
2. A procedure that identifies ambiguous states.
3. Local transformations that remove the ambiguity.

If no ambiguity is found in step 2, the VWAA is unambiguous. The high-
level overview is also depicted in Figure 1. In what follows we fix a VWAA
A = (Q,Σ,∆, ι,Fin(Qf)) and assume that it has a single initial state.

Complement states. The transformations we apply for disambiguation rely on
the following precondition: for every state s of A there should be another state s̃
such that L(s̃) = L(s). We compute these complement states in a preprocessing
step and add them to A. Complementing alternating automata can be done
without any blow up by dualizing both the acceptance condition and transition
structure, as shown by Muller and Schupp [31]. As dualizing the acceptance
condition and complementing the set of final states yields an equivalent VWAA,
we can keep the co-Büchi acceptance when complementing.

The complement automaton has the same underlying graph and is therefore
also very weak. Furthermore, no state s is reachable from its own complement
state s̃, which is an invariant that we maintain and which ensures that very
weakness is preserved in the construction.

Source configurations and source states. To characterize ambiguous situa-
tions we define source configurations and source states. A source configuration of
A is a reachable configuration C such that there exist two different configurations
C1, C2 that are reachable from C via some a ∈ Σ and L(C1) ∩ L(C2) 6= ∅. By
definition, A is not unambiguous if a source configuration exists.

Let C be a source configuration of A and let C1, C2 be the successor con-
figurations as described above. A source state of C is a state s ∈ C with two
transitions S1, S2 ∈ δ(s, a) such that Si ⊆ Ci, for i ∈ {1, 2}, S1 6= S2 and
(S1∪S2)\ (C1∩C2) 6= ∅. The last condition ensures that either S1 or S2 contains
a state that is not common to C1 and C2. By Definition 1, Ci =

⋃
q∈C Sq with

Sq ∈ δ(a, q) for all q ∈ C, and thus C must contain a source state.

Ambiguity check and finding source states. For the analysis of source
configurations and source states we use the standard product construction G1⊗G2,
which returns a t-GBA such that L(G1 ⊗ G2) = L(G1) ∩ L(G2) for two given
t-GBA G1 and G2. Specifically, we consider the self product GA ⊗ GA of GA. It
helps to identify ambiguity: GA is not unambiguous if and only if there exists a
reachable state (C1, C2) in trim(GA ⊗ GA) with C1 6= C2.

The pair of configurations (C1, C2) is a witness to ambiguity of A. We look for

a symbol a ∈ Σ and a configuration C such that (C,C)
a−→ (C ′1, C

′
2)→∗ (C1, C2)

8 Simon Jantsch et al.

s

s1 s2

a a 7→

s

s1 s2 s̃1

a
a

Fig. 3: Disambiguation scheme for a source state s with successors s1 and s2 in
the VWAA. Transitions with successor set of size ≥ 1 are conjoined by a •.

is a path in trim(GA ⊗ GA) and C ′1 6= C ′2. Such a configuration must exist as we
have assumed that A has a single initial state qi, which implies that trim(GA⊗GA)
has a single initial state ({qi}, {qi}). C is a source configuration and therefore
must contain a source state which we can find by inspecting all pairs of transitions
of states in C.

Disambiguating a source state. The general scheme for disambiguating
source states is depicted in Figure 3. Assume that we have identified a source
state s with successor sets S1 and S2 as explained above. The LTL-to-VWAA
construction guarantees S1 6⊆ S2 and S2 6⊆ S1. We need to distinguish the looping
successor sets (i.e. those Si that contain s) from the non-looping. Technically, we
consider two cases: either S1 or S2 do not contain s or both sets contain s. In the
first case we assume, w.l.o.g., that s /∈ S1. The successor set S2 is split into the
|S1| new successor sets {(S2 ∪ {s̃1}) : s1 ∈ S1}. The new sets of states are added
to δ(s, a) and the successor set S2 is removed. If both S1 and S2 contain s, we
proceed as in the first case but do not add the successor set S2 ∪ {s̃} to δ(s, a).

This transformation does not guarantee that s is not a source state anymore.
However, it removes the ambiguity that stems from the non-deterministic choice
of transitions S1, S2 ∈ δ(a, s). If s is still a source state it will be identified again
for another pair of transitions. After a finite number of iterations all successor
sets of s for any symbol in Σ will accept pairwise disjoint languages, in which
case s cannot be a source state anymore. The transformation preserves very
weakness as it only adds transitions from s to complement states of successors of
s and by assumption there is no path between a state and its complement state.

Iterative algorithm. Putting things together, our algorithm works as follows:
it searches for source configurations of A (using GA), applies the local disambigua-
tion transformations to A as described and recurses (see Figure 1). As rebuilding
the t-GBA may become costly, in our implementation we identify which part
of the t-GBA has to be recomputed due to the changes in A, and rebuild only
this part. If no source configuration is found, we know that both A and GA are
unambiguous and we can apply degeneralization to obtain a UBA.

Complexity of the procedure. The VWAA-to-t-GBA translation that we
adapt produces a t-GBA GA of size at most 2n for a VWAA A of size n. In
our disambiguation procedure we enlarge A by adding complement states for
every state in the original automaton, yielding a VWAA of size 2n. Thus, a first

From LTL to Unambiguous Büchi Automata 9

♦�a �a
a

a
true

(a) VWAA for ♦�a.

♦�a �a

♦¬a
¬a

a

¬a
a

a

a

(b) Standard disambigua-
tion.

♦�a

ϕ �a

true true

¬a

atrue

(c) Modified transformation.
Here ϕ = ♦(¬a ∧©�a).

Fig. 4: Three VWAA for ♦�a. The automaton in (b) is the result of standard
disambiguation and (c) is the result of the modified transformation applied to (a).
The automaton in (c) is non-deterministic and has two looping states, whereas
(b) is not non-deterministic and has three looping states.

size estimate of GA in our construction is 4n. However, no state in trim(GA) can
contain both s and s̃ for any state s of A. The reason is that the language of a
state in GA is the intersection of the languages of the VWAA-states it contains,
and L(s) ∩ L(s̃) = ∅. Thus, trim(GA) has at most 3n states.

The amount of ambiguous situations that we identify is bounded by the
number of non-deterministic splits in the VWAA, which may be exponential in
the length of the input LTL formula. In every iteration we check ambiguity of
the new VWAA, which can be done in exponential time. Thus, our procedure
computes a UBA in time exponential in the length of the formula.

5 Heuristics for purely-universal formulas

In this section we introduce alternative disambiguation transformations for special
source states representing formulas ϕUν, where ν is purely-universal. The class of
purely-universal formulas is a syntactically defined subclass of LTL-formulas with
suffix-closed languages. These transformations reduce the size of the resulting
UBA and often produce automata of a simpler structure. The idea is to decide
whether ν holds whenever moving to a state representing ϕUν and, if not, finding
the last position where it does not hold.

Example 9. Consider the formula ♦�a. A VWAA for it is shown in Figure 4a.
It is ambiguous, as a word satisfying �a may loop in the initial state for an
arbitrary amount of steps before moving to the next state.

In the standard disambiguation transformation the state ♦¬a is added to the
self loop of the initial state (Figure 4b). The automaton in Figure 4c, on the
other hand, makes the following case distinction: either a word satisfies �a, in
which case we move to that state directly, or there is a suffix that satisfies ¬a
and ©�a. The state ϕ is used to find the last occurrence of ¬a, which is unique.

