®

Check for
updates

SOA and the Button Problem

1,2(X

Sung-Shik Jongmans), Arjan Lamers'?, and Marko van Eekelen'*

! Department of Computer Science, Open University of the Netherlands,
Heerlen, The Netherlands
ssj@ou.nl
2 CWI, Netherlands Foundation of Scientific Research Institutes,
Amsterdam, The Netherlands
3 First8, Nijmegen, The Netherlands
4 Institute for Computing and Information Sciences,
Radboud University Nijmegen, Nijmegen, The Netherlands

Abstract. Service-oriented architecture (SOA) is a popular architec-
tural style centered around services, loose coupling, and interoperability.
A recurring problem in SOA development is the Button Problem; how
to ensure that whenever a “button is pressed” on some service—mno mat-
ter what—the performance of other key services remains unaffected?
The Button Problem is especially complex to solve in systems that have
devolved into hardly comprehensible spaghettis of service dependencies.

In a collaborative effort with industry partner First8, we present the
first formal framework to help SOA developers solve the Button Problem,
enabling automated reasoning about service sensitivities and candidate
refactorings. Our formalization provides a rigorous foundation for a tool
that was already successfully evaluated in industrial case studies, and it is
built against two unique requirements: “whiteboard level of abstraction”
and non-quantitative analysis.

1 Introduction

Context. Service-oriented architecture (SOA) is a popular architectural style
centered around services, loose coupling, and interoperability [19].

A recurring problem in SOA development is the Button Problem: how to
ensure that whenever a “button is pressed” (i.e., an operation is invoked; a
resource is requested) on some service—mo matter what—the performance of
other key services remains unaffected? For instance, increased activity on an
accounting service of an e-commerce system should never slow down the front-
end service; sales are lost otherwise [1]. The Button Problem occurs in all stages
of SOA development, from initial analysis (when dependencies among services
are still reasonably well-understood) to final maintenance (when dependencies
have often devolved into a hardly comprehensible spaghetti).

To solve the Button Problem, SOA developers need to engage in two kinds
of activities: (1) they need to analyze dependencies among services to determine
whether or not a service is indeed sensitive to button-presses on other services; if
50, (2) they need to invent a series of refactorings that eliminate the sensitivity,

© Springer Nature Switzerland AG 2019
M. H. ter Beek et al. (Eds.): FM 2019, LNCS 11800, pp. 689-706, 2019.
https://doi.org/10.1007/978-3-030-30942-8_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30942-8_40&domain=pdf
https://doi.org/10.1007/978-3-030-30942-8_40

690 S.-S. Jongmans et al.

but without changing the system’s functional behavior. Especially in cases where
services and their dependencies are plentiful, these two activities are challenging
to carry out by hand: both service sensitivities and candidate refactorings are
easily missed, leading to suboptimal architecture and deployment decisions.

Contribution. In a collaborative effort with industry partner First8, we present
the first formal framework to help SOA developers solve the Button Problem,
enabling automated reasoning about service sensitivities and candidate refac-
torings in the form of tool support. Our formalization is built against two
unique requirements derived from First8’s experience with large enterprise sys-
tems (Sect.2): “whiteboard level of abstraction” and non-quantitative analysis.
We provide an extensible core library of refactorings and prove their correct-
ness; this facilitates mechanical exploration of a system’s design space toward
given insensitivity goals. Our formalization provides a rigorous foundation for a
decision support tool (Sect.2) that we developed and recently demonstrated at
ICSOC 2018 [16].

In Sect.2, we explain the background of this research project. In Sect. 3,
we present our formalization of architectures and refactorings. In Sect.4, we
present our formalization of deployments and sensitivities. In Sect. 5, we explain
the implementation of our formal framework. In Sect. 6, we discuss related work
and future work. Proofs of theorems appear in a separate technical report [9).

2 Background

First8. First8 (https://www.first8.nl), subsidiary of Conclusion (https://www.
conclusion.nl), is a software company specialized in custom business-critical sys-
tems, including SOA, in all stages of the software life cycle. SOA developers at
First8 regularly encounter and struggle with the Button Problem. In general, the
industry-wide practice of manually reasoning about service sensitivities and can-
didate refactorings has three major issues. First, it is an intellectually demand-
ing activity that often requires SOA developers to make simplifying assump-
tions. This leads to imprecise refactoring proposals, which may be more costly,
more risky, and less effective than necessary. Second, as refactoring proposals
are based on experience and best-practices, SOA developers can easily overlook
less-intuitive refactorings that may well be most-effective for a given system.
Third, predicting how multiple refactorings will affect each other is hard.

