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Abstract. Partition refinement is a method for minimizing automata
and transition systems of various types. Recently, we have developed a
partition refinement algorithm that is generic in the transition type of the
given system and matches the run time of the best known algorithms for
many concrete types of systems, e.g. deterministic automata as well as
ordinary, weighted, and probabilistic (labelled) transition systems. Gener-
icity is achieved by modelling transition types as functors on sets, and
systems as coalgebras. In the present work, we refine the run time analysis
of our algorithm to cover additional instances, notably weighted automata
and, more generally, weighted tree automata. For weights in a cancella-
tive monoid we match, and for non-cancellative monoids such as (the
additive monoid of) the tropical semiring even substantially improve, the
asymptotic run time of the best known algorithms. We have implemented
our algorithm in a generic tool that is easily instantiated to concrete
system types by implementing a simple refinement interface. Moreover,
the algorithm and the tool are modular, and partition refiners for new
types of systems are obtained easily by composing pre-implemented basic
functors. Experiments show that even for complex system types, the tool
is able to handle systems with millions of transitions.

1 Introduction
Minimization is a basic verification task on state-based systems, concerned with
reducing the number of system states as far as possible while preserving the system
behaviour. It is used for equivalence checking of systems and as a preprocessing
step in further system analysis tasks, such as model checking.

In general, minimization proceeds in two steps: (1) remove unreachable states,
and (2) identify behaviourally equivalent states. Here, we are concerned with the
second step, which depends on which notion of equivalence is imposed on states;
we work with notions of bisimilarity and generalizations thereof. Classically,
bisimilarity for labelled transition systems obeys the principle “states x and y are
bisimilar if for every transition x→ x′, there exists a transition y → y′ with x′ and
y′ bisimilar”. It is thus given via a fixpoint definition, to be understood as a greatest
fixpoint, and can therefore be iteratively approximated from above. This is the
principle behind partition refinement algorithms: Initially all states are tentatively
? Supported by the DFG project COAX (MI 717/5-2 and SCHR 1118/12-2)
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considered equivalent, and then this initial partition is iteratively refined according
to observations made on the states until a fixpoint is reached. Unsurprisingly,
such procedures run in polynomial time. Its comparative tractability (in contrast,
e.g. trace equivalence and language equivalence of non-deterministic systems
are PSPACE complete [24]) makes miminization under bisimilarity interesting
even in cases where the main equivalence of interest is linear-time, such as word
automata.

Kanellakis and Smolka [24] in fact provide a minimization algorithm with run
time O(m · n) for ordinary transition systems with n states and m transitions.
However, even faster partition refinement algorithms running in O((m+n) · logn)
have been developed for various types of systems over the past 50 years. For
example, Hopcroft’s algorithm minimizes deterministic automata for a fixed input
alphabet A in O(n · logn) [22]; it was later generalized to variable input alphabets,
with run time O(n · |A| · logn) [17,26]. The Paige-Tarjan algorithm minimizes
transition systems in time O((m+ n) · logn) [27], and generalizations to labelled
transition systems have the same time complexity [23,13,33]. Minimization of
weighted systems is typically called lumping in the literature, and Valmari and
Franchescini [35] have developed a simple O((m+ n) · logn) lumping algorithm
for systems with rational weights.

In earlier work [14,37] we have developed an efficient generic partition re-
finement algorithm that can be easily instantiated to a wide range of system
types, most of the time either matching or improving the previous best run
time. The genericity of the algorithm is based on modelling state-based systems
as coalgebras following the paradigm of universal coalgebra [30], in which the
branching structure of systems is encapsulated in the choice of a functor, the
type functor. This allows us to cover not only classical relational systems and
various forms of weighted systems, but also to combine existing system types in
various ways, e.g. nondeterministic and probabilistic branching. Our algorithm
uses a functor-specific refinement interface that supports a graph-based represen-
tation of coalgebras. It allows for a generic complexity analysis, and indeed the
generic algorithm has the same asymptotic complexity as the above-mentioned
specific algorithms; for Segala systems [32] (systems that combine probabilistic
and non-deterministic branching, also known as Markov decision processes), it
even improves on the best known run time and matches the run time of a recent
algorithm [19] discovered independently and almost at the same time.

The new contributions of the present paper are twofold. On the theoretical
side, we show how to instantiate our generic algorithm to weighted systems
with weights in a monoid (generalizing the group-weighted case considered
previously [14,37]). We then refine the complexity analysis of the algorithm,
making the complexity of the implementation of the type functor a parameter
p(n,m), where n and m are the numbers of nodes and edges, respectively, in
the graph representation of the input coalgebra. In the new setup, the previous
analysis becomes the special case where p(n,m) = 1. Under the same structural
assumptions on the type functor and the refinement interface as previously, our
algorithm runs in time O(m · logn · p(n,m)). Instantiated to the case of weighted
systems over non-cancellative monoids (with p(n,m) = log(n)), such as the
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additive monoid (N,max, 0) of the tropical semiring, the run time of the generic
algorithm is O(m · log2m), thus markedly improving the run time O(m · n) of
previous algorithms for weighted automata [9] and, more generally, (bottom-up)
weighted tree automata [20] for this case. In addition, for cancellative monoids,
we again essentially match the complexity of the previous algorithms [9,20].

Our second main contribution is a generic and modular implementation of our
algorithm, the Coalgebraic Partition Refiner (CoPaR). Instantiating CoPaR to
coalgebras for a given functor requires only to implement the refinement interface.
We provide such implementations for a number of basic type functors, e.g. for
non-deterministic, weighted, or probabilistic branching, as well as (ranked) input
and output alphabets or output weights. In addition, CoPaR is modular : For any
type functor obtained by composing basic type functors for which a refinement
interface is available, CoPaR automatically derives an implementation of the
refinement interface. We explain in detail how this modularity is realized in
our implementation and, extending Valmari and Franchescini’s ideas [35], we
explain how the necessary data structures need to be implemented so as to realize
the low theoretical complexity. We thus provide a working efficient partition
refiner for all the above mentioned system types. In particular, our tool is, to the
best of our knowledge, the only available implementation of partition refinement
for many composite system types, notably for weighted (tree) automata over
non-cancellative monoids. The tool including source code and evaluation data is
available at https://git8.cs.fau.de/software/copar.

2 Theoretical Foundations
Our algorithmic framework [14,37] is based on modelling state-based systems
abstractly as coalgebras for a (set) functor that encapsulates the transition type,
following the paradigm of universal coalgebra [30]. We proceed to recall standard
notation for sets and maps, as well as basic notions and examples in coalgebra.
We fix a singleton set 1 = {∗}; for every set X we have a unique map ! : X → 1.
We denote composition of maps by (−) · (−), in applicative order. Given maps
f : X → A, g : X → B we define 〈f, g〉 : X → A×B by 〈f, g〉(x) = (f(x), g(x)).
We model the transition type of state based systems using functors. Informally,
a functor F assigns to a set X a set FX of structured collections over X, and
an F -coalgebra is a map c assigning to each state x in a system a structured
collection c(x) ∈ FX of successors. The most basic example is that of transition
systems, where F is powerset, so a coalgebra assigns to each state a set of
successors. Formal definitions are as follows.

Definition 2.1. A functor F : Set → Set assigns to each set X a set FX,
and to each map f : X → Y a map Ff : FX → FY , preserving identities
and composition (F idX = idFX , F (g · f) = Fg · Ff). An F -coalgebra (C, c)
consists of a set C of states and a transition structure c : C → FC. A morphism
h : (C, c) → (D, d) of F -coalgebras is a map h : C → D that preserves the
transition structure, i.e. Fh · c = d · h. Two states x, y ∈ C of a coalgebra
c : C → FC are behaviourally equivalent (x ∼ y) if there exists a coalgebra
morphism h with h(x) = h(y).

https://git8.cs.fau.de/software/copar
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Example 2.2. (1) The finite powerset functor Pω maps a set X to the set PωX
of all finite subsets of X, and a map f : X → Y to the map Pωf = f [−] : PωX →
PωY taking direct images. Pω-coalgebras are finitely branching (unlabelled)
transition systems. and two states are behaviourally equivalent iff they are
bisimilar.
(2) For a fixed finite set A, the functor given by FX = 2×XA, where 2 = {0, 1},
sends a set X to the set of pairs of boolean values and functions A → X. An
F -coalgebra (C, c) is a deterministic automaton (without an initial state). For
each state x ∈ C, the first component of c(x) determines whether x is a final
state, and the second component is the successor function A→ X mapping each
input letter a ∈ A to the successor state of x under input letter a. States x, y ∈ C
are behaviourally equivalent iff they accept the same language in the usual sense.
(3) For a commutative monoid (M,+, 0), the monoid-valued functor M (−) sends
each set X to the set of maps f : X →M that are finitely supported, i.e. f(x) = 0
for almost all x ∈ X. An F -coalgebra c : C → M (C) is, equivalently, a finitely
branching M -weighted transition system: For a state x ∈ C, c(x) maps each state
y ∈ C to the weight c(x)(y) of the transition from x to y. For a map f : X → Y ,
M (f) : M (X) →M (Y ) sends a finitely supported map v : X →M to the map y 7→∑
x∈X,f(x)=y v(x), corresponding to the standard image measure construction.