To generalize this idea and identify the situations where it is applicable we
use the syntactically defined subclasses of purely-universal (ν), purely-eventual

10 Simon Jantsch et al.

(µ) and alternating (ξ) formulas ([16,3]). In the following definition ϕ ranges over
arbitrary LTL formulas:

ν ::= �ϕ | ν ∨ ν | ν ∧ ν | ©ν | νUν | ϕRν | ♦ν
µ ::= ♦ϕ | µ ∨ µ | µ ∧ µ | ©µ | ϕUµ | µRµ | �µ
ξ ::= �µ | ♦ν | ξ ∨ ξ | ξ ∧ ξ | ©ξ | ϕUξ | ϕRξ | ♦ξ | �ξ

Formulas that fall into these classes define suffix closed (ν), prefix closed (µ) and
prefix invariant (ξ) languages respectively:

Lemma 10 ([16,3]). For all u ∈ Σ∗ and w ∈ Σω:

– If ν is purely-universal, then uw |= ν =⇒ w |= ν.
– If µ is purely-eventual, then w |= µ =⇒ uw |= µ.
– If ξ is alternating, then w |= ξ ⇐⇒ uw |= ξ.

Let ν be purely-universal. We want to find a formula g(ν), called the goal of
ν, that is simpler than ν and satisfies g(ν) ∧©ν ≡ ν. If ν does not hold initially
for some word w we can identify the last suffix w[i..] where it does not hold,
given that such an i exists, by checking if w[i..] satisfies ¬g(ν) ∧©ν.

It is not clear how to define g(ν) for purely-universal formulas of the form
ν1 ∨ ν2 or ν1Uν2. We therefore introduce the concept of disjunction-free purely-
universal formulas in which all occurrences of ∨ and U appear in the scope of
some �. As ϕRν ≡ ν if ν is purely-universal, we assume that all occurences of
R are also in the scope of some � for purely-universal formulas.

Lemma 11. Every purely-universal formula ν can be rewritten into a formula
ν1 ∨ . . . ∨ νn, where νi is disjunction-free for all 1 ≤ i ≤ n.

Disjunction-free purely-universal formulas have a natural notion of “goal”.

Definition 12. Let ν be a disjunction-free and purely-universal formula. We
define g(ν) inductively as follows:

g(�ϕ) = ϕ g(©ν) =©g(ν)
g(ν1 ∧ ν2) = g(ν1) ∧ g(ν2) g(♦ν) = true

The reason for defining g(♦ν) as true is that ♦ν is an alternating formula and
checking its validity can thus be temporarily suspended. Indeed, the definition
satisfies the equivalence that we aimed for:

Lemma 13. Let ν be a disjunction-free and purely-universal formula. Then
g(ν) ∧©ν ≡ ν.

In Example 9 ¬g(ν)∧©ν corresponds to ¬a∧©�a, which is realized by the
transition from state ϕ to state �a in Figure 4c.

Lemma 14 shows the general transformation scheme (applied left to right). It
introduces non-determinism, but we show that it is not a cause of ambiguity as
the languages of the two disjuncts are disjoint. An important difference to the
known rule for U is that the left-hand side of the U -formula stays unchanged. This
is favorable as it is the left-hand side that may introduce loops in the automaton.

From LTL to Unambiguous Büchi Automata 11

Lemma 14. Let ν be a disjunction-free and purely-universal formula. Then

1. ϕU(ν ∨ ψ) ≡ ν ∨ γ and 2. L(ν) ∩ L(γ) = ∅

where γ = ϕU ((ϕ ∧ ¬g(ν) ∧©ν) ∨ (ψ ∧ ¬ν)).

LTL formulas may become larger when applying this transformation. However,
they are comparable to the LTL formulas produced by the standard disambigua-
tion transformations in terms of the number of subformulas. If all occurrences of
© in ν are in the scope of some �, then no subformulas are added. Otherwise,
g(ν) and ©ν may introduce new ©-subformulas.

6 Implementation and Experiments

The tool Duggi is an LTL-to-UBA translator based on the construction introduced
in the foregoing sections.1 It reads LTL formulas in a prefix syntax and produces
(unambiguous) automata in the HOA format [2]. In the implementation we
deviate from or extend the procedure described above in the following ways:

– We make use of the knowledge given by the VWAA-complement states in the
translation steps to t-GBA GA and the product GA ⊗ GA. It allows an easy
emptiness check: if s and s̃ are present in some GA or GA ⊗ GA state, then it
accepts the empty language and does not have to be further expanded.

– We have included the following optimization of the LTL-to-VWAA procedure:
when translating a formula �µ, where µ is purely-eventual, we instead
translate �© µ. This results in an equivalent state with fewer transitions. It
is close to the idea of suspension as introduced in [3], but is not covered by it.

– Additionally, Duggi features an LTL rewriting procedure that uses many of
the LTL simplification rules in the literature [33,16,3,29]. We have included
the following rules that are not used by SPOT:

I (�♦ϕ) ∧ (♦�ψ) 7→ �♦(ϕ ∧�ψ) II (♦�ϕ) ∨ (�♦ψ) 7→ ♦�(ϕ ∨ ♦ψ)

These rewrite rules are more likely to produce formulas of the form ♦�ϕ, to
which the heuristic of Section 5 can be applied. They stem from [29], where
the reversed rules have been used to achieve a normal form.

LTL benchmarks from the literature. We now compare the UBA sizes for
LTL formulas of the benchmark set ltlstore [24]. It collects formulas from
various case studies and tool evaluation papers in different contexts. We include
the negations of all formulas and filter out duplicates, leaving 1419 formulas.

Languages that are recognizable by weak deterministic Büchi automata
(WDBA) can be efficiently minimized [26] and ltl2tgba applies this algorithm
as follows: it computes the minimal deterministic Büchi automaton and the UBA

1 Duggi and the PRISM implementation, together with all experimental data, are
available at https://wwwtcs.inf.tu-dresden.de/ALGI/TR/FM19-UBA/.

https://wwwtcs.inf.tu-dresden.de/ALGI/TR/FM19-UBA/

12 Simon Jantsch et al.

0

100

200

0 50 100
Duggi

lt
l2

tg
ba

(a) Entire set

0

10

20

30

40

50

0 10 20 30 40 50
Duggi

lt
l2

tg
ba

(b) Instances where both tools produced
automata with at most 50 states

Fig. 5: Non-WDBA-recognizable fragment of ltlstore (948 formulas). Every
point stands for a formula where the according automaton size for Duggi is the
abcissa, the automaton size of ltl2tgba the ordinate. Points above the line
stand for formulas where Duggi performed better.

and returns the one with fewer states. Our formula set contains 472 formulas that
are WDBA-recognizable and for which we could compute the minimal WDBA
within the bounds of 30 minutes and 10 GB of memory using ltl2tgba. Of
these 472 formulas we found 11 for which the UBA generated by either Duggi

or ltl2tgba was smaller than the minimal WDBA, and only two where the
difference was bigger than 3 states. On the other hand, the minimal WDBA were
smaller than the UBA produced by ltl2tgba (Duggi) for 164 (203) formulas.
This supports the approach by ltl2tgba to apply WDBA minimization when
possible and in what follows we focus on the fragment of the ltlstore that does
not fall into this class. In [14] it was noted that WDBA minimization often leads
to smaller automata than the LTL-to-NBA translation of ltl2tgba.