The aim of this research project is to develop a decision support tool (open
source), built on top of a rigorous foundation, that helps SOA developers (First8
or otherwise) solve the Button Problem. Based on extensive experience with large
enterprise systems, First8 imposed two unique requirements on the tool and its
underlying formalization that give our project a novel position among existing
computer-aided software engineering tools (see also Sect. 6):

— “Whiteboard level of abstraction”: Finding a technical solution to the
Button Problem is one thing; convincing business executives that this solu-
tion is truly worth pursuing and implementing is a whole different challenge.

https://www.first8.nl
https://www.conclusion.nl
https://www.conclusion.nl

SOA and the Button Problem 691

Decisions are often made in meetings where there is neither time nor exper-
tise on the executives’ side to go through all the technical intricacies; instead,
high-level whiteboard drawings are the main artifacts to explain service sen-
sitivities and candidate refactorings, their consequences, and their trade-offs.
To truly contribute to executives’ decision-making, it is therefore imperative
that our tool and its foundation are based on the simple whiteboard-style
notation that executives intuitively understand and are accustomed to.

— Non-quantitative analysis: Ultimately, every Button Problem is about
coarse-grained predictability of performance; it is mever about reducing
latency by x milliseconds, or increasing throughput by y transactions per
hour. Although it is possible to try to solve the Button Problem using fine-
grained quantitative approaches in terms of absolute latencies and through-
puts (e.g., [3,5,13,15,22]), it is excessive (i.e., not the right tool for the job)
and impractical. One issue is collecting the measurements to instantiate a
quantitative model, which can be cumbersome or even impossible (i.e., if
the system has not been deployed yet). Another issue is that measurements
are implementation-specific and deployment-specific, and therefore brittle:
changes in a service implementation or deployment can greatly impact abso-
lute performance and immediately render a previously instantiated quantita-
tive model obsolete. To solve the Button Problem effectively, using automated
tool support, a non-quantitative approach is needed.

The Elmo Tool. Elmo is the decision support tool that is developed in this
research project (open source; https://bitbucket.org/arjanl/elmo-tool), recently
demonstrated at ICSOC 2018 [10,16] and built on top of the formalization
presented in this paper. Leveraging a whiteboard-style notation for architec-
tures and deployments, Elmo’s main features are (1) automated non-quantitative
analysis of service sensitivities and (2) automated inference of series of can-
didate refactorings that are guaranteed to be behavior-preserving and achieve
given insensitivity goals. If multiple different series of candidate refactorings
achieve the specified goals, Elmo automatically computes a comparison of other
attributes of the final system designs for the user to inspect. Moreover, Elmo
also supports an interactive mode that enables users to manually explore a sys-
tem’s design space by selecting and applying candidate refactorings from a list.
(Elmo does not actually carry out refactorings, though; the tool is geared toward
providing decision support to solve the Button Problem.)

We successfully evaluated Elmo in two case studies involving systems of First8
clients that suffer(ed) from the Button Problem:

1. In an e-commerce system at an undisclosed client, performance issues arose in
key services when the load on seemingly unrelated services increased. First8
was consulted to solve this Button Problem, but Elmo did not yet exist at the
time. Due to the sheer size and complexity of the system, the SOA developers
involved ultimately proposed a broad, coarse-grained refactoring approach
that affected the whole system; they were unable to manually find a more
targeted series of refactorings to solve the problem more locally. The project
revealed the need for a decision support tool to deal with this complexity.

https://bitbucket.org/arjanl/elmo-tool

692 S.-S. Jongmans et al.

Recently, we modeled the system in Elmo and automatically found a much
more localized series of refactorings that achieves the same goals. Moreover,
SOA developers that worked on the project are of the opinion that if Elmo
had existed at the time of the project, this would have resulted in performance
improvements much earlier in the process and with more confidence.

2. JoinData is a digital highway for farm-generated data, used nation-wide in the

Netherlands. It allows for data exchange in the agricultural sector. For exam-
ple, milking-robots on the farm, animal feed suppliers, or soil laboratories
can exchange information with accountancy firms, governmental organisa-
tions, or farm management systems. Due to expected growth, the scalability
of the messaging component, called EDI-Circle, needed to improve by solving
the Button Problem of one of its constituent services.
We compared (i) the manual analysis and proposed course of action by the
lead architect of EDI-Circle with (ii) Elmo’s automated analysis. Whereas
the architect proposed “to change the whole system, since everything is con-
nected”, Elmo proposed a much more localized series of refactorings.