As the notion of behavioural equivalence of states in M (−)-coalgebras, we obtain
weighted bisimilarity (cf. [9,25]), given coinductively by postulating that states
x, y ∈ C are behaviourally equivalent (x ∼ y) iff∑

z′∼z c(x)(z′) =
∑
z′∼z c(y)(z′) for all z ∈ C.

For the Boolean monoid (2 = {0, 1},∨, 0), the monoid-valued functor 2(−) is
(naturally isomorphic to) the finite powerset functor Pω. For the monoid of real
numbers (R,+, 0), the monoid-valued functor R(−) has R-weighted systems as
coalgebras, e.g. Markov chains. In fact, finite Markov chains are precisely finite
coalgebras of the finite distribution functor, i.e. the subfunctor Dω of R(−)

≥0 (and
hence of R(−)) given by Dω(X) = {µ ∈ R(X)

≥0 |
∑
x∈X µ(x) = 1}. For the monoid

(N,+, 0) of natural numbers, the monoid-valued functor is the bag functor Bω,
which maps a set X to the set of finite multisets over X.

3 Generic Partition Refinement
We recall some key aspects of our generic partition refinement algorithm [14,37],
which minimizes a given coalgebra, i.e. computes its quotient modulo behavioural
equivalence; we center the presentation around the implementation and use of
our tool.

The algorithm [37, Algorithm 4.5] is parametrized over a type functor F ,
represented by implementing a fixed refinement interface, which in particular
allows for a representation of F -coalgebras in terms of nodes and edges (by no
means implying a restriction to relational systems!). Our previous analysis has
established that the algorithm minimizes F -coalgebras with n nodes and m edges
in time O(m · logn), assuming m ≥ n and that the operations of the refinement
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interface run in linear time. In the present paper, we generalize the analysis,
establishing a run time in O(m · logn · p(n,m)), where p(n,m) is a factor in the
time complexity of the operations implementing the refinement interface, and
depends on the functor at hand. In many instances, p(n,m) = 1, reproducing the
previous analysis. In some cases, p(n,m) is not constant, and our new analysis
still applies in these cases, either matching or improving the best known run time
in most instances, most notably weighted systems over non-cancellative monoids.

We proceed to discuss the design of the implementation, including input
formats of our tool CoPaR for composite functors built from pre-implemented
basic blocks and for systems to be minimized (Section 3.1). The refinement
interface and its implementation are described in Section 3.2.

3.1 Generic System Specification

CoPaR accepts as input a file that represents a finite F -coalgebra c : C → FC,
and consists of two parts. The first part is a single line specifying the functor F .
Each of the remaining lines describes one state x ∈ C and its one-step behaviour
c(x). Examples of input files are shown in Fig. 1.

Functor specification. Functors are specified as composites of basic building
blocks; that is, the functor given in the first line of an input file is an expression
determined by the grammar

T ::= X | F (T, . . . , T ) (F : Setk → Set) ∈ F , (1)

where the character X is a terminal symbol and F is a set of predefined symbols
called basic functors, representing a number of pre-implemented functors of
type F : Setk → Set. Only basic functors need to be implemented explicitly
(Section 3.2); for composite functors, the tool derives instances of the algorithm
automatically (Section 3.3). Basic functors currently implemented include (finite)
powerset Pω, the bag functor Bω, monoid-valued functors M (−), and polynomial
functors for finite many-sorted signatures Σ, based on the description of the
respective refinement interfaces given in our previous work [14,37] and, in the case
of M (−) for unrestricted commutative monoids M (rather than only groups) the
newly developed interface described in Section 5. Since behavioural equivalence
is preserved and reflected under converting G-coalgebras into F -coalgebras for
a subfunctor G of F [37, Proposition 2.13], we also cover subfunctors, such as
the finite distribution functor Dω as a subfunctor of R(−). With the polynomial
constructs + and × written in infix notation as usual, the currently supported

DX

q: {p: 0.5, r: 0.5}
p: {q: 0.4, r: 0.6}
r: {r: 1}

q

p

r1
2

1
2

2
5

3
5

1

(a) Markov chain

{f,n} x X^{a,b}

q: (n, {a: p, b: r})
p: (n, {a: q, b: r})
r: (f, {a: q, b: p})

q

p

ra ba
b

a

b

(b) Deterministic finite automaton

Fig. 1: Examples of input files with encoded coalgebras
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grammar is effectively

T ::= X | Pω T | Bω T | Dω T |M (T ) | Σ (2)
Σ ::= C | T + T | T × T | TA C ::= N | A A ::= {s1, . . . , sn}

where the sk are strings subject to the usual conventions for C-style identifiers,
exponents FA are written F^A, and M is one of the monoids (Z,+, 0), (R,+, 0),
(C,+, 0), (Pω(64),∪, ∅) (i.e. the monoid of 64-bit words with bitwise or), and
(N,max, 0) (the additive monoid of the tropical semiring). Note that C effectively
ranges over at most countable sets, and A over finite sets. A term T determines
a functor F : Set→ Set in the evident way, with X interpreted as the argument,
i.e. F (X) = T . It should be noted that the implementation treats composites
of polynomial (sub-)terms as a single functor in order to minimize overhead
incurred by excessive decomposition, e.g. X 7→ {0, 1} + Pω(R(X)) + X ×X is
composed from the basic functors Pω, R(−) and the 3-sorted polynomial functor
Σ(X,Y, Z) = {0, 1}+X + Y × Z.
Coalgebra specification. The remaining lines of an input file define a finite
F -coalgebra c : C → FC. Each line of the form x:␣t defines a state x ∈ C, where
x is a C-style identifier, and t represents the element t = c(x) ∈ FC. The syntax
for t depends on the specified functor F , and follows the structure of the term T
defining F ; we write t ∈ T for a term t describing an element of FC:
– t ∈ X iff t is one of the named states specified in the file.
– t ∈ T1 × · · · × Tn is given by t ::= (t1, . . . , tn) where ti ∈ Ti, i = 1, . . . , n.
– t ∈ T1 + · · ·+ Tn is given by t ::= inj␣i␣ti where i = 1, . . . , n and ti ∈ Ti.
– t ∈ PωT and t ∈ BωT are given by t ::= {t1, . . . , tn} with t1, . . . , tn ∈ T .
– t ∈M (T ) is given by t ::= {t1:␣m1, . . . , tn:␣mn} with m1, . . . ,mn ∈M and
t1, . . . , tn ∈ T , denoting µ ∈M (TC) with µ(ti) = mi and µ(t) = 0 otherwise.

For example, for the functor F given by the term T = Pω({a, b} × R(X)), the
one-line declaration x: {(a,{x: 2.4}), (a,{}), (b,{x: -8})} defines an F -
coalgebra with a single state x, having two a-successors and one b-successor,
where successors are elements of R(X). One a-successor is constantly zero, and
the other assigns weight 2.4 to x; the b-successor assigns weight −8 to x. Two
more examples are shown in Fig. 1.
Parsing input files. After reading the functor term T , the tool builds a parser
for the functor-specific input format and parses an input coalgebra specified in
the above syntax into an intermediate format described in Section 3.2. In the
case of a composite functor, the parsed coalgebra then undergoes a substantial
amount of preprocessing that also affects how transitions are counted; we defer
the discussion of this point to Section 3.3, and assume for the time being that
F : Set→ Set is a basic functor with only one argument.