We consider the following configurations: Duggi is the standard configuration,
Duggi\(R,H) is Duggi without the new rewrite rules I and II (R) and/or without
the heuristic introduced in Section 5 (H). For SPOT, ltl2tgba is the standard
configuration that produces UBA without WDBA-minimization, which is switched
on in ltl2tgbaWDBA. We use simulation-based postprocessing as provided by
SPOT in all Duggi-configurations (they are enabled by default in ltl2tgba). We
use SPOT with version 2.7.2. All computations, including the PMC experiments,
were performed on a computer with two Intel E5-2680 8 cores at 2.70 GHz running
Linux, with a time bound of 30 minutes and a memory bound of 10 GB.

Scatter plots comparing the number of states of UBA produced by ltl2tgba

and Duggi are shown in Figure 5. Table 2 gives cumulative results of different
configurations on these formulas. All configurations of Duggi use more time
than ltl2tgba, but produce smaller automata on average. One reason why
Duggi uses more time is the on-demand nature of algorithm, which rebuilds the
intermediate t-GBA several times while disambiguating. The average number of
disambiguation iterations per formula of Duggi on the entire ltlstore was 9.5.

From LTL to Unambiguous Büchi Automata 13

Table 2: Cumulative results on the ltlstore benchmark set.

non-WDBA-recognizable WDBA-recognizable
states ∅ states time in s timeouts states ∅ states time in s timeouts

Duggi 16,169 20.702 38,932 167 6,866 16.308 5,958 51
Duggi\R 15,450 20.196 37,803 183 6,857 16.287 5,978 51

Duggi\RH 14,415 19.323 39,772 202 6,882 16.346 5,758 51
ltl2tgba 19,547 24.618 6,089 154 9,250 20.240 3,965 15

ltl2tgbaWDBA 19,411 24.539 7,309 157 7,632 16.700 3,814 15

0 1 2 3 4 5 6

0

200

400

600

800

Duggi

Duggi\R
Duggi\RH

ltl2tgba

(a) Φn =
∧

i≤n(♦�p2i ∨�♦p2i+1)

0 1 2 3 4 5

0

100

200

300

Duggi

Duggi\R
Duggi\RH

ltl2tgba

(b) θn = (
∧

i≤n�♦pi)→ �(req → ♦res)

Fig. 6: UBA sizes for two sets of parametrized formulas.

LTL rewrites and the purely-universal heuristic. A formula that benefits
from using the rewrite rules I and II is Φn =

∧
i≤n ♦�p2i ∨ �♦p2i+1, which

describes a strong fairness condition. Here ltl2tgba applies the rule ♦ϕ ∨
�♦ψ 7→ ♦(ϕ ∨ �♦ψ) which yields

∧
i≤n ♦(�p2i ∨ �♦p2i+1). Applying rule II

yields the formula Ψn = ♦�(
∧
i≤n p2i ∨ ♦p2i+1). Figure 6a shows that Duggi

produces smaller automata for Φn. Figure 6b shows the corresponding results
for the parametrized formula θn = (

∧
i≤n�♦pi) → �(req → ♦res) which is a

request/response pattern under fairness conditions.
A property that profits from the “on-demand” disambiguation is: “b occurs k

steps before a”. We express it with the formula ϕsteps
k = ¬a U

(
b ∧ ¬a ∧©¬a ∧

. . . ∧ ©k−1¬a ∧ ©ka
)
. Both Duggi and ltl2tgba produce the minimal UBA,

but ltl2tgba produces an exponential-sized automaton in an intermediate step,
because it does not realize that the original structure is already unambiguous.
This leads to high run times for large k (see Figure 7a).

Use case: probabilistic model checking. Now we look at an important
application of UBA, the analysis of Markov chains. We compare run times of an
implementation of [5] for Markov chain model checking with UBA, using PRISM

(version 4.4) and either Duggi or ltl2tgba as automata generation backends. We
take two models of the PRISM benchmark suite [25], the bounded retransmission
protocol, and the cluster working protocol [21].

14 Simon Jantsch et al.

0 5 10 15 20

10−2

10−1

100

101

102

103
Duggi

ltl2tgba

(a) Time in seconds needed for the transla-
tion of ϕsteps

k into a UBA.

0 5 10 15 20

100

101

102

103
Duggi

ltl2tgba

(b) Time in seconds needed for model check-
ing the BRP model with ϕsteps

k .

Fig. 7: Time consumption for translating and model checking ϕsteps
k (which

includes building the automaton).

2 3

100

101

102 Duggi
ltl2tgba

(a) Time consumption for ϕk.

2 3 4 5 6

101

102

103
Duggi

ltl2tgba

(b) Time consumption for ψk.

Fig. 8: Model checking times for the cluster protocol with ϕk and ψk.

The bounded retransmission protocol (BRP) is a message transmission pro-
tocol, where a sender sends a message and receives an acknowledgment if the
transmission was successful. We set the parameter N (the number of the message
parts) to 16, and MAX (the number of maximal retries) to 128. We reuse ϕsteps

k ,
which now means: “k steps before an acknowledgment there was a retransmit”,
where we replace a by ack received and b by retransmit. As expected, the
faster automaton generation leads to lower model checking times when using
Duggi (Figure 7b). The reason for the spikes in Figure 7b is that the probability of
the property is zero in the BRP model for odd k. This makes the model checking
(which uses the numeric procedure of [5]) easier. For bigger k the automaton
generation uses a bigger share of the time, making this effect less pronounced.

As second model we analyse the cluster working model with the LTL properties
presented in [20]. It consists of a workstation cluster with two sub-clusters that
are connected by a backbone and have n = 16 participants each. Let fcti
denote the number of functional working stations in sub-cluster i. We define
ϕ�♦ = �♦(fct1 = n), which expresses that the first cluster stays functional

From LTL to Unambiguous Büchi Automata 15

on the long run and ϕ♦� =
∨
i∈{0,...,k} ♦�(fct2 = n − i), which expresses

the property that from some point, the second cluster contains at least n − k
functional working stations. We check the two formula patterns ϕk = ϕ�♦ ∧ϕ♦�

and ψk = ϕ�♦ ∨ ϕ♦�. We leave out a third property described in [20], which is
WDBA-recognizable (see Appendix F for further details).

The results for ϕk are depicted in Figure 8a. Both tools have a time-out at
k = 4, although, for smaller k, the time consumption of Duggi was bigger than
ltl2tgba. Comparing the automata size, Duggi produces smaller automata for
both k = 2 and k = 3, e.g., 32 (Duggi) vs. 137 (ltl2tgba) states for k = 3. The
results for ψk can be seen in Figure 8b. Duggi performed better than ltl2tgba,
as Duggi reached the time-out at k = 6 (vs. k = 4 for ltl2tgba). However, if
no time-out was reached, ltl2tgba consumed less time. Nevertheless, for k 6 3,
model checking time of both tools was below 7 s. Still, Duggi produced smaller
automata, e.g., 25 (Duggi) vs. 59 (ltl2tgba) states for k = 3.

7 Conclusion

In this paper we have presented a novel LTL-to-UBA translation. In contrast
to other LTL-to-UBA translations [12,6,14] we use alternating automata as an
intermediate representation. To adapt the VWAA-to-NBA construction of [17]
for the unambiguity setting, we introduced a notion of unambiguity for VWAA
and a corresponding disambiguation procedure. This may be of independent
interest when considering unambiguity for different types of alternating automata.
We devise heuristics that exploit structural properties of purely-universal and
alternating formulas for disambiguation. Furthermore, we identify LTL rewriting
rules that benefit the construction of UBA.