Details of case study 1 are protected by NDA; details of case study 2 are in [16].
In the rest of this paper, we present the rigorous foundation on top of which
Elmo is built. We shall formalize systems at the abstraction level of their archi-
tectures and deployments. Refactorings are subsequently defined over formal
architecture models; sensitivities are derived from formal deployment models.

3 Architectures and Refactorings

3.1 Architecture Models

Our formalization of architectures closely follows the proven whiteboard-style
notation used by First8’s SOA developers to effectively communicate with clients
and business executives. The notation comprises graphical diagrams where ser-
vices are drawn as nodes and calls between services as edges. Services are anno-
tated with the types of information they produce and consume. Calls come in
two flavors: pushes and pulls. A push by service s; to service so entails a single
communication from s; to s (there is no subsequent acknowledgment from s,
to s11); a pull by s1 from so entails a request for information from s; to so, and a
subsequent response from sy to s1. We formalize these diagrams as architecture
models. Let S denote the set of all services, ranged over by s, and let T denote
the set of all types of information, ranged over by t.

Definition 1. An architecture model A is a tuple (S, T, II, I', —,—) where:

- SCS and T C T denote sets of services and types;
~ II,.I" : T — 25 denote indexed sets of producers and consumers;

! In terms of the OsI transport layer, Tcp /Ip packets involved in a push are acknowl-
edged (as part of the Tcp/IP protocol), but this is at a lower level of abstraction.

SOA and the Button Problem 693

. price nprod __ § . .
price)—— chkout Hnorder = {oﬁce} price E% chkout price w chkout
T = {chkout}
.o\)b &gr 7% — {db} 2, > 2, &
> Q > order o, & & o, & &
2 I = {db} R & R o
5 Tice . L o4
db 4 r = {price} & &
5 5
anrod — {db} db db
> norder
L A I = {db} g’ o, C;U o,
K % Pred ; hkout & °4 & &
9 * = {price, chkout} & S, & S,
Forder — {GCC}
office acc P = {chkout} office acc office acc
Fig. 1. Example architecture model Fig. 2. Example directions/initiatives

— —,——= : T — 25%9 (denote indexed push and pull relations such that
(81,82) € —(t) implies s1 # s2, and (s1, $2) € —(t) implies s1 # sa.

Arch denotes the set of all architecture models.

In words, s € II(t) and s € I'(t) mean that service s respectively produces and
consumes information of type ¢ (the utility of these sets becomes clear when we
define well-formedness, shortly); we write IT* and I'* instead of II(t) and I'(t).
In words, (s1,s2) € —(t) and (s1, s2) € —(t) mean that service s; respectively
pushes and pulls information of type ¢ to and from service so; we write s; — $o
and s; ——< sy instead of (s1,s2) € —(t) and (sq, s3) € —=(t). The domain of
an architecture model A is its set of services, denoted by Dom(A).

Example 1. Figure 1 shows an architecture model for a webshop system; it is a
simplified version of the e-commerce system discussed in Sect. 2.

The database service, called db, manages information about products and
orders. The front-end service, called chkout, is used by customers to order prod-
ucts; it calls the database service to pull product information and push new
orders, while it pulls from a pricing service, called price, for calculating final
prices (including additional fees and transport costs). The accounting service,
called acc, checks if orders have been paid for; it calls the database service to
pull order information. Finally, the back-office service, called office, maintains
the product catalog; it calls the database service to push updated product infor-
mation.

We note that we distinguish between new order/product information (nprod
and norder), produced by chkout/office, and existing order /product information
(prod and order), produced (i.e., “owned”) by db. O

Architecture models (Definition 1) specify precisely the direction (i.e., from
pusher to “pushee”, but from “pullee” to puller) and the initiative (i.e., pushers
and pullers; services that start information flows) of information flows; they
abstract from call specifics (e.g., operations that are invoked; resources that are
accessed), quantitative aspects of communication (e.g., call frequencies; latency;
throughput), and transport characteristics (e.g., synchronous vs. asynchronous;
reliable vs. lossy; unordered vs. order-preserving). Direction and initiative serve

694 S.-S. Jongmans et al.

00 -)

(fold) ~ (“ne A=A @Ay A=A @ A,

Fig. 3. Refactoring framework

key purposes in our work: in this section, we use direction to reason about
candidate refactorings; in the next section, we use initiative to reason about
service sensitivities. We elicit these notions formally as follows. Let f; W fo =
= filz) |z € XKi \ XotU{z = folz) |2 € Xo\ Xi}U{z — fi(z)U
fo(x) | # € X1 N X5} denote the pointwise union of functions f; : X; — 2¥* and
f2 : X2 — 2Y2.