3.2 Refinement Interfaces

New functors are added to the framework by implementing a refinement interface
(Definition 3.2). The interface relates to an abstract encoding of the functor and
its coalgebras in terms of nodes and edges:
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Definition 3.1. An encoding of a functor F consists of a set A of labels and a
family of maps [ : FX → Bω(A×X), one for every set X. The encoding of an
F -coalgebra c : C → FC is given by the map 〈F !, [〉 · c : C → F1 × Bω(A × C)
and we say that the coalgebra has n = |C| states and m =

∑
x∈C |[(c(x))| edges.

An encoding does by no means imply a reduction from F -coalgebras to Bω(A×
(−))-coalgebras, i.e. the notions of behavioural equivalence for Bω(A×(−)) and F ,
respectively, can be radically different. The encoding just fixes a representation
format, and [ is not assumed to be natural (in fact, it fails to be natural
in all encodings we have implemented except the one for polynomial functors).
Encodings typically match how one intuitively draws coalgebras of various types as
certain labelled graphs. For instance for Markov chains (see Fig. 1), i.e. coalgebras
for the distribution functorDω, the set of labels is the set of probabilities A = [0, 1],
and [ : DωX → Bω([0, 1] × X) assigns to each finite probability distribution
µ : X → [0, 1] the bag {(µ(x), x) | x ∈ X,µ(x) 6= 0}.

The implementation of a basic functor contains two ingredients: (1) a parser
that transforms the syntactic specification of an input coalgebra (Section 3.1) into
the encoded coalgebra, and (2) the implementation of the refinement interface.

x

. . .. . .

a1 ak b· · · · · ·

B

S B \ S

Fig. 2: Splitting a block

To understand the motivation behind the defi-
nition of a refinement interface, suppose that the
generic partition refinement has already computed
some block of states B ⊆ C in its partition and
that states in S ⊆ B have different behaviour than
those in B \ S. From this information, the algo-
rithm has to infer whether states x, y ∈ C that
are in the same block and have successors in B
exhibit different behaviour and thus have to be sep-
arated. For example, in the classical Paige-Tarjan
algorithm [27], i.e. for F = Pω, x and y can stay in the same block provided
that (a) x has a successor in S iff y has one and (b) x has a successor in B \ S
iff y has one. Equivalently, Pω〈χS , χB\S〉(c(x)) = Pω〈χS , χB\S〉(c(y)), where
χS : C → 2 is the usual characteristic function of the subset S ⊆ C. In the
example of Markov chains, i.e. F = Dω, x, y ∈ C can stay in the same block
if
∑
x′∈S c(x)(x′) =

∑
y′∈S c(y)(y′) and

∑
x′∈B\S c(x)(x′) =

∑
y′∈B\S c(y)(y′),

i.e. if Dω〈χS , χB\S〉(c(x)) = Dω〈χS , χB\S〉(c(y)). Note that the element (1, 1) is
not in the image of 〈χS , χB\S〉 : C → 2 × 2. Since, moreover, S ⊆ B, we can
equivalently consider the map

χBS : C → 3, χBS (x ∈ S) = 2, χBS (x ∈ B \ S) = 1, χBS (x ∈ C \B) = 0. (3)

That is, two states x, y ∈ C can stay in the same block in the refinement step
provided that FχBS (c(x)) = FχBS (c(y)). Thus, it is the task of a refinement
interface to compute FχBS · c efficiently and incrementally.

Definition 3.2. Given an encoding (A, [) of the set functor F , a refinement
interface for F consists of a set W of weights and functions

init : F1× BωA→W and update : BωA×W →W × F3×W
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satisfying the following coherence condition: There exists a family of weight maps
w : PX → (FX →W ) such that for all t ∈ FX and all sets S ⊆ B ⊆ X,

w(X)(t) = init
(
F !(t),Bωπ1([(t))

)
(w(S)(t), FχBS (t), w(B\S)(t)) = update

(
{a | (a, x) ∈ [(t), x ∈ S}, w(B)(t)

)
.

Note that the comprehension in the first argument of update is to be read as a
multiset comprehension. In contrast to init and update, the function w is not called
by the algorithm and thus does not form part of the refinement interface. However,
its existence ensures the correctness of our algorithm. Intuitively, X is the set
of states of the input coalgebra (C, c), and for every x ∈ C, w(B)(c(x)) ∈W is
the overall weight of edges from x to the block B ⊆ C in the coalgebra (C, c).
The axioms in Definition 3.2 assert that init receives in its first argument the
information which states of C are (non-)terminating, in its second argument the
bag of labels of all outgoing edges of a state x ∈ C in the graph representation
of (C, c), and it returns the total weight of those edges. The operation update
receives a pair consisting of the bag of labels of all edges from some state x ∈ C
into the set S ⊆ C and the weight of all edges from x to B ⊆ C, and from only
this information (in particular update does not know x, S, and B explicitly) it
computes the triple consisting of the weight w(S)(c(x)) of edges from x to S,
the result of FχBS · c(x) and the weight w(B \ S)(c(x)) of edges from x to B \ S
(e.g. in the Paige-Tarjan algorithm, the number of edges from x to S, the value for
the three way split, and the number of edges from x to B \ S, cf. Fig. 2). Those
two computed weights are needed for the next refinement step, and FχBS · c(x)
is used by the algorithm to decide whether or not two states x, y ∈ C that are
contained in the same block and have some successors in B remain in the same
block for the next iteration.

For a given functor F , it is usually easy to derive the operations init and
update once an appropriate choice of the set W of weights and weight maps w is
made, so we describe only the latter in the following; see [14,37] for full definitions.

Example 3.3. (1) For F = R(−) we can take W = R2, and w(B)(t) records
the accumulated weight of X \B and B: w(B)(t) =

(∑
x∈X\B t(x),

∑
x∈B t(x)

)
,

i.e. w(B) = FχB : FX → F2.
(2) More generally, let F be one of the functors G(−),Bω, Σ where G is a group
and Σ a signature with bounded arity, represented as a polynomial functor.
Then we can take W = F2 (e.g. W = R2 for F = R(−) as above) and w(B) =
FχB : FX → F2.
(3) For F = Pω, we need W = 2×N, and w(B)(t) = (|t\B| ≥ 1, |t∩B|) records
whether there is an edge to X \B and counts the numbers of edges into B.

In order to ensure that iteratively splitting blocks using FχBS in each iteration cor-
rectly computes the minimization of the given coalgebra, we require that the type
functor F is zippable, i.e. the evident maps 〈F (X+!), F (! + Y )〉 : F (X + Y ) −→
F (X + 1)× F (1 + Y ) are injective [37, Definition 5.1]. All functors mentioned
in Example 2.2 are zippable, and zippable functors are closed under products,



Generic Partition Refinement and Weighted Tree Automata 9

Dω Σ

Pω

Bω

Y
Z1

Z2

X

X

X

Fig. 3: Visualization of FX = Dω(Σ(PωX,BωX)) for Σ(Z1, Z2) = N× Z1 × Z1

coproducts, and subfunctors [37, Lemma 5.4] but not under functor composition;
e.g. PωPω fails to be zippable [37, Example 5.9].

The main correctness result [37] states that for a zippable functor equipped
with a refinement interface, our algorithm correctly minimizes the given coalgebra.
The low time complexity of our algorithm hinges on the time complexity of the
implementations of init and update. We have shown previously [37, Theorem 6.22]
that if both init and update run in linear time in the input list (of type BωA)
alone (independently of n,m), then our generic partition refinement algorithm
runs in time O((m+n) · logn) on coalgebras with n states and m edges. In order
to cover instances where the run time of init and update depends also on n,m,
we now generalize this to the following new result:

Theorem 3.4. Let F be a zippable functor equipped with a refinement interface.
Suppose further that p(n,m) is a function such that in every run of the partition
refinement algorithm on F -coalgebras with n states and m edges,
(1) all calls to init and update on ` ∈ BωA run in time O(|`| · p(n,m));
(2) all comparisons of values of type W run in time O(p(n,m)).
Then the algorithm runs in overall time O((m+ n) · logn · p(n,m)).

Obviously, for p(n,m) ∈ O(1), we obtain the previous complexity. Indeed, for the
functors G(−), Pω, Bω, where G is an abelian group, we can take p(n,m) = 1;
this follows from our previous work [37, Examples 6.4 and 6.6]. For a ranked
alphabet Σ, i.e. a signature with arities of operations bounded by, say, r, we can
take p(m,n) = r ∈ O(1) if Σ (or just r) is fixed. We will discuss in Section 5 how
Theorem 3.4 instantiates to weighted systems, i.e. to monoid-valued functors
M (−) for unrestricted commutative monoids M .