Experimental analysis on a big LTL benchmark set shows that our tool Duggi
produces smaller automata on average than the existing tools. In particular,
formulas containing nested ♦ and � benefit from our heuristics and rewrite
rules. Such formulas occur often, for example when modelling fairness properties.
Experiments on Markov chain model checking indicate that the positive properties
of our approach carry over to this domain.

Our approach opens up many possibilities for optimization, for example by
processing multiple source states at once, or in a certain order. This would
let us decrease the number of disambiguation steps, and thus the run time. It
would be interesting to investigate intermediate strategies in our framework that
allow for a trade-off between automata sizes and computation times. Another
promising direction is to identify more patterns on LTL or VWAA that allow
special disambiguation transformations. As many interesting properties stem
from the safety-/cosafety-class, a combination of our approach with the ideas of
the UFA generation described in [28] seems to be beneficial. The application of
simulation-based automata reductions to UBA is also an open question. Whereas
bisimulation preserves unambiguity, it is unclear whether there exist simulation
relations targeted specifically at shrinking unambiguous automata.

16 Simon Jantsch et al.

References

1. Arnold, A.: Deterministic and non ambiguous rational ω-languages. In: Automata
on Infinite Words, Ecole de Printemps d’Informatique Théorique, Le Mont Dore,
May 1984. Lecture Notes in Computer Science, vol. 192, pp. 18–27. Springer (1985)

2. Babiak, T., Blahoudek, F., Duret-Lutz, A., Klein, J., Křet́ınský, J., Müller, D.,
Parker, D., Strejček, J.: The Hanoi omega-automata format. In: Proceedings of
the 27th International Conference on Computer Aided Verification (CAV). Lecture
Notes in Computer Science, vol. 9206, pp. 479–486. Springer (2015)

3. Babiak, T., Křet́ınský, M., Řehák, V., Strejc̆ek, J.: LTL to Büchi automata trans-
lation: Fast and more deterministic. In: Proceedings of the 18th International
Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS). Lecture Notes in Computer Science, vol. 7214, pp. 95–109. Springer
(2012)

4. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press (2008)
5. Baier, C., Kiefer, S., Klein, J., Klüppelholz, S., Müller, D., Worrell, J.: Markov

chains and unambiguous Büchi automata. In: Proceedings of the 28th International
Conference on Computer Aided Verification (CAV) - Part I. Lecture Notes in
Computer Science, vol. 9779, pp. 23–42. Springer (2016)

6. Benedikt, M., Lenhardt, R., Worrell, J.: LTL model checking of interval Markov
chains. In: Proceedings of the 19th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS). Lecture Notes in Computer
Science, vol. 7795, pp. 32–46. Springer (2013)

7. Bousquet, N., Löding, C.: Equivalence and inclusion problem for strongly un-
ambiguous Büchi automata. In: Proceedings of the 4th International Conference
on Language and Automata Theory and Applications (LATA). Lecture Notes in
Computer Science, vol. 6031, pp. 118–129. Springer (2010)

8. Carton, O., Michel, M.: Unambiguous Büchi automata. Theor. Comput. Sci. 297(1-
3), 37–81 (2003)

9. Clarke, E.M., Grumberg, O., Peled, D.A.: Model checking. MIT Press (2001)
10. Colcombet, T.: Unambiguity in automata theory. In: Proceedings of the 17th

International Workshop on Descriptional Complexity of Formal Systems (DCFS).
Lecture Notes in Computer Science, vol. 9118, pp. 3–18. Springer (2015)

11. Couvreur, J.: On-the-fly verification of linear temporal logic. In: Proceedings of the
World Congress on Formal Methods in the Development of Computing Systems
(FM). Lecture Notes in Computer Science, vol. 1708, pp. 253–271. Springer (1999)

12. Couvreur, J., Saheb, N., Sutre, G.: An optimal automata approach to LTL model
checking of probabilistic systems. In: Proceedings of the 10th International Con-
ference on Logic for Programming Artificial Intelligence and Reasoning (LPAR).
Lecture Notes in Computer Science, vol. 2850, pp. 361–375. Springer (2003)

13. Duret-Lutz, A.: Manipulating LTL formulas using Spot 1.0. In: Proceedings of
the 11th International Symposium on Automated Technology for Verification and
Analysis (ATVA). Lecture Notes in Computer Science, vol. 8172, pp. 442–445.
Springer (2013)

14. Duret-Lutz, A.: Contributions to LTL and ω-Automata for Model Checking. Habil-
itation thesis, Université Pierre et Marie Curie (Paris 6) (Feb 2017)

15. Duret-Lutz, A., Lewkowicz, A., Fauchille, A., Michaud, T., Renault, E., Xu, L.:
Spot 2.0 — a framework for LTL and ω-automata manipulation. In: Proceedings
of the 14th International Symposium on Automated Technology for Verification
and Analysis (ATVA). Lecture Notes in Computer Science, vol. 9938, pp. 122–129.
Springer (Oct 2016)

From LTL to Unambiguous Büchi Automata 17

16. Etessami, K., Holzmann, G.: Optimizing Büchi automata. In: Proceedings of the
11th International Conference on Concurrency Theory (CONCUR). Lecture Notes
in Computer Science, vol. 1877, pp. 153–167. Springer (2000)

17. Gastin, P., Oddoux, D.: Fast LTL to Büchi automata translation. In: Proceedings of
the 13th International Conference on Computer Aided Verification (CAV). Lecture
Notes in Computer Science, vol. 2102, pp. 53–65. Springer (2001)

18. Gerth, R., Peled, D., Vardi, M.Y., Wolper, P.: Simple on-the-fly automatic verifica-
tion of linear temporal logic. In: Proceedings of the 15th IFIP WG6.1 International
Symposium on Protocol Specification (PSTV). IFIP Conference Proceedings, vol. 38,
pp. 3–18. Chapman & Hall (1995)

19. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games: A
Guide to Current Research, Lecture Notes in Computer Science, vol. 2500. Springer
(2002)

20. Hahn, E.M., Li, G., Schewe, S., Turrini, A., Zhang, L.: Lazy Probabilistic Model
Checking without Determinisation. In: 26th International Conference on Concur-
rency Theory (CONCUR 2015). Leibniz International Proceedings in Informatics
(LIPIcs), vol. 42, pp. 354–367. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
Dagstuhl, Germany (2015)

21. Haverkort, B.R., Hermanns, H., Katoen, J.P.: On the use of model checking tech-
niques for dependability evaluation. In: 19th IEEE Symposium on Reliable Dis-
tributed Systems (SRDS). pp. 228–237. IEEE Computer Society (2000)

22. Isaak, D., Löding, C.: Efficient inclusion testing for simple classes of unambiguous
ω-automata. Information Processing Letters 112(14-15), 578–582 (2012)

23. Karmarkar, H., Joglekar, M., Chakraborty, S.: Improved upper and lower bounds
for Büchi disambiguation. In: Proceedings of the 11th International Symposium on
Automated Technology for Verification and Analysis (ATVA). pp. 40–54 (2013)

24. Kret́ınský, J., Meggendorfer, T., Sickert, S.: LTL store: Repository of LTL formulae
from literature and case studies. CoRR abs/1807.03296 (2018), http://arxiv.
org/abs/1807.03296