Definition 2. —o,—¢ : Arch — (T — 25%5) denote the (doubly) indexed
direction and initiative relations defined by the following equations:

—o((S, T, I1, I, —,—)) = {t » —(t) U—=(t)* |t € T}
—o((S, T, II, I, —>,—)) = — & —

In words, (s1,s2) € —0(A)(t) and (s1, s2) € —0(A4)(t) means that flow of infor-
mation of type t is directed and initiated from service s; to service s, in architec-
ture model A; we write s —to, 59 and 57 —0 4 8o instead of (s1,82) € —o(A)(t)
and (s1,s2) € —0(A)(t). Figure 2 exemplifies these relations for Fig. 1.

An architecture model is well-formed if every flow of information of type ¢
starts at a producer of ¢ (i.e., information should not emerge out of nowhere)
and ends at a consumer of ¢ (i.e., information should not be discarded unused).
Formally, if A = (S,T,II,I,—,—) and $; Lo, s2, then there exist services
sp and s. such that: IT* > s, —tO*A s1 and s —toz sc € I'". Well-formedness is
an important sanity condition that models need to satisfy; it catches modeling
inconsistencies and redundancies regarding information availability (which is also
why producers/consumers are explicit elements of the model and not derived).

3.2 Refactoring Framework

We define a rigorous refactoring framework in terms of composition (®) and
equivalence (~) of architecture models (Fig. 3). The idea is to represent an archi-
tecture A as the composition of an “old part” A; and a “remaining part” A,
(formally: A = A; @ As). Refactoring, then, amounts to substituting the old part
with an equivalent “new part” A; (formally: Ay ~ /11) If the equivalence is in
fact a congruence for composition, substitution of equivalent parts is guaranteed
to yield equivalent wholes, which means that all existing information flows are

SOA and the Button Problem 695

preserved by substitution and no spurious new ones are introduced. This con-
gruence property is pivotal: because of it, to show that a refactoring is correct,
we need to prove only the equivalence of the old part and the new part, while
we can safely ignore the remaining part. We now explain the details.

To compose architecture models A; and As, we “glue” them together on
their shared services; through these services, information can subsequently flow
from A; to As and back, in accordance with the original push and pull relations.
Such composition of architecture models corresponds roughly to union of graphs
with overlapping vertex sets but disjoint edge sets.

Definition 3. @ : Arch x Arch — Arch denotes the composition function
defined by the following equation:

Al ® Ay = (S1USy, T1 UTo, II1 WIly, I W I, —1 W —o, —= W —o)
where Al = (SiaThHi,Fi;Hi,Hi)

The following theorem states that composition of architecture models preserves
the direction of information flows.

Theorem 1. —04,54, = —04, W—04,

Two architecture models are equivalent iff the direction of every flow of infor-
mation in the one can be mimicked in the other, including production and con-
sumption of information, and vice versa. We note that we do not require mimicry
of initiative; the idea is that it does not matter which service initiates sharing
of information, so long as all information reaches the right services.

Definition 4. <, ~ : 25%8 _ ArchxArch gonote the indered preorder and
equivalence relations defined by the following equations:

Vt, s, s’ [s—tOA s = E|§,§’.[§—tOA § NsRs A S/Rél]]

AV s sellt = 35.[se€Il*" A SRS

(1) = (4, dy| " Vhe T = 3BT A 5 A

A Vi, s. [SEF = 38.[36F A sRsH

= (S, T,II,I',—,—) N A= (8,T,II,I" ">, <)

~(R)==2(R)N ﬁ(R)?

In words, (A, A) € <(R) means that relation R associates every service s in
A with a set of services S = {4 | s R 8} in A that collectively? simulate s
(i.e., every information flow from s to some service s’ in A can be mimicked
as an information flow from some service § € S to some service § in /1; every
information production or consumption by s can be mimicked as an information
production or consumption by some service § €). In words, (4, A) € ~(R)
means that services in A and in A simulate each other under the same relation
R. We write A <z A and A ~p A instead of (4, A) € <(R) and (A4, A) € ~(R).

2 Individual services in S may contribute only partially to the simulation (see also
Example 2). This is where our definition of simulation differs significantly from the
classical one in concurrency theory (e.g., [17]). It is also why s R § appears as a
conjunct on the right-hand side of the implication instead of on the left-hand side.