3.3 Combining Refinement Interfaces

In addition to supporting genericity via direct implementation of the refinement
interface for basic functors, our tool is modular in the sense that it automatically
derives a refinement interface for functors built from the basic ones according to
the grammar (1). In other words, for such a functor the user does not need to
write a single line of new code. Moreover, when the user implements a refinement
interface for a new basic functor, this automatically extends the effective grammar.

For example, our tool can minimize systems of type FX = Dω(N×PωX ×
BωX). To achieve this, a given F -coalgebra is transformed into one for the functor
F ′X = DωX + (N×X ×X) +PωX +BωX. This functor is obtained as the sum
of all basic functors involved in F , i.e. of all the nodes in the visualization of the
functor term F (Fig. 3). Then the components of the refinement interfaces of the
four involved functors Dω, Σ, Pω, and Bω are combined by disjoint union +. The
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transformation of a coalgebra c : C → FC into a F ′-coalgebra introduces a set of
intermediate states for each edge in the visualization of the term F in Fig. 3. E.g. Y
contains an intermediate state for every Dω-edge, i.e. Y = {(x, y) | µ(x)(y) 6= 0}.
Successors of such intermediate states in Y lie in N× Z1 × Z2, and successors
of intermediate states in Z1 and Z2 lie in PωX and BωX, respectively. Overall,
we obtain an F ′-coalgebra on X + Y + Z1 + Z2, whose minimization yields the
minimization of the original F -coalgebra. The correctness of this construction is
established in full generality in [37, Section 7].

CoPaR moreover implements a further optimization of this procedure that
leads to fewer intermediate states in the case of polynomial functors Σ: Instead
of putting the refinement interface of Σ side by side with those of its arguments,
CoPaR includes a systematic procedure to combine the refinement interfaces of
the arguments of Σ into a single refinement interface. For instance, starting from
FX = Dω(N× PωX × BωX) as above, a given F -coalgebra is thus transformed
into a coalgebra for the functor F ′′X = DωX + N × PωX × BωX, effectively
inducing intermediate states in Y as above but avoiding Z1 and Z2.

3.4 Implementation Details

Our implementation is geared towards realizing both the level of genericity and
the efficiency afforded by the abstract algorithm. Regarding genericity, each
basic functor is defined (in its own source file) as a single Haskell data type that
implements two type classes: a class that directly corresponds to the refinement
interface given in Definition 3.2 with its methods init and update, and a parser
that defines the coalgebra syntax for the functor. This means that new basic
functors can be implemented without modifying any of the existing code, except
for registering the new type in a list of existing functors (refinement interfaces
are in src/Copar/Functors).

A key data structure for the efficient implementation of the generic algorithm
are refinable partitions, which store the current partition of the set C of states
of the input coalgebra during the execution of the algorithm. This data structure
has to provide constant time operations for finding the size of a block, marking a
state and counting the marked states in a block. Splitting a block in marked and
unmarked states must only take linear time in the number of marked states of
this block. In CoPaR, we use such a data structure described (for use in Markov
chain lumping) by Valmari and Franceschinis [35].

Our abstract algorithm maintains two partitions P,Q of C, where P is one
transition step finer than Q; i.e. P is the partition of C induced by the map
Fq · c : C � FQ, where q : C � Q is the canonical quotient map assigning to
every state the block which contains it. The key to the low time complexity is
to choose in each iteration a subblock, i.e. a block S in P whose surrounding
compound block, i.e. the block B in Q such that S ⊆ B, satisfies 2 · |S| ≤ |B|,
and then refine Q (and P ) as explained in Section 3.2 (see Fig. 2). This idea
goes back to Hopcroft [22], and is also used in all other partition refinement
algorithms mentioned in the introduction. Our implementation maintains a queue
of subblocks S satisfying the above property, and the termination condition
P = Q of the main loop then translates to this queue being empty.

https://git8.cs.fau.de/software/copar/tree/master/src/Copar/Functors
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One optimization that is new in CoPaR in relation to [35,37] is that weights
for blocks of exactly one state are not computed, as those cannot be split any
further. This has drastic performance benefits for inputs where the algorithm
produces many single-element blocks early on, e.g. for nearly minimal systems or
fine grained initial partitions, see [11] for details and measurements.

4 Instances
Many systems are coalgebras for functors composed according to the grammar (2).
In Table 1, we list various system types that can be handled by our algorithm,
taken from [14,37] except for weighted tree automata, which are new in the present
paper. In all cases, m is the number of edges and n is the number of states of
the input coalgebra, and we compare the run time of our generic algorithm with
that of specifically designed algorithms from the literature. In most instances
we match the complexity of the best known algorithm. In the one case where
our generic algorithm is asymptotically slower (LTS with unbounded alphabet),
this is due to assuming a potentially very large number of alphabet letters – as
soon as the number of alphabet letters is assumed to be polynomially bounded
in the number n of states, the number m of transitions is also polynomially
bounded in n, so logm ∈ O(logn). This argument also explains why ‘<’ and
‘=’, respectively, hold in the last two rows of Table 1, as we assume Σ to be
(fixed and) finite; the case where Σ is infinite and unranked is more complicated.
Details on the instantiation to weighted tree automata are discussed in Section 5.
We comment briefly on some further instances and initial partitions:
Further system types can be handled by our algorithm and tool by combining
functors in various ways. For instance, general Segala systems are coalgebras
for the functor PωDω(A × (−)), and are minimized by our algorithm in time
O((m + n) · logn), improving on the best previous algorithm [2]; other type
functors for various species of probabilistic systems are listed in [3], including
the ones for reactive systems, generative systems, stratified systems, alternating
systems, bundle systems, and Pnueli-Zuck systems.
Initial partitions: Note that in the classical Paige-Tarjan algorithm [27], the
input includes an initial partition. Initial partitions as input parameters are
covered via the genericity of our algorithm: Initial partitions on F -coalgebras
are accomodated by moving to the functor F ′X = N × FX, where the first
component of a coalgebra assigns to each state the number of its block in the
initial partition. Under the optimized treatment of the polynomial functorN× (−)
(Section 3.3), this transformation does not enlarge the state space and also leaves
the complexity parameter p(n,m) unchanged [37]; that is, the asymptotic run
time of the algorithm remains unchanged under adding initial partitions.

5 Weighted Tree Automata
We proceed to take a closer look at weighted tree automata as a worked example.
In our previous work, we have treated the case where the weight monoid is a
group; in the present paper, we extend this treatment to unrestricted monoids.
As indicated previously, it is this example that mainly motivates the refinement
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Table 1: Asymptotic complexity of the generic algorithm (2017/2019) compared
to specific algorithms, for systems with n states and m transitions, respectively
mPω nondeterministic and mDω probabilistic transitions for Segala systems. For
simplicity, we assume that m ≥ n and, like [22,20], that A, Σ are finite.

System Functor Run-Time Specific algorithm (Year)

DFA 2× (−)A n · logn = n · logn 1971 [22]

Transition
Systems Pω m · logn = m · logn 1987 [27]

Labelled TS Pω(N×−) m · logm = m · logm 2004 [15]
> m · logn 2009 [33]

Markov
Chains R(−) m · logn = m · logn 2010 [35]

Segala Systems Pω(A×−) · D mDω · logmPω
< m · logn 2000 [2]
= mDω · logmPω 2018 [19]

Colour
Refinement Bω m · logn = m · logn 2017 [5]

Weighted Tree
Automata

M ×M (Σ(−)) m · log2 m < m · n 2007 [20]
M ×M (Σ(−))

(M cancellative) m · logm = m · logn 2007 [20]

of the run time analysis discussed in Section 3.2, and we will see that in the case
of non-cancellative monoids, the generic algorithm improves on the run time of
the best known specific algorithms in the literature.

Weighted tree automata simultaneously generalize tree automata and weighted
(word) automata. A partition refinement construction for weighted automata
(w.r.t. weighted bisimilarity) was first considered by Buchholz [9, Theorem 3.7].
Högberg et al. first provided an efficient partition refinement algorithm for tree
automata [21], and subsequently for weighted tree automata [20]. Generally, tree
automata differ from word automata in replacing the input alphabet, which may
be seen as sets of unary operations, with an algebraic signature Σ:

Definition 5.1. Let (M,+, 0) be a commutative monoid. A (bottom-up)
weighted tree automaton (WTA) (over M) consists of a finite set X of states, a
finite signature Σ, an output map f : X →M , and for each k ≥ 0, a transition
map µk : Σk →MXk×X , where Σk denotes the set of k-ary input symbols in Σ;
the maximum arity of symbols in Σ is called the rank.