25. Kwiatkowska, M.Z., Norman, G., Parker, D.: The PRISM benchmark suite. In:
Proceedings of the 9th International Conference on Quantitative Evaluation of
SysTems (QEST). pp. 203–204. IEEE Computer Society (2012)

26. Löding, C.: Efficient minimization of deterministic weak ω-automata. Information
Processing Letters 79(3), 105–109 (2001)

27. Löding, C., Thomas, W.: Alternating automata and logics over infinite words. In:
Theoretical Computer Science: Exploring New Frontiers of Theoretical Informatics
IFIP TCS. pp. 521–535 (2000)

28. Mohri, M.: On the disambiguation of finite automata and functional transducers.
International Journal of Foundations of Computer Science 24(6), 847–862 (2013)

29. Müller, D., Sickert, S.: LTL to deterministic Emerson-Lei automata. In: Proceedings
of the 8th International Symposium on Games, Automata, Logics and Formal
Verification (GandALF). Electronic Proceedings in Theoretical Computer Science,
vol. 256, pp. 180–194. Open Publishing Association (2017)

30. Muller, D.E., Saoudi, A., Schupp, P.E.: Weak alternating automata give a simple
explanation of why most temporal and dynamic logics are decidable in exponential
time. In: Proceedings of the Third Annual Symposium on Logic in Computer
Science (LICS). pp. 422–427 (1988)

31. Muller, D.E., Schupp, P.E.: Alternating automata on infinite trees. Theoretical
Computer Science 54, 267–276 (1987)

32. Sistla, A.P., Clarke, E.M.: The complexity of propositional linear temporal logics.
Journal of the ACM 32(3), 733–749 (1985)

http://arxiv.org/abs/1807.03296
http://arxiv.org/abs/1807.03296

18 Simon Jantsch et al.

33. Somenzi, F., Bloem, R.: Efficient Büchi automata from LTL formulae. In: Proceed-
ings of the 12th International Conference on Computer Aided Verification (CAV).
Lecture Notes in Computer Science, vol. 1855, pp. 248–263. Springer (2000)

34. Stearns, R.E., Hunt, H.B.: On the equivalence and containment problem for unam-
biguous regular expressions, grammars, and automata. SIAM Journal on Computing
pp. 598–611 (1985)

35. Vardi, M.Y.: Automatic verification of probabilistic concurrent finite-state programs.
In: Proceedings of the 26th IEEE Symposium on Foundations of Computer Science
(FOCS). pp. 327–338. IEEE Computer Society (1985)

36. Vardi, M.Y.: Nontraditional applications of automata theory. In: Proceedings of the
International Conference on Theoretical Aspects of Computer Software (TACS).
pp. 575–597 (1994)

37. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program
verification (preliminary report). In: Proceedings of the 1st Symposium on Logic in
Computer Science (LICS). pp. 332–344. IEEE Computer Society Press (1986)

From LTL to Unambiguous Büchi Automata 19

A From LTL to VWAA

We follow the translation given in [17] but use all subformulas as states, as
proposed in [3]. The main idea for the construction is to take advantage of the
expansion laws for U and R:

ϕUψ = ψ ∨
(
ϕ ∧©(ϕUψ)

)
ϕRψ = ψ ∧

(
ϕ ∨©(ϕRψ)

)
For a better presentation, we give here the transition function in an unusual way,

namely as a function: δ : Q→ 22
Σ×2Q . It is easy to transform a function δ given

in the above form into the representation ∆ : Q×Σ → B+:

∆(q, a) =
∨

(α,C)∈δ(q)
a∈α

∧
s∈C

s

The construction takes an LTL formula in which all negations appear in front
of atomic propositions (positive normal form) as input. If all dual operators are
included in the syntax (R is the dual of U), LTL formulas can be transformed
into an equivalent formula in positive normal form of the same length.

Definition 15. Let ϕ be an LTL formula in positive normal form over AP.
We define the co-Büchi ω-automaton Aϕ as a tuple (Q,Σ, δ, ϕ,Fin(Qf)) where
Σ = 2AP , Q is the set of subformulas of ϕ, Qf = {ψ1Uψ2 : ψ1Uψ2 ∈ Q} and δ
is defined as follows:

δ(true) = {(Σ,∅)} δ(false) = ∅
δ(a) = {(Σa,∅)} δ(¬a) = {(Σ¬a,∅)}
δ(ϕ ∧ ψ) = δ(ϕ)⊗ δ(ψ) δ(ϕ ∨ ψ) = δ(ϕ) ∪ δ(ψ)
δ(©ϕ) = {(Σ, {ϕ})}

δ(ϕU ψ) = δ(ψ) ∪ (δ(ϕ)⊗ {(Σ, {ϕU ψ})})
δ(ϕRψ) = δ(ψ)⊗ (δ(ϕ) ∪ {(Σ, {ϕRψ})})

where

M1 ⊗M2 = {(u ∩ v,Q1 ∪Q2) : (u,Q1) ∈M1, (v,Q2) ∈M2}
Σa = {m ∈ Σ : a ∈ m}
Σ¬a = Σ \Σa

The translation has been refined in [3] to produce smaller automata with less
non-determinism. In our implementation, we use these optimizations, but these
optimizations do not alter or simplify our disambiguation algorithm.

Lemma 16 ([17,3]). Let ϕ and Aϕ be as above. Then, L(ϕ) = L(Aϕ).

20 Simon Jantsch et al.

B Degeneralization

As some applications demand an automaton with a (non-generalized) Büchi accep-
tance on states, a degeneralization procedure, which also converts transition-based
acceptance to state-based acceptance, is necessary. We use the degeneralization
construction as presented in [17].

Definition 17 (Degeneralization). Let G = (Q,Σ, δ,Q0, Inf(F1)∧. . .∧Inf(Fn))
be a t-GBA. Then we define NG to be (Q× {0, . . . , n}, Σ, δN , Q0 × {0}, Q× {n})
where

δN (〈q, i〉, a) = {〈q′, i′〉 : q′ ∈ δ(q, a) and i′ = next(i, q
a−→ q′)} and

next(i, q
a−→ q′) =

{
max({i 6 j 6 n : ∀k ∈ {i+ 1, . . . , j}.q a−→ q′ ∈ Fk}}) if i 6= n

max({0 6 j 6 n : ∀k ∈ {0, . . . , j}.q a−→ q′ ∈ Fk}}) if i = n

This construction creates copies of G for every Büchi acceptance set Inf(Fi)
and switches from copy i to copy i′ if and only if the current transition satisfies
all acceptance sets Inf(Fj) with i < j 6 i′. Therefore:

Lemma 18 (Theorem 3 of [17]). Let G and NG be as above. Then L(G) =
L(NG).

Obviously, the number of states in BG is |Q| · n.

C Proof for Section 3

The correctness proof of the original construction from VWAA to t-GBA in [17]
features a similar proof, but here we want to show that we can find corresponding
runs such that the layers of the VWAA are equal to the states of the t-GBA. To
show this, we need the precondition that the VWAA is unambiguous.

The first part shows that every accepting run of GA is matched by an accepting
run of A. It is complicated by the way that accepting transitions are defined in GA:
they require that a final state qf must have the option to choose a non-looping
transition infinitely often (see Definition 1). Thus, there might exist runs of GA
that represent runs of A where qf has this option infinitely often, but never takes
the “good” transition. However, this situation cannot occur if A is unambiguous
as it would imply multiple accepting runs for the same word that differ on some
layer.