696 S.-S. Jongmans et al.

X price X price
price >— chkout price —— chkout price ——— chkout
> g (g 8
v\o JE %° Sl J»‘% «° g
e o R Q. o R .
& Q. [a 1)
o & [
S proddb orderdb proddb orderdb

7 5 : 5
9 % : :
office acc office acc office acc
(a) Original A (b) After split A (c) After redeployment

Fig. 4. Equivalent architecture models (and deployment models) of the example web-
shop systems before and after refactoring. Blue dashed lines indicate the simulation
relation; sets of producers and consumers are omitted to save space. (Color figure
online)

Ezample 2. Figure4a and b show two equivalent architecture models of the
example webshop system (Example 1), before and after refactoring; we discuss
Fig. 4c, the gray boxes around services, and the parenthetical mentioning of
“deployment models” in the caption in Sect.4. Architecture model A in Fig.4a
is the original (cf. Fig. 1).

Architecture model A in Fig. 4b results from “splitting” service db in A into
two new services: one that stores only product information, and one that stores
only order information. To see that A and A are equivalent, observe that prod
information flows from db to services chkout and price in A, while prod infor-
mation flows from service proddb to chkout and price in A. Thus, db in A is
partially simulated by proddb in /1; likewise, with respect to order information
flows, db in A is partially simulated by service orderdb in A. Thus, db in A is
collectively simulated by proddb and orderdb in A. Similarly, we can argue that
A is simulated by A. O

Ezample 3. To further illustrate (the intricacies of) Deﬁnition 4, suppose well-
formed architecture A precisely consists of I1 ty st s s ¢ € It Whlle
well- formed architecture A precisely consists of II* > s L shelt and it
s) —+ s" € I'. These architectures are not equivalent: no relatlon R ex1sts
such that A ~5 A. Notably, A £ pi A for Rf = {(s,s),(s,sh), (s, s,), (s",8")},
because s/, (resp. s},) in A is consumer (resp. producer), but s’ in A is not. Also,
A s Afor RY = {(s,5), (s,8}), (s, 55), (s",8")}, because s’ is missing from RY.
This also shows that well-formedness does not imply production/consumption
mimicry.

But, A ~pi A does hold after updating A such that s’ € II*'NI". In that case,
splitting s’ into s/, and s}, means the consumption and production responsibilities
of s" are divided over two new services; this can be perfectly fine in practice. O

SOA and the Button Problem 697

s1 $1 S1 S2 S1 82

flip tl = tT split tl\A/tz ; 83, S3a, S3b, {61} | = tll J{tz
S2 S2 S3 S3a S3b
S1 S1 S1 S2 S1 S2

flip (tT) = fi merge (tlj/ th ; {$3a, S3b }, 53> = t1Vt2
S2 S2 S3a S3b S3

t t t
addqueue(sy — s2;t, 1, 2, 8q) = S1 — Sq —— S2
¢ ¢ ¢ ¢
addcache(s1 —< $2;t, 81, 82, Sc, Srd) = 81 —— Sc ¢ Srd — 82

Fig. 5. Basic instances of example refactorings

The following theorem states that the equivalence relation ~ (Definition 4) is
a congruence relation for the composition operation & (Definition 3). To prove
the theorem, we need additional assumptions beside equivalence of the parts.
These additional assumptions state that after substitution, the services on the
“boundary” between the old/new parts and the remaining part (set Sp in the
theorem) must be indistinguishable from those before substitution (in terms of
their names and information flows). In other words, the interface must remain
the same: services on the boundary may not be renamed, added, or removed by
a refactoring.

Theorem 2.

Ay ~p, A,]
A S = Dom(A;) N Dom(As)
A Sg = DOIH(141> n DOIn(AQ) = dR. [Al ® Ay ~p A1 &5 Ag}

A V8,§.[[5R1§ A sESB] = s:é]
| A Vs,é.[[sRl 5§ A 5653] = Szé]_

3.3 Core Library of Refactorings

Now, every refactoring in our framework (Fig.3) is defined by a predicate—
function pair (P, f): predicate P identifies (sub)architectures that can take on
the role of A; (the old part), while function f describes the transformation of A;
into A; (the new part). An instance of a refactoring, then, is the transformation
of a concrete A; that satisfies P into A; according to f. We call refactoring
(P, f) correct if, for all Aj, satisfaction of P by A; implies that A; and f(A;)
are equivalent. Subsequently, Theorem 2 ensures that a correct refactoring for
A; can safely be applied in any architecture that contains Aj.