A weighted tree automaton is thus equivalently a finite coalgebra for the functor
M ×M (Σ) (where M (Σ)(X) = M (ΣX)) where Σ : Set → Set is a polynomial
functor. Indeed, we can regard the output map as a transition map for a constant
symbol, so it suffices to consider just the functor M (Σ) (and in fact the output
map is ignored in the notion of backward bisimulation used by Högberg et
al. [20]). For weighted systems, forward and backward notions of bisimulation
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are considered in the literature [9,20]; we do not repeat the definitions here but
focus on backward bisimulation, as it corresponds to behavioural equivalence:

Proposition 5.2. Backward bisimulation of weighted tree automata coincides
with behavioural equivalence of M (Σ)-coalgebras.

Since M (Σ) is a composite of M (−) and a polynomial functor Σ, the modularity
of our approach implies that it suffices to provide a refinement interface for M (−).
For the case whereM is a group, a refinement interface with p(n,m) = 1 has been
given in our previous work. For the general case, we distinguish, like Högberg et
al. [20], between cancellative and non-cancellative monoids, because we obtain a
better complexity result for the former.

5.1 Cancellative Monoids

Recall that a commutative monoid (M,+, 0) is cancellative if a+b = a+c implies
b = c. It is well-known that every cancellative commutative monoid M embeds
into an abelian group G via the Grothendieck construction. Hence, we can convert
M (−)-coalgebras into G(−)-coalgebras and use the refinement interface for G(−)

from our previous work, obtaining

Theorem 5.3. On weighted tree automata with n states, k transitions and rank
r over a cancellative monoid, our algorithm runs in time O((rk+n)·log(k+n)·r).

Note that rk may be replaced with the number m of edges of the corresponding
coalgebra. Thus, for a fixed signature and m ≥ n, we obtain the bound in Table 1.

5.2 Non-cancellative Monoids

The refinement interface for G(−) for a group G (in which the cancellative
monoid M in Section 5.1 is embedded) crucially makes use of inverses for the
fast computation of the weights returned by update. For a non-cancellative
monoid (M,+, 0), we instead need to maintain bags of monoid elements and
consider subtraction of bags. For the encoding of M (−), we take labels A =
M 6=0 = M \ {0}, and [(f) = { (f(x), x) | x ∈ X, f(x) 6= 0 } for f ∈ M (−). The
refinement interface for M (−) has weights W = M × B(M 6=0) and

w(B)(f) =
(∑

x∈X\B f(x), (m 7→
∣∣{x ∈ B | f(x) = m}

∣∣)) ∈M × B(M 6=0);

that is, w(B)(f) returns the total weight of X \B under f and the bag of non-zero
elements of M occurring in f . The interface functions init : M (1)×BωM 6=0 →W ,
update : BωM 6=0 ×W →W ×M (3) ×W are

init(f, `) = (0, `)
update(`, (r, c)) = ((r +Σ(c− `), `), (r,Σ(c− `), Σ(`)), (r +Σ(`), c− `)),

where for a, b ∈ BY , the bag a− b is defined by (a− b)(y) = max(0, a(y)− b(y));
Σ : BM →M is the canonical summation map defined by Σ(b) =

∑
m∈M b(m)·m;

and we denote elements of M (3) as triples over M .
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We implement the bags B(M 6=0) used inW = M×B(M 6=0) as balanced search
trees with keys M 6=0 and values N, following Adams [1]. In addition, we store in
every node the value Σ(b), where b is the bag encoded by the subtree rooted at
that node. Hence, for every bag b, the value Σ(b) is immediately available at the
root node of the search tree encoding b. It is not difficult to see that maintaining
those values in the nodes only adds a constant overhead into the operations of
our data structure for bags and that the size of the search trees is bounded by
min(|M |,m). Thus, we obtain:

Proposition 5.4. The above function update(`, (r, c)) can be computed in O(|`| ·
log min(|M |,m)), where m is the number of all edges of the input coalgebra.

Corollary 5.5. On a weighted tree automaton with n states, k transitions, and
rank r over an (unrestricted) monoid M , our algorithm runs in time O

(
(rk +

n) · log(k+ n) · (log k+ r)
)
, respectively O((rk+ n) · log(k+ n) · r) if M is finite.

More precisely, the analysis using Theorem 3.4 shows that rk can be replaced
with the number m of edges of the input coalgebra. Assuming m ≥ n we thus
obtain the bound given in Table 1. In addition to guaranteeing a good theoretical
complexity, our tool immediately yields an efficient implementation. For the
case of non-cancellative monoids, this is, to the best of our knowledge, the only
available implementation of partition refinement for weighted tree automata.

5.3 Evaluation and Benchmarking

We report on a number of benchmarks that illustrate the practical scalability
of our algorithm instantiated for weighted tree automata. Previous studies on
the practical performance of partition refinement on large labelled transition
systems [34,33] show that memory rather than run time seems to be the limiting
factor. Since labelled transition systems are a special case of weighted tree
automata, we expect to see similar phenomena. Hence, we evaluate the maximal
automata sizes that can be processed on a typical current computer setup: We
randomly generate weighted tree automata for various signatures and monoids,
looking for the maximal size of WTAs that can be handled with 16 GB of
RAM, and we measure the respective run times of our tool, compiled with
GHC version 8.4.4 on a Linux system and executed on an Intel R© CoreTM

i5-6500 processor with 3.20GHz clock rate. We fix |Σ| = 4 and evaluate all
combinations of rank r and weight monoid M for r ranging over {1, . . . , 5} and
M over 2 = (2,∨, 0), N = (N,max, 0) (the additive monoid of the tropical
semiring), and 264 = (2,∨, 0)64 ∼= (Pω(64),∪, ∅). We write n for the number of
states, k for the number of transitions, and m for the number of edges in the
graphical presentation; in fact, we generate only transitions of the respective
maximal rank r, so m = k(r + 1). Table 2 lists the maximal values of n that
fit into the mentioned 16 GB of RAM when k = 50 · n, and associated run
times. For M = (2,∨, 0), the optimized refinement interface for Pω needs less
memory, allowing for higher values of n, an effect that decreases with increasing
rank r. We restrict to generating at most 50 different elements of M in each
automaton, to avoid situations where all states are immediately distinguished in



Generic Partition Refinement and Weighted Tree Automata 15

Table 2: Processing times (in seconds) tp for parsing and ta for partition refinement
on maximal weighted tree automata with n states and 50 · n random transitions
fitting into 16 GB of memory. File sizes range from 117 MB to 141 MB, and
numbers m of edges from 11 million to 17 million.

ΣX = 4×X 4×X2 4×X3 4×X4 4×X5

M n tp ta n tp ta n tp ta n tp ta n tp ta

2 132177 53 188 98670 46 243 85016 47 187 59596 41 146 49375 38 114
N 113957 61 141 92434 55 175 69623 49 152 57319 47 140 48962 45 112
264 114888 58 100 95287 54 138 70660 49 107 62665 48 92 49926 44 72

the first refinement step. In addition, the parameters are chosen so that with high
likelihood, the final partition distinguishes all states, so the examples illustrate the
worst case. The first refinement step produces in the order of |Σ| ·min(50, |M |)r
subblocks (cf. Section 3.4), implying earlier termination for high values of |M |
and r and explaining the slightly longer run time for M = (2,∨, 0) on small r.
We note in summary that WTAs with well over 10 million edges are processed in
less than five minutes, and in fact the run time of minimization is of the same
order of magnitude as that of input parsing. Additional evaluations on DFAs,
Segala Systems, and benchmarks for the Prism model checker [28], as well as
a comparison with existing specific tools by Antti Valmari [35] and from the
mCRL2 toolset [10] are in the full version of this paper [12].

6 Conclusion and Future Work

We have instantiated a generic efficient partition refinement algorithm that we
introduced in recent work [14,37] to weighted (tree) automata, and we have refined
the generic complexity analysis of the algorithm to cover this case. Moreover, we
have described an implementation of the generic algorithm in the form of the tool
CoPaR, which supports the modular combination of basic system types without
requiring any additional implementation effort, and allows for easy incorporation
of new basic system types by implementing a generic refinement interface.