In the following proofs we denote the successors of a node q ∈ V in a graph
(V,E) by E(q). As before, we use δ(q, a) to denote the set of minimal models of
∆(q, a), and I to denote the set of minimal models of ι.

Lemma 5. If A is unambiguous, then for every accepting run r = Q0Q1 . . . of
GA for w ∈ Σω there exists an accepting run ρ = (V,E) of A for w such that
Qi = V (i) for all i ≥ 0.

From LTL to Unambiguous Büchi Automata 21

Proof. We show this lemma by induction over the number of elements in F .

Base case: F = ∅. We define V = {(q, i) : q ∈ Qi}. Q0 ∈ I must hold as
r is a run of GA and thus the initial condition is satisfied. For every transition

Qi
w[i]−−→ Qi+1 we know that Qi+1 ∈

⊗
q∈Qi δ(q, w[i]) and we define the edges

between V (i) and V (i+ 1) to match the corresponding successor sets. The result
is a run of A for w and it is accepting as F = ∅.

Now consider F = F ′ ∪ {qf}. Let A = (Q,Σ,∆, ι,Fin(F)) and A′ =
(Q,Σ,∆, ι,Fin(F ′)) be A where qf is not marked final. Let w and r = Q0Q1 . . .
be an accepting run of GA for w. By Definition 1 the only difference between
GA′ and GA is that GA has the additional acceptance set Tqf , which adds an
obligation for runs to be accepting. This implies that any accepting run of GA is
also an accepting run of GA′ . So r is an accepting run of GA′ and we make use of
the induction hypothesis to get an accepting run ρ = (V,E) of A′ such that for
all i: Qi = V (i). If we can show that ρ is also an accepting run of A for w we are
done.

So suppose that it is not accepting. Then there exists a rejecting path π
through ρ that ultimately stabilizes on a state f ∈ F . But f can only be qf ,
as any other rejecting path would contradict the fact that ρ is an accepting
run of A′. Hence there is some k such that for all j > k: qf ∈ V (j) and
((qf , j), (qf , j + 1)) ∈ E.

As qf ∈ F we know that there are infinitely many i such that (Qi, w[i], Qi+1) ∈
Tqf . GA has only a finite amount of states, and Σ is also finite, so there must
exist a triple (S, a, S′) such that for infinitely many i > k: Qi = S, Qi+1 = S′,
w[i] = a and (S, a, S′) ∈ Tqf . Furthermore, for infinitely many of these i the
edges of ρ between S and S′ will be the same. We fix an edge relation between S
and S′ in ρ that occurs infinitely often, name the succesors of q ∈ S by e(q) and
set:

J = {j | S = V (j), S′ = V (j + 1), w[j] = a and E(q, j) = e(q) for all q ∈ S}

It follows that S′ =
⋃
q∈S e(q) and J is infinite. By the definition of Tqf there

exists a way for qf to take a non-looping transition, i.e. there exists a successor
configuration Y , such that Y ∈ δ(qf , a), qf /∈ Y and Y ⊆ S′.

Our aim is to show that we can choose Y instead of e(qf) as successor set of
qf in S for all these edges, without losing the property that for all i: Qi = V (i).
Clearly, we would not make the following layer bigger by choosing Y , as Y ⊆ S′.
So our aim is to show that by choosing Y as successor set for qf , the following
layer is not strictly smaller. We show that the following holds:

S′ = Y ∪ (
⋃

q∈S\{qf}
e(q))

︸ ︷︷ ︸
S′′

This would mean that replacing e(qf) by Y does not change the following layer
in the run.

22 Simon Jantsch et al.

Suppose that this equality does not hold. Then S′′ is strictly contained in S′,
as Y ⊆ S′. Both S′′ and S′ are possible successor configurations of S and a as
e(q) ∈ δ(q, a) for every q ∈ S and both Y and e(qf) are elements of δ(qf , a).

But then for all j ∈ J we can construct an accepting run ρj of A on w
such that all pairs of runs in {ρj | j ∈ J} differ on some layer. We construct
ρj = (V ′, E′) by mimicking ρ up till position j and in position j we choose Y as
successor configuration of qf . For all following positions k > j such that k ∈ J we
also choose Y as successor configuration of qf , given that qf ∈ V ′(k). All infinite
paths of ρj that do not visit qf infinitely often can be mapped to infinite paths
in ρ, and thus in particular no f ∈ F ′ is visited infinitely often. Furthermore,
qf /∈ E′(qf , k) for all k ∈ J such that k ≥ j, and thus no infinite path stabilizes
on qf . Therefore ρj is an accepting run of A on w.

Two runs ρj , ρh with j, h ∈ J and j < h differ on depth j + 1 as ρj chooses
Y as successor set of qf on level j and ρh chooses e(qf). This implies that the
(j + 1)’th layer of ρj is S′′ and the (j + 1)’th is S′ and hence ρj and ρh differ on
layer j + 1, which contradicts the fact that A is unambiguous.

Thus S′ = S′′ and we get ρ′ = (V ′, E′) by mimicking ρ for all positions k /∈ J ,
and setting E(qf , j) = Y for all positions j ∈ J . Edges of the other states are not
changed for any position. As S′ = S′′ we can do this without changing the vertex
set, i.e. V ′ = V . The new run is accepting as qf /∈ E′(qf , j) for all positions j ∈ J
and hence no infinite branch stabilizes at the state qf . Furthermore, the property
Qi = V ′(i) holds for all i ∈ N as it already holds for ρ by induction hypothesis.

To find an accepting run of GA that corresponds to an accepting run of A we
can directly use the definition of the transition relation of GA:

Lemma 6. For every accepting run ρ = (V,E) of A for w ∈ Σω there exists an
accepting run r = Q0Q1 . . . of GA for w, such that Qi = V (i) for all i ≥ 0.

Proof. Let A and GA be as above and ρ = (V,E) be an accepting run of A for
w. We show that r = V (0)V (1) . . . is an accepting run of GA. As ρ is a run of A
we get V (0) ∈ I and hence r satisfies the initial condition of a t-GBA run.

We show that for all i : V (i+1) ∈
⊗

q∈V (i) δ(q, w[i]). As ρ is a run of A, every

q ∈ V (i) must have successors E(q, i) ⊆ V (i + 1) such that E(q, i) ∈ δ(q, w[i]).
Furthermore, each q′ ∈ V (i+ 1) must have a predecessor in V (i) which implies
that

⋃
q∈V (i)E(q, i) = V (i+ 1). By definition of ⊗ we get

V (i+ 1) ∈
⊗
q∈V (i)

δ(q, w[i])

and thus (V (i), w[i], V (i+ 1)) is a transition of GA.
Finally, we have to show that r is accepting. We show for all f ∈ F that for

infinitely many positions i: (V (i), w[i], V (i+ 1)) ∈ Tf . Suppose that this does not
hold. Then there exists a k such that for all n ≥ k : (V (n), w[n], V (n+ 1)) /∈ Tf .
By the definition of Tf we know that for all n > k : f ∈ V (n) and there is no
S ∈ δ(f, w[n]) such that f /∈ S and S ⊆ V (n + 1). This implies, however, that
infinitely often f is in the set of successors of f . But then ρ is not accepting
which contradicts the assumption.

From LTL to Unambiguous Büchi Automata 23

Lemma 7. A is unambiguous if and only if GA is unambiguous.