We defined a core library of provably correct refactorings: Flip, Split, Merge,
AddQueue, and AddCache. These refactorings were selected to form a minimal

698 S.-S. Jongmans et al.

Let A = (S, II,I',—,—). Predicates Flip?, Split?, Merge?, AddQueue?, AddCache?
are the smallest relations induced by the following rules:

SES A s1,82¢ 8 S'CSAsé¢S
Flip?(A) Split?(A; s, s1, s2,11) Merge?(A; S, s)

s1—3s3 As¢S s1—<sy A s, s ¢S
AddQueue?(A; t, s1, s2,5) AddCache?(A;t, s1, $2,,8")

Fig. 6. Predicates of refactorings in the core library

set of primitive building blocks to support our two case studies (Sect.2); due
to the generality of our framework, the core library can straightforwardly be
extended in future work, by need. Figure 5 shows basic instances of these refac-
torings; notationally, we use a semicolon to distinguish the old architecture to
which a refactoring is applied from additional information that is used to com-
pute the refactoring. Refactoring Flip converts pushes between corresponding
“reverse-pulls” and vice versa. Refactoring Split divides the responsibilities of
a single old service s3 over multiple new services sz, and s3, (practically, such
splitting is usually subject to additional constraints, such as information depen-
dencies, which can be manually added as model annotations in the implementa-
tion; Sect. 5, footnote 4). Dually, refactoring Merge combines the responsibilities
of multiple old services s3, and s3p into a single new service s3. Refactoring
Add-Queue introduces a special service sq to replace a push from service s; to
service sy; the idea is that “producer” s; now pushes information to “queue” sq
(instead of directly to s2), while “consumer” s pulls that information from sq
(at its own pace, independent of s1). Refactoring AddCache introduces special
services s. and s,q to replace a pull from service s; to service so; the idea is
that “consumer” s; pulls information from “cache” s¢, which is eagerly filled
through pushes from “reader” s,q, which gets the information by pulling from
“producer” ss.

Let X[y/Y] denote the substitution in X of element y for every element from
set Y (e, X[y/Y]=Xif XNY =0, and X[y/Y] = (X \Y)U{y} otherwise),
and let o : 2X*Y x 2YxXZ _, 9XXZ denote relational composition. Figures 6 and
7 show the predicates and functions that formally define the refactorings in the
core library. The following theorem states their correctness.

Theorem 3.

= Flip?(A) = 3R.[A ~p flip(A)]

— Split?(A; s, 51,52, T1) = IR.[A ~p split(4; s, 51,52, T1)]
— Merge?(4; S,s) = JR.[A ~f merge(4; S, s)]

— AddQueue?(4;sq) = JR.[A ~p addqueue(4; sq)]

— AddCache?(A; s, sza) = JR.[A ~p addcache(4; sc, 5:q)]

Together, Theorems2 and 3 support the refactoring framework shown in
Fig. 3. We note, though, that to apply Theorem 2 with Split and Merge (i.e., to

SOA and the Button Problem 699

satisfy the boundary condition), not only the split/merged service s must be in
the old/new parts, but also the services that s calls and those that call s.

4 Deployments and Sensitivities

The whiteboard-style architecture models and rigorous refactoring framework
presented in Sect. 3 offer a formal means of defining and reasoning about (the
correctness of) refactorings. However, the formalism so far does not tell us which
refactorings are “good” and which ones are “bad”; what is missing is a mech-
anism to evaluate the effectiveness of a refactoring. In this section, we define
non-quantitative sensitivity indicators based on which SOA developers can make
informed choices between candidate refactorings to solve the Button Problem.

Ezxample 4. To illustrate core concepts, we shall continue to develop the example
webshop system (Example 1) It actually suffers from exactly the same Button
Problem as the e-commerce system on which our simplified version is based.
Specifically, services chkout and price (in the system as modeled in Fig. 4a)
are sensitive to button-presses on service acc: once acc starts checking whether
orders have been paid for, the performance of chkout and price decreases, as
service db is unable to process the additional calls from acc without affecting
the calls from chkout and price. Checking payment statuses is, however, only a
low-priority task—it does not matter whether it happens immediately or in a
few hours—and it should definitely not hinder the high-priority front-end of the
system (which directly affects business). Refactoring the system to make chkout
and price insensitive to acc is therefore an important improvement. a

We start by observing that the sensitivity of a service to button-presses on
other services does not depend solely on its incoming push and pull calls, but
also on the machine on which it is deployed: if two architecturally independent
services are deployed on the same machine, an increased load on the one will
affect the performance of the other. To reason about service sensitivities, we
therefore need to take into account deployments as well. Let M denote the set
of all machines, ranged over by M.

Definition 5. A deployment model D is a tuple (A, M, M) where:

— A € Arch denotes an architecture model;
- M C M denotes a set of machines;
- M :Dom(A) — M denotes a service-machine allocation.

D denotes the set of all deployment models.