In future work, we will further broaden the range of system types that our
algorithm and tool can accomodate, and provide support for base categories
beyond sets, e.g. nominal sets, which underlie nominal automata [8,31].

Concerning genericity there is an orthogonal approach by Ranzato and Tap-
paro [29] that is generic over notions of process equivalence but fixes the system
type to standard labelled transition systems; see also [18]. Similarly, Blom and
Orzan [6,7] present signature refinement, which covers, e.g. strong and branch-
ing bisimulation as well as Markov chain lumping, but requires adapting the
algorithm for each instance. These algorithms have also been improved using
symbolic techniques (e.g. [36]). Moreover, many of the mentioned approaches
and others [4,6,7,16,36] focus on parallelization. We will explore in future work
whether symbolic and distributed methods can be lifted to coalgebraic generality.
A further important aim is genericity also along the axis of process equivalences.
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A Omitted Proofs
A.1 Proof of Theorem 3.4

The case where p(n,m) = 1 is proved in [37, Theorem 6.22]. We reduce the general
case to this one as follows. Observe that the previous complexity analysis counts
the number of basic operation performed by the algorithm (e.g. comparisons of
values of type W ) including those performed by init and update. In that analysis
init and update were assumed to have run time in O(|`|), and the total number
of basic operations of the algorithm is then in O((m+ n) · logn).
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The number of steps taken by our algorithm under the current assumptions (1)
and (2) is thus bounded above by the run time of the algorithm under the above
assumptions (i.e. assuming p(n,m) = 1) but assuming that every basic operation
takes p(n,m) steps. Hence, clearly the overall run time lies in O((m+ n) · logn ·
p(n,m)). ut

A.2 Proof of Proposition 5.2

Given a weighted tree automaton (X, f, (µk)k∈N) as in Definition 5.1 we see
that it is, equivalently, a finite coalgebra for the functor FX = M ×M (ΣX),
where we identify the signature Σ with its corresponding polynomial functor
X 7→

∐
σ/k∈Σ X

k. Indeed (µk)k≥0 is equivalently expressed by a map

µ̄ : X →M (ΣX) with µ̄(x)(σ(x1, . . . , xk)) := µk(σ)((x1, . . . , xk), x). (4)

Thus we obtain a coalgebra

c : X →M ×M (ΣX) with c(x) = (f(x), µ̄(x)). (5)

Note that µ̄(x) is finitely supported because X and ΣX are finite.

Definition A.1 (Högberg et al. [20, Definition 16]). A backward bisimu-
lation on a weighted tree automaton (X, f, (µk)k∈N) is an equivalence relation
R ⊆ X ×X such that for every (p, q) ∈ R, σ/k ∈ Σ, and L ∈ {D1 × · · · ×Dk |
D1, . . . , Dk ∈ X/R}: ∑

w∈L
µk(σ)(w, p) =

∑
w∈L

µk(σ)(w, q).

Remark A.2. Note that w ∈ L means that w ∈ Xk such that ek(w) = L,
where ek : Xk � (X/R)k is the k-fold power of the canonical quotient map
e : X → X/R.

A.3 Details for Section 5.1

Every submonoid of a group is cancellative, for example (N,+, 0) and (Z, ·, 1).
Conversely via the Grothendieck construction, every cancellative commutative
monoid (M,+, 0) can be embedded into the following group:

G = (M ×M)/≡ (a+, a−) ≡ (b+, b−) iff a+ + b− = a+ + b−,

where the group structure is given by the usual componentwise addition on the
product: [(a+, a−)]+[(b+, b−)] = [(a++b+, a−+b−)], and −[(a+, a0)] = [(a−, a+)].
The embedding of M is given by m 7→ [(m, 0)].

The embedding M � G extends to a monic natural transformation M (−) �
G(−), and therefore, computing behavioural equivalence for M (−) reduces to that
of G(−) [37, Proposition 2.13].



20 Hans-Peter Deifel, Stefan Milius, Lutz Schröder, and Thorsten Wißmann

A.4 Proof of Proposition 5.2

We need to show that an equivalence relation R ⊆ X × X is a backward
bisimulation iff the canonical quotient map e : X � X/R is anM (Σ(−))-coalgebra
homomorphism (with domain (X, c) as defined in (5)). First, let x ∈ X,σ/k ∈ Σ,
and L ∈ (X/R)k for some equivalence relation R. Then we have the following
equalities, where note that M (Σe) : M (ΣX) →M (Σ(X/R)) and σ(L) ∈ Σ(X/R):∑

w∈L
µk(σ)(w, x) =

∑
w∈Xk
ek(w)=L

µk(σ)(w, x) =
∑

σ(w)∈ΣX
ar(σ)=k

Σe(σ(w))=σ(L)

µk(σ)(w, x) =
∑

σ(w)∈ΣX
Σe(σ(w))=σ(L)

µ̄(x)(σ(w))

=
∑
t∈ΣX

Σe(t)=σ(L)

µ̄(x)(t) = M (Σe)(µ̄(x))(σ(L)).

Hence, for every equivalence relation R ⊆ X ×X we have the following chain of
equivalences:

R is a backward bisimulation

⇔ ∀(p, q) ∈ R, σ/k ∈ Σ,L ∈ (X/R)k :
∑
w∈L

µk(σ)(w, p) =
∑
w∈L

µk(σ)(w, q)

⇔ ∀(p, q) ∈ R, σ/k ∈ Σ,L ∈ (X/R)k :
M (Σe)(µ̄(p))(σ(L)) = M (Σe)(µ̄(q))(σ(L))

⇔ ∀(p, q) ∈ R, t ∈ Σ(X/R) : M (Σe)(µ̄(p))(t) = M (Σe)(µ̄(q))(t)
⇔ ∀(p, q) ∈ R : M (Σe)(µ̄(p)) = M (Σe)(µ̄(q))
⇔ ∀(p, q) ∈ R : (M (Σe) · µ̄)(p) = (M (Σe) · µ̄)(q).

The last equation hold precisely if e is a coalgebra homomorphism. Indeed, those
equations holds precisely if there exists a map r : X/R→M (Σ(X/R)) such that
r(e(x)) = (M (Σe) · µ̄)(x), i.e. such that the following square commutes

X M (ΣX)

X/R M (Σ(X/R))

µ̄

e M(Σe)

r ut

A.5 Proof of Theorem 5.3

The functor FX = M ×M (Σ(−)) is decomposed into F ′′X = M ×M (X) +ΣX
according to Section 3.3. Given a coalgebra 〈o, w〉 : X →M×M (ΣX) we introduce
the set of intermediate states Y , one for every outgoing transition from every
x ∈ X, i.e.

Y = {(x, s) | x ∈ X and s ∈ ΣX with w(x, s) 6= 0}.
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The given coalgebra structure 〈o, w〉 yields the two evident maps ξ1 : X →
M ×M (Y ) and ξ2 : Y → ΣX given by

ξ1(x) = (o(x), tx), where tx(x′, s) =
{
w(x, s) if x′ = x

0 else,

ξ2(x, s) = s.

Partition refinement is now performed on the following T ′′-coalgebra:

X + Y
ξ1+ξ2−−−−→M ×M (Y ) +ΣX

idM×M(inr)+Σinl−−−−−−−−−−−→M ×M (X+Y ) +Σ(X + Y ),

where inl : X → X + Y and inr : Y → X + Y denote the evident injections into
the disjoint union.

Clearly, we have n′ := |X + Y | = n + k and the number of edges of the
above coalgebra is at most m′ := (r + 1) · k. Since the refinement interface
for T ′′ is a combination of those of M × M (−) and Σ its factor p(n′,m′) is
the maximum of the factors pM (n′,m′) and pΣ(n′,m′) of those two refinement
interfaces, respectively, since we either call the former or the latter one for a
state in X + Y ; in symbols:

p(n′,m′) = max(pM (n′,m′), pΣ(n′,m′)) = max(1, r),

where we use thatM is cancellative and pΣ(n′,m′) = r (see the end of Section 3.2).
By Theorem 3.4 we thus obtain an overall time complexity of

O((m′ + n′) · logn′ · r) = O((r · k + n) · log(n+ k) · r). ut

A.6 Details for Section 5.2

Proposition A.3. The refinement interface for M (−) is correct, for every
monoid (M,+, 0).