Proof. Suppose that A is unambiguous and GA is not. Then there exists a word
w ∈ Σω and two accepting runs r1 = Q0Q1 . . . , r2 = P0P1 . . . of GA for w such
that for some i ∈ N: Qi 6= Pi. Choose u ∈ Σ∗ and v ∈ Σω such that w = uv and
|u| = i. This contradicts the assumption that A is unambiguous as V1(i) and
V2(i) are both reachable via u and accept the word v.

To show the other direction, assume that A is ambiguous. Then, there exists
a word w ∈ Σω and two accepting runs ρ1 = (V1, E1), ρ2 = (V2, E2) of A for w
such that for some i ∈ N: V1(i) 6= V2(i). By Lemma 6, there exist two accepting
runs r1, r2 of GA on w such that r1(i) 6= r2(i), and hence GA is ambiguous.

D Unambiguity check on VWAA

We now turn to the complexity of deciding whether a VWAA is unambiguous.
First, we define the union of two automata which we need to prove hardness.

Definition 19. Let A1 = (Q1, Σ,∆1, ι1,Fin(F1)) and A2 = (Q2, Σ,∆2, ι2,Fin(F2))
be two alternating co-Büchi automata over the same alphabet. The union automa-
ton A1 ∪ A2 is defined as a tuple (Q∪, Σ,∆∪, ι∪,Fin(F∪)) where

– Q∪ = (Q1 × {1}) ∪ (Q2 × {2}),

– ∆∪((q, i), a) =

{
∆1(q, a)× 1 if i = 1

∆2(q, a)× 2 if i = 2

– ι∪ = (ι1 × 1) ∨ (ι2 × 2), and
– F∪ = (F1 × {1}) ∪ (F2 × {2})

and f × i, for f ∈ B+(X) and i ∈ N, is the positive Boolean formula over
X × {i} in which every variable x ∈ X that occurs in f is replaced by (x, i).

As the definition of the union automaton merely creates an automaton
consisting of two disjoint copies, it holds that L(A1 ∪ A2) = L(A1) ∪ L(A2).

Lemma 20. The problem of deciding whether a given VWAA A is unambiguous
is PSPACE-hard.

Proof. We reduce the PSPACE-hard problem of LTL satisfiability [32] to deciding
unambiguity of VWAA.

Assume that we are given an LTL formula ϕ. We can construct a VWAA Aϕ
that is equivalent to ϕ in time linear in the size of ϕ [36,30]. An accepting run in
Aϕ corresponds to two distinct accepting runs in Aϕ ∪ Aϕ and thus we have:

L(Aϕ ∪ Aϕ) = ∅ iff Aϕ ∪ Aϕ is unambiguous.

As L(Aϕ ∪Aϕ) = L(Aϕ) = L(ϕ) holds, Aϕ ∪Aϕ is unambiguous if and only
if ϕ is satisfiable.

24 Simon Jantsch et al.

Lemma 21. The problem whether a given VWAA A is unambiguous can be
decided in PSPACE.

Proof. By the theorem of Savitch, we know that NPSPACE=PSPACE. We give
an NPSPACE (in the size of VWAA) algorithm for checking whether GA is
unambiguous, which is enough by Lemma 7.

The algorithm guesses a lasso in the self product of GA: a path that reaches
a state (C1, C2) such that C1 6= C2 and such that there exists an accepting loop
starting in (C1, C2). To guess a successor of a state (Q1, Q2) in GA ⊗ GA for a
symbol a ∈ Σ the algorithm first guesses a successor configuration of Q1 and a
in A. This can be done by guessing a set Sq ⊆ Q for each q ∈ Q1 and verifying
that Sq is a minimal model of ∆(q, a). Then

⋃
q∈Q1

Sq is chosen as successor
configuration of Q1 and the procedure is repeated for Q2. So non-deterministically
guessing a successor of (Q1, Q2) in GA ⊗ GA can be done in polynomial time.

The algorithm only needs to remember the current state in GA ⊗ GA and, for
the loop, which of the acceptance sets in T have already been satisfied. Therefore,
it requires at most space polynomial in the size of ϕ.

By combining Lemma 20 and Lemma 21 we get:

Theorem 8. Deciding whether a VWAA is unambiguous is PSPACE-complete.

E Proofs for Section 5

Lemma 11. Every purely-universal formula ν can be rewritten into a formula
ν1 ∨ . . . ∨ νn, where νi is disjunction-free for all 1 ≤ i ≤ n.

Proof. Let ν be a purely-universal formula. As a first step we remove all occur-
rences of U and R in ν that are not in the scope of some � by applying the rules
ν1 U ν2 7→ ν2 ∨ (ν1 ∧ ♦ν2) and ϕRν′ 7→ ν′. These transformation rules preserve
equivalence if ν1, ν2 and ν′ are purely-universal. Then, we proceed by induction
on the structure of ν. In the case that ν = �ϕ it already has the desired structure.
For the cases ∨,∧,© and ♦ we apply the induction hypothesis to the subformulas
and then lift the disjunction over the corresponding operators.

Lemma 13. Let ν be a disjunction-free and purely-universal formula. Then
g(ν) ∧©ν ≡ ν.

Proof. Let ν be a disjunction-free and purely-universal formula. We show the
claim by induction on the structure of ν (ν1, ν2 and ν′ are assumed to be
purely-universal).

– ν = �ϕ: By instantiation we get the ϕ ∧©�ϕ ≡ �ϕ.
– ν =©ν′: By induction hypothesis we have g(ν′) ∧©ν′ ≡ ν′, which implies
©g(ν′) ∧©© ν′ ≡ ©ν′.

– ν = ν1 ∧ ν2: By induction hypothesis we have g(ν1) ∧©ν1 ≡ ν1 and g(ν2) ∧
©ν2 ≡ ν2. This implies g(ν1) ∧ g(ν2) ∧©ν1 ∧©ν2 ≡ ν1 ∧ ν2.

From LTL to Unambiguous Büchi Automata 25

– ν = ♦ν′: We have defined g(♦ν′) = true. As ♦ν′ is an alternating formula it
satisfies ©♦ν′ ≡ ♦ν′, which proves the claim.

Lemma 14. Let ν be a disjunction-free and purely-universal formula. Then

1. ϕU(ν ∨ ψ) ≡ ν ∨ γ and 2. L(ν) ∩ L(γ) = ∅

where γ = ϕU ((ϕ ∧ ¬g(ν) ∧©ν) ∨ (ψ ∧ ¬ν)).

Proof. We show 1. by showing ϕU(ν ∨ψ) =⇒ ν ∨ γ and ν ∨ γ =⇒ ϕU(ν ∨ψ).

– ϕU(ν ∨ ψ) =⇒ ν ∨ γ: Take a word w that satisfies ϕU(ν ∨ ψ). If w |= ν we
are done. We know that either w |= ϕUν or w |= ϕUψ.
In the first case there is a least i such that w[i..] |= ν and for all j < i:
w[j..] |= ϕ. We get w[(i − 1)..] |= ϕ ∧ ¬g(ν) ∧ ©ν by Lemma 13 and thus
w |= γ.
In the second case there is an i such that w[i..] |= ψ and for all j < i:
w[j..] |= ϕ. We can assume that w[i..] 6|= ν, as the first case applies otherwise,
which implies w[i..] |= ψ ∧ ¬ν and thus proves w |= γ.

– ν ∨ γ =⇒ ϕU(ν ∨ ψ): We have:

γ =⇒ ϕU((ϕ ∧©ν) ∨ ψ) =⇒ ϕU(ν ∨ ψ)

which proves this case.