Ezxample 5. Reconsider Fig. 4; it actually shows deployment models, where gray
boxes around services represent machines. Thus, in Fig. 4a and b, there are three
machines (from top to bottom: a front-end machine, a database machine, and
an administration machine), whereas in Fig. 4c, there are four machines. a

700 S.-S. Jongmans et al.

Let A = (S,II, I'—,—=). Functions flip, split, merge, addqueue, addcache are de-
fined by the following equations:

flip(A) = (S, I, T, {t — (—=<)" | t € T}, {t = ()" |t € T})

split(A; s, s1,82,T1) = ((S\{s}) U {51732},H,F,*A>,%)
11 = {tHU [s1/{s}] |t€T1}U{tH1{ [s2/{s} | t ¢ T1}
I'={t— I''[s1/{s}] |t€T1}U{t»—>F [s2/{s}] | t & T1}
= ={t— {(sl,s)}OTO{(s s))}|teTi}u

{t = {(s2,8)} o —=0{(s;s2)} [t ¢ Tn}
—<={t— {(s1,9)} o?o{(s,sl)} |teTi}uU

{t = {(s2,8)} o —=o{(s,s2)} [t ¢ T\ }

((S\S/) U{s}, II, T, —, —=)
{t|—>H [s/S'] |t e T}

{t — I'[s/S"] |t611‘}
{
{

merge(A4;

tl—>(s><S)o*>o(S x s) |t €T}

»8)
H
I

H
—= tH(sxS)oHo(S xs)|teT}

addqueue(A;t, s1, s2,8) = (SU{s}, II, I, —, —=)
(1= 5D Ut (G5 {(s1,5)) U {(s1,9)})
(—\{t» —=huft = —=U{(s2,9)}}

—
—=

addcache(A;t, s1, s2, s, s)— (SU{s,s'}, H£F—> —)
(H\{tHﬁ})U{tHHU{(s s)}}
=(—\{t——hHU

{t’—) (H\{Sl,SQ} U{ Sl,S) (5 82)}}

Fig. 7. Functions of refactorings in the core library

Based on a deployment model of a system, we can compute two non-quantita-
tive indicators that we shortly use to formalize sensitivity: stress and delay. The
stress of a service is a non-quantitative abstraction of the number of incoming
calls that it needs to process. The higher the number of calls, the higher the
stress of the service and the lower its performance. The delay of a service is a
non-quantitative abstraction of the number of outgoing pulls whose processing
(by other services) it needs to await. The higher the number of pulls, the higher
the delay of the service and the lower its performance. The stress set of a service
s contains the services that affect the stress of s (including itself): if the stress
of a service in its stress set increases, then so does the stress of s. The delay set
of a service s contains the services that affect the delay of s.

Definition 6. Stress, Delay : D x S — 25 denote the indexed stress and delay
sets defined by the following equations:

Stress(D, s) = {s} UU{Stress(D, s') | s o4 s V M(s') = M(s)}
Delay(D, s) = |J{Stress(D, s') U Delay(D,s') | s =< &'}

where D = (A, M, M) and A= (S,T,II,I",—,—).

SOA and the Button Problem 701

Note that the delay set of a service s contains the stress set of every service s’
from which s pulls information. This is because the services in the stress set of s’
may negatively affect the rate at which s’ can process pulls by s: if the services
in the stress set of s’ heavily stress s’, then this rate goes down.

We can now formalize (in)sensitivity to button-presses as follows:

— If service s; is affected by service so regardless of s1’s calls to so, then s; is
forcibly sensitive to sq (i.e., s1 is forcibly sensitive to sy if so stresses s1).

— If service sy is affected by service ss because s; requires information from s
by means of a pull, then s; is voluntarily sensitive to sz (i.e., $1 is voluntarily
sensitive to sy if s delays s1).

— If service s; is unaffected by service s, it is insensitive to sa.

Definition 7. Z,V,F : D — S x S denote the indexed sensitivity relations
defined by the following equations:

F(D) ={(s,s") | s’ € Stress(D, s)}
V(D) ={(s,s") | s ¢ Stress(D,s) A s" € Delay(D,s)}
I(D) ={(s,s") | s ¢ Stress(D,s) A s" ¢ Delay(D,s)}

Remark: {F(D),V(D),Z(D)} partitions Dom(A) x Dom(A) for D = (A, M, M).

Ezxample 6. Recall from Example4 that front-end services chkout and price suf-
fer from the Button Problem in the example webshop system as modeled in
Fig. 4a. We shall apply two changes to alleviate this problem, but first, we show
that the deployment model in Fig.4a indeed confirms these undesirable sensi-
tivities.