Proof. We prove that the refinement interface for M (−) defined in Section 5.2
satisfies the two axioms in Definition 3.2. Let t ∈ FX. For the first axiom we
compute as follows:

w(X)(t) =
(∑

x∈X\X t(x), (m 7→
∣∣{x ∈ X | t(x) = m}

∣∣))
=
(
0,Bωπ1({(m,x) ∈M 6=0 ×X | t(x) = m})

)
=
(
0,Bωπ1({(t(x), x) | x ∈ X, t(x) 6= 0})

)
=
(
0,Bωπ1([(t))

)
= init

(
F !(t),Bωπ1([(t))

)
.

Let us now verify the second axiom concerning update. In order to simplify the
notation, we define the restriction of bags of edges by

(t ↓ B) ∈ B(M 6=0), (t ↓ B)(m) = |{x ∈ B | t(x) = m}| for B ⊆ X, t ∈M (X)
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and define their sum by∑
B

t := Σ(t ↓ B) =
∑
x∈B

t(x) for B ⊆ X.

So we have

w(B)(t) =
(∑

x∈X\B t(x),m 7→ |{x ∈ B | t(x) = m}|
)

= (
∑
X\B

t, (t ↓ B))

With the substraction of bags defined by (a − b)(y) = max(0, a(y) − b(y)) for
a, b ∈ BωY , we have

(t ↓ B)− (t ↓ S) = (t ↓ (B \ S)) for S ⊆ B ⊆ X.

Then for S ⊆ B ⊆ X we can compute as follows:

〈w(S), FχBS , w(B\S)〉(t)

= (w(S)(t), FχBS (t), w(B\S)(t))

=
(
(
∑
X\S

t, (t ↓ S)), (
∑
X\B

t,
∑
B\S

t,
∑
S

t), (
∑

X\(B\S)
t, (t ↓ (B \ S)))

)
=
(

(
∑
X\B

t+ Σ(t ↓ (B \ S))︸ ︷︷ ︸∑
B\S

t

, (t ↓ S)), (
∑
X\B

t,Σ(t ↓ (B \ S)),Σ(t ↓ S)),

(
∑
X\B

t+
∑
S

t, ((t ↓ B)− (t ↓ S)))
)

=
(
(
∑
X\B

t+ Σ((t ↓ B)− (t ↓ S)), (t ↓ S)),

(
∑
X\B

t,Σ((t ↓ B)− (t ↓ S)),Σ(t ↓ S)),

(
∑
X\B

t+ Σ(t ↓ S), ((t ↓ B)− (t ↓ S)))
)

(∗)= update((t ↓ S), (
∑
X\B

t, (t ↓ B)))

= update
(
(m ∈M 6=0 7→ |{x ∈ S | t(x) = m}|), w(B)(t)

)
= update

(
{m ∈M 6=0 | (m,x) ∈ [(t), x ∈ S}, w(B)(t)

)
= update

(
{a ∈ A | (a, x) ∈ [(t), x ∈ S}, w(B)(t)

)
,

where the step labelled (∗) uses the definition of update:

update(`, (r, c)) = ((r +Σ(c− `), `), (r,Σ(c− `), Σ(`)), (r +Σ(`), c− `)). ut

A.7 Proof of Proposition 5.4

We implement the bags B(M 6=0) used in W = M × B(M 6=0) as balanced search
trees with keys M 6=0 and values N following Adams [1]. In addition, we store in
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every node x the value Σ(b), where b is the bag encoded by the subtree rooted
at x; in the following we simply write Σ(x). Hence, for every bag b, the value
Σ(b) is immediately available at the root node of the search tree for b.

Note that our search trees cannot have more nodes than the size |M | of their
index set, and the number of nodes is also not greater than the number m of all
edges. Hence, their size is bounded by min(|M |,m).

Recall e.g. [?, Section 14], that the key operations insert, delete and search
have logarithmic time complexity in the size of a given balanced binary search
tree.

We still need to argue that maintaining the values Σ(x) in the nodes does
not increase this complexity. This is obvious for the search operation as it does
not change its argument search tree. For insert and delete recall from op. cit. that
those operation essentially trace down one path starting at the root to a node
(at most a leaf) of the given search tree. In addition, after insertion or deletion of
a node, the balanced structure of the search tree has to be fixed. This is done
by tracing back the same path to the root and (possibly) performing rotations
on the nodes occurring on that path. Rotations are local operations changing
the structure of a search tree but preserving the inorder key ordering of subtrees
(see Fig. 4).

y

x

α β

γ

x

α

y

β γ

right rotation

left rotation

Fig. 4: Rotation operations in binary search trees.

Clearly, in order to maintain the correct summation values in a search tree
under a rotation, we only need to adjust those values in the nodes x and y. For
example, for right rotation the new values are:

Σ(y) = Σ(β) +Σ(γ); Σ(x) = Σ(α) +Σ(y).

In addition, when inserting or deleting a node x we must recompute the Σ(y) of
all nodes y along the path from the root to x when we trace that path back to
the root. This can clearly be performed in constant time for each node y since
Σ(y) is the sum (in M) of those values stored at the child nodes of y.

In summary, we see that maintaining the desired summation values only
requires an additional constant overhead in the backtracing step. Conse-
quently, the operations of our balanced binary search trees have a run time
in O(log min(|M |,m)), so that we obtain the desired overall time complexity of
update. ut
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A.8 Proof of Corollary 5.5

We proceed precisely as in the proof of Theorem 5.3 using that pM (n′,m′) =
log min(|M |,m′) (in lieu of pM (n′,m′) = 1). We proceed by case distinction. If
M is a finite monoid, then pM (n′,m′) is in O(1). Hence, we obtain the same
overall complexity as in Theorem 5.3 as desired.

IfM is infinite, we have that pM (n′,m′) is in O(logm′). Thus, by Theorem 3.4
we obtain:

O((m′ + n′) · logn′ ·max(logm′, r)) = O((rk + n) · log(n+ k) · (log(rk) + r))
= O((rk + n) · log(n+ k) · (log k + r)),

where we use that log(rk) = log r + log k in the second equation and, in the first
one, that max can be replaced by + in O-notation. ut

Remark A.4. Here we provide a more refined comparison of the complexity of
the Högberg et al.’s algorithm with the instances of our algorithm for weighted
tree automata.
(1) For arbitrary (non-cancellative) monoids they provide a complexity of O(r ·
k · n) [20, Theorem 27]. Again, the number m of edges of the input coalgebra
satisfiesm ≤ rk. Moreover, for a fixed input signature,m and k are asymptotically
equivalent. Assuming further that m ≥ n, which means that there are no isolated
states, we see that the bound in Table 1 indeed improves the complexity of
O(m · n) Högberg et al.’s algorithm. To see this note first that the number m of
edges is in O(nr+1) so that we obtain

O(m · log(m)2) ( O(m · r+1
√
m) ⊆ O(m · r+1√

nr+1) = O(m · n).

In the first step, it is used that for every d ≥ 1 and 0 < c < 1 we have
O(logd(m)) ( O(mc).
(2) For cancellative monoids, the time bound given in op. cit. is O(r2 · t · logn)
[20, Theorem 29]. Under our standard assumption that rt ≥ n our complexity
from Theorem 5.3 lies in O(r2 · t · log(t+ n), which is only very slightly worse.

B Further Benchmarks
B.1 More details for main benchmark

The benchmarks are designed in such a way that the run time is maximal. This
means that:
(1) In the first partition that is computed, all states are identified.
(2) In the final partition, all states are distinguished.

We minimize randomly generated coalgebras for

FX = M ×M (ΣX)

with ΣX = 4 × Xr, for r ∈ {1, . . . , 5}. When generating a coalgebra with n
states, we randomly create 50 outgoing transitions per state, leading to 50 · n
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transitions in total. As described in Section 3.3, we need to introduce one
intermediate state per transition, leading to an actual number n′ = 51 · n of
states. Every transition of rank r has one incoming edge and r outgoing edges,
hence m = (r + 1) · k = 50 · (r + 1) · n. The performance evaluation is listed in
Table 3.