To show 2. we show that L(ν)∩L(γ) = ∅. By Lemma 13 we have ¬ν ≡ ♦¬g(ν)
or ¬ν ≡ true. If ¬ν ≡ true we get L(ν) = ∅, which proves the claim. Otherwise,
we have ¬ν ≡ ♦¬g(ν). Both ϕ∧¬g(ν)∧©ν and ψ∧¬ν imply ♦¬g(ν). As ♦¬g(ν)
is prefix invariant we get γ =⇒ ¬ν and thus L(ν) ∩ L(γ) = ∅.

F Implementation and Experiments

F.1 LTL to UBA

In this section we give some more details on the experiments with the 1542
benchmark formulas of the LTLStore [24]. Those 1542 formulas include ev-
ery formula in [24] and its negation, as well as duplicates occurring over sev-
eral files. If one removes the duplicated formulas, the benchmark formula set
amounts to 1419 formulas (including negations). The odd number comes from
the fact, that p0 and ¬p0 are counted as duplicates, as they differ only on
the structure of the literal. We use here the version of June 29, 2018, commit
ad8b5cd7c9c30d1e65dbda676fdf41821c3a8adb.

The ltlstore is grouped in sets of formulas, that contain either a parametrized
family of formulas or a set of formulas used for a case study or tool evaluation.
The following figures show scatter plots for the individual formula sets, whose
names are given in the caption. We removed the plots where Duggi and ltl2tgba

showed similar behavior concerning automata sizes and time-outs to not enlarge
the appendix unnecessarily. You find a description how to generate the missing
plots at https://wwwtcs.inf.tu-dresden.de/ALGI/TR/FM19-UBA/.

https://wwwtcs.inf.tu-dresden.de/ALGI/TR/FM19-UBA/

26 Simon Jantsch et al.

0

50

100

0 30 60 90
Duggi

lt
l2

tg
ba

(a) acacia, timeouts: Duggi: 26, ltl2tgba:
32

10

20

30

10 20 30 40 50
Duggi

lt
l2

tg
ba

(b) chained, timeouts: Duggi: 2, ltl2tgba:
6

20

40

60

12 16 20 24
Duggi

lt
l2

tg
ba

(a) cluster, timeouts: Duggi: 1, ltl2tgba:
3

50

100

30 60 90
Duggi

lt
l2

tg
ba

(b) detector 1-5,10,20, timeouts: Duggi: 4,
ltl2tgba: 5

5

10

15

20

10 20
Duggi

lt
l2

tg
ba

(a) family f, timeouts: Duggi: 5, ltl2tgba:
3

10

20

30

40

4 6 8 10
Duggi

lt
l2

tg
ba

(b) fggf, timeouts: Duggi: 1, ltl2tgba: 6

From LTL to Unambiguous Büchi Automata 27

10

20

30

10 20
Duggi

lt
l2

tg
ba

(a) further, timeouts: Duggi: 4, ltl2tgba:
7

0

100

200

0 30 60 90
Duggi

lt
l2

tg
ba

(b) gf and, timeouts: Duggi: 4, ltl2tgba:
4

20

40

60

10 20 30
Duggi

lt
l2

tg
ba

(a) gr1, timeouts: Duggi: 7, ltl2tgba: 9

10

20

30

10 20 30
Duggi

lt
l2

tg
ba

(b) libe router, timeouts: Duggi: 2,
ltl2tgba: 0

0

50

100

0 25 50 75 100 125
Duggi

lt
l2

tg
ba

(a) lily2, timeouts: Duggi: 2, ltl2tgba: 4

25

50

75

10.0 12.5 15.0
Duggi

lt
l2

tg
ba

(b) load balancer 1-5, timeouts: Duggi: 6,
ltl2tgba: 5

28 Simon Jantsch et al.

0

50

100

0 30 60 90
Duggi

lt
l2

tg
ba

(a) lpar19 all, timeouts: Duggi: 54,
ltl2tgba: 2

10

15

20

5 10 15 20
Duggi

lt
l2

tg
ba

(b) LtlNfBa, timeouts: Duggi: 0,
ltl2tgba: 0

0

20

40

60

80

0 10 20 30
Duggi

lt
l2

tg
ba

(a) mutual, timeouts: Duggi: 0, ltl2tgba:
1

0

25

50

75

100

125

0 20 40 60 80
Duggi

lt
l2

tg
ba

(b) rabinizer3, timeouts: Duggi: 0,
ltl2tgba: 3

0

50

100

150

200

250

0 100 200 300 400 500
Duggi

lt
l2

tg
ba

(a) Q, timeouts: Duggi: 8, ltl2tgba: 6

5

10

15

20

25

4 8 12 16
Duggi

lt
l2

tg
ba

(b) R, timeouts: Duggi: 10, ltl2tgba: 15

From LTL to Unambiguous Büchi Automata 29

20

40

60

80

0 25 50 75 100
Duggi

lt
l2

tg
ba

(a) round robin arbiter 1-5, timeouts:
Duggi: 6, ltl2tgba: 4

0

10

20

30

0 10 20 30
Duggi

lt
l2

tg
ba

(b) real, timeouts: Duggi: 0, ltl2tgba: 0

10

20

30

40

50

10 20 30 40
Duggi

lt
l2

tg
ba

(a) scc, timeouts: Duggi: 2, ltl2tgba: 3

120

140

160

180

200

220

50 55 60 65 70
Duggi

lt
l2

tg
ba

(b) suspension, timeouts: Duggi: 5,
ltl2tgba: 4

0

50

100

150

200

10 20 30 40 50
Duggi

lt
l2

tg
ba

(a) theta, timeouts: Duggi: 5, ltl2tgba:
5

0

50

100

0 50 100 150
Duggi

lt
l2

tg
ba

(b) U left, timeouts: Duggi: 5, ltl2tgba:
2

30 Simon Jantsch et al.

3.950

3.975

4.000

4.025

4.050

3.950 3.975 4.000 4.025 4.050
Duggi

lt
l2

tg
ba

(a) lift, timeouts: Duggi: 30, ltl2tgba: 15

4

8

12

16

4 8 12 16
Duggi

lt
l2

tg
ba

(b) U right, timeouts: Duggi: 8, ltl2tgba:
0

From LTL to Unambiguous Büchi Automata 31

F.2 Markov chain analysis

Here, we analyse shortly the missing formula for the cluster workstation protocol
described in Section 6. The formula is

ϕUk = left = nU
(
left = n− 1U

(
. . . U (left = n− k U right 6= n)

))
and describes: “The first k failures occur on the first/left cluster.”

9 10 11 12 13

101

102

103 ltl2tgba

Fig. 22: Model checking times for the cluster workstation protocol for the formula

ϕUk = left = nU
(
left = n− 1U

(
. . . U (left = n− k U right 6= n)

))

For ϕUk , the results (depicted in Figure 22) shows that in this case ltl2tgba

performed significantly better, as Duggi was not able to finish the model checking
procedure for any k. In particular the automata generation took to long. However,
the language described by ϕUk is WDBA recognizable, which for this particular
formula, can be recognized already syntactically. Also, the WDBA generated by
ltl2tgba is smaller than the UBA generated (without WDBA minimization),
e.g., for k = 9 the (complete) WDBA has 11 states, whereas the (complete) UBA
has 57 states.

	From LTL to Unambiguous Büchi Automata via Disambiguation of Alternating Automata