Table 3: Extended version of Table 2: We take n states and 50 transitions per
state, leading to n′ states and m edges in total. Parsing takes tp seconds; the first
partition has P1 blocks and its computation takes ti seconds; the final partition
has Pf blocks and its computation takes additional tr seconds.

r Monoid M n n′ m Size P1 Pf tp ti tr

1 (2,∨, 0) 132177 6741027 13217700 117 MB 6 132177 53 32 156
1 (N,max, 0) 114888 5859288 11488800 122 MB 416 114888 58 34 66
1 (Pω(64),∪, ∅) 113957 5811807 11395700 131 MB 54 113957 61 32 109

2 (2,∨, 0) 98670 5032170 14800500 123 MB 6 98670 46 31 212
2 (N,max, 0) 95287 4859637 14293050 136 MB 404 95287 54 30 108
2 (Pω(64),∪, ∅) 92434 4714134 13865100 141 MB 54 92434 55 31 144

3 (2,∨, 0) 85016 4335816 17003200 138 MB 6 85016 47 20 167
3 (N,max, 0) 70660 3603660 14132000 127 MB 397 70660 49 25 82
3 (Pω(64),∪, ∅) 69623 3550773 13924600 132 MB 54 69623 49 25 127

4 (2,∨, 0) 59596 3039396 14899000 119 MB 6 59596 41 25 121
4 (N,max, 0) 62665 3195915 15666250 136 MB 397 62665 48 26 66
4 (Pω(64),∪, ∅) 57319 2923269 14329750 130 MB 54 57319 47 25 115

5 (2,∨, 0) 49375 2518125 14812500 116 MB 6 49375 38 24 90
5 (N,max, 0) 49926 2546226 14977800 127 MB 376 49926 44 20 52
5 (Pω(64),∪, ∅) 48962 2497062 14688600 129 MB 54 48962 45 20 92

B.2 Maximally dense WTAs

As another benchmark, we generated very dense WTAs, showing that also in this
degenerated case, m = 10 million edges (in the sense of graphical representation)
can be handled with 16 GB of RAM within a few minutes, as described in the
following.

For a fixed number n = |C| of states, monoid M and signature Σ, we
uniformly generated c(x) ∈M (ΣC) for every state x ∈ C:1 for every y ∈ ΣC, we
put c(x)(y) = 0 with probability 0.7 and otherwise choose c(x)(y) ∈M randomly.
We then counted the number m of edges, checked whether the minimization
stayed within the RAM limit, and if so, recorded the run time. Table 4 lists
the sizes of the largest WTAs that can be handled. For each configuration we
1 We overload notation and write Σ both for a signature and its associated polynomial
functors on sets.
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Table 4: Dense WTAs: For (2,∨, 0), the final partition consists of very few blocks
(less than 20, depending on the polynomial). For the other cases, all states are
distinguished after the initialization phase.

M ΣX p n n′/106 m/106 MiB tp ti tr t

(2,∨, 0) 8×X 0.7 1478 5.24 10.48 82 35 28 37 115
1 + 4×X2 0.7 151 4.13 12.39 83 33 21 34 102
4 + 3×X + 2×X2 0.7 190 4.15 12.41 83 33 19 73 143
3×X5 0.7 11 1.59 9.57 47 20 11 11 45

(Z,max, 0) 8×X 0.7 1450 5.05 10.09 182 43 27 40 127
1 + 4×X2 0.7 150 4.05 12.15 162 41 22 40 121
4 + 3×X + 2×X2 0.7 188 4.02 12.02 162 40 15 39 111
3×X5 0.7 11 1.59 9.57 79 23 11 21 60

(Pω(64),∪, ∅) 8×X 0.7 1408 4.76 9.52 164 49 25 37 121
1 + 4×X2 0.7 148 3.89 11.67 151 44 21 37 118
4 + 3×X + 2×X2 0.7 186 3.89 11.64 152 44 18 38 115
3×X5 0.7 11 1.60 9.57 77 25 11 21 61

generated five automata, and averaged their values for Table 4; each of the
maximal deviations is insignificantly small. Note that with higher rank r, even a
small number n of states leads to millions of edges.

We see that the upper limit for the number of edges is roughly 10 million,
independent of the choices of the monoid or the signature. In more detail, only the
choice of the signature contributes to n and nuances ofm. This is hardly surprising
because the signature determines the branching degree of an automaton and also
determines that there are 0.3 · |ΣC| many expected transitions. With roughly 10
million edges, the file sizes vary slightly, depending on the representation of the
coefficients from the different monoids (coefficients vanish for (2,∨, 0)).

In Table 4 we show the benchmarks of very dense WTAs.

B.3 Benchmarks for DFAs and PRISM Models

Another benchmark suite consists of randomly generated DFAs for a fixed size n
and alphabet A, which were generated by uniformly choosing a successor for each
state and letter of the alphabet and for each state whether it is final or not. All
of the resulting automata were already minimal, which means that our algorithm
has to refine the initial partition X/Q = {X} until all blocks are singletons,
which requires a maximal number of iterations. The results in Table 5a and 5b
show that the implementation can handle coalgebras with 10 million edges, and
that parsing the input takes more time than the actual refinement for these
particular systems.

In addition, we translated the benchmark suite of the model checker PRISM [?]
to coalgebras for the functorsN×R(X) for continuous time markov chains (CTMC)
and N× Pω(N× (DωX)) for Markov decision processes (MDP). In contrast to
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Input Time (in s) to
n Parse Init Refine

1000 2.40 0.76 0.36
2000 4.96 1.58 0.74
3000 7.39 2.11 1.40
4000 10.20 3.20 1.67
5000 13.06 4.05 2.10

Input Time (in s) to
n Parse Init Refine

600 44.75 1.82 2.88
700 50.93 4.29 3.18
800 60.78 2.54 4.16
900 68.34 2.76 4.60

1000 75.79 3.05 5.21

(a) DFAs for |A| = 103 (b) DFAs for |A| = 104

Table 5: Performance on randomly generated DFAs

PRISM Model Input Time (s) to Time (s) of
States Edges Parse Init Refine Valmari mCRL2

fms (n=4) 35910 237120 0.48 0.12 0.16 0.21 –
fms (n=5) 152712 1111482 2.46 0.68 1.10 1.21 –
fms (n=6) 537768 4205670 9.94 2.91 5.56 5.84 –
wlan2_collide
(COL=2,TRANS_TIME_MAX=10)

65718 94452 0.51 0.29 0.59 0.14 0.42

wlan0_time_bounded
(TRANS_TIME_MAX=10,DEADLINE=100)

582327 771088 5.26 3.07 5.52 0.92 3.18

wlan1_time_bounded
(TRANS_TIME_MAX=10,DEADLINE=100)

1408676 1963522 13.42 6.17 16.13 2.52 8.58

Table 6: Performance on PRISM benchmarks

DFAs, these functors are compositions of several basic functors and thus require
the construction described in Section 3.3. Two of those benchmarks [28] are
shown in Table 6 with different parameters, resulting in three differently sized
coalgebras each.2 The fms family of systems model a flexible manufacturing
system as CTMC, while the wlan benchmarks model various aspects of the IEEE
802.11 Wireless LAN protocol as MDP.

Table 6 also includes the total run time of two additional partition refinement
tools: A C++ implementation3 of the algorithm described in [35] by Antti Valmari
which can minimize MDPs as well as CTMCs, and the tool ltspbisim from the
mCRL2 toolset [10] version 201808.0 which implements a recently discovered
refinement algorithm for MDPs [19] (but does not support CTMCs, hence there
is no data in the first three lines).

The results in Table 6 show that refinement for the fms benchmarks is faster
than for the respective wlan ones, even though the first group has more edges.
This is due to (a) the fact that the functor for MDPs is more complex and thus
2 The full set of benchmarks and their results can be found at https://git8.cs.fau.

de/software/copar-benchmarks
3 Available at https://git8.cs.fau.de/hpd/mdpmin-valmari

https://git8.cs.fau.de/software/copar-benchmarks
https://git8.cs.fau.de/software/copar-benchmarks
https://git8.cs.fau.de/hpd/mdpmin-valmari
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introduces more indirection into our algorithms, as explained in Section 3.3, and
(b) that our optimization for one-element blocks fires much more often for fms.

It is also apparent that CoPaR is slower than both of the other tools in our
comparison, by a factor of up to 15 for the presented examples. This performance
difference can be partly attributed to the fact that our implementation is written
in Haskell and the other tools are written in C++. In addition, CoPaR’s genericity
and modularity take a toll on performance.
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