Let D denote the deployment model in Fig. 4a. Because services chkout and
price are deployed on the same machine (and because they receive no external
calls), their stress set under D is {chkout, price}. However, because chkout and
price both pull from service db, their delay set contains all services that stress db,
including service acc. Thus, acc € Delay(D, chkout) and acc € Delay(D, price):
according to the model high-priority chkout and price are both voluntarily sen-
sitive to low-priority acc. Intuitively, if service acc pulls intensely from service
db (increasing the stress of db), the rate at which db can process pulls by chkout
and price is negatively affected (increasing the delay of chkout).

The first change is the application of refactoring Split to divide the responsi-
bilities of existing service db over new services proddb and orderdb; let D denote
the resulting deployment model in Fig.4b (Example2). Intuitively, this refac-
toring should make services chkout and price insensitive to button-presses on
service acc (because the only pulls they perform are directed to proddb, which
is architecturally independent of acc), but because proddb and orderdb are still
deployed on the same machine, the voluntary sensitivities actually remain: acc
can still stress orderdb, which subsequently affects the processing speed of proddb.

The second change is a redeployment that puts each of services proddb and
orderdb on its own machine; let D denote the resulting deployment model in
Fig.4c. A redeployment is not a refactoring, it does not change information

702 S.-S. Jongmans et al.

flows among services, and thus it is trivially behavior-preserving; it only changes
the service-machine allocation. By redeploying services according to D, stress is
no longer shared between proddb and orderdb; as a result, services chkout and
price become insensitive to acc, solving the Button Problem. Reasoning with
sensitivities in this way thus provides a formal justification to refactor. O

5 Implementation

Engine. We now explain how the formalization presented in the previous section
provides a rigorous foundation for the Elmo tool. To safeguard a tight correspon-
dence between the tool and its formalization, the lead developer of the tool is
closely involved in the formalization as well. Essentially, Elmo’s implementation
consists of two key components: data structures to store architecture models and
deployment models and a reasoning engine. The engine has two capabilities:

1. Computation of stress sets, delay sets, (in)sensitivities, and secondary perfor-
mance indicators (e.g., network depth)
2. Exploration of a system’s design space toward one or more insensitivity goals

These capabilities are invoked in Elmo’s two usage modes.

Interactive Mode. In interactive mode, after drawing an initial deployment model
of the system in Elmo, Capability 1 is invoked to get an overview of services that
potentially suffer from the Button Problem. The user can subsequently refactor
the model to evaluate and compare manually devised candidate solutions. Inter-
active mode is particularly suitable to get quick feedback on candidate solutions
(e.g., during live meetings with project members to explore the options), without
having to work out all details manually, which is laborious and error-prone. It is
therefore important that computation of performance indicators is fast. To give
an indication, the computation of stress sets, delay sets, and (in)sensitivities in
the model of the full e-commerce system (case study 1; Sect.2), which consists
of 60 services with 125 calls, takes less than a second (on regular hardware).

Automatic Mode. In automatic mode, if service s suffers from the Button Prob-
lem (e.g., found using Capability 1), the user can declaratively formulate a solu-
tion to the problem as a set of target insensitivities from s to other services; then,
Capability 2 is invoked to let Elmo automatically look for series of refactorings
that achieve the specified insensitivity goals by exploring the design space.

The design space of a system is essentially a directed graph, where vertices are
deployment models, and edges are refactorings (from the core library; Sect. 3.3)
and redeployments that transform (the architecture model of) a “source” deploy-
ment model into (the architecture model of) a “target” deployment model. To
generate a system’s design space, starting from an initial deployment model,
refactorings are applied and sensitivities are computed for the resulting models
to check if the specified insensitivity goals have been achieved (using Capability
1). In this way, the entire design space is generated and exhaustively explored;

SOA and the Button Problem 703

solutions are reported as soon as they are found, so if a satisfactory one is dis-
covered early, the rest of the search may be user-aborted long before exhaustive
exploration is done (it can also be bounded to a fixed depth from the start). We
employ a breadth-first exploration policy, as it finds solutions of few refactorings
(generally more attractive for businesses) sooner than those of many refactorings
(generally more expensive). A similar level of automation to explore a system’s
design space is very difficult to achieve when quantitative models are used, as it
is unclear how to get new quantitative data to instantiate refactored models.

The design space generated from an initial deployment model Dy is finite:
there are finitely many services and calls in Dy, there are only finitely many
ways in which refactorings create additional services and calls,® and the number
of machines is bounded by the number of services. As a result, under our formal-
ization, the Button Problem is decidable in the sense that Elmo can exhaustively
explore the entire design space for solutions. Design spaces do tend to get very
large, though, so even if they can be explored in finite time in theory, it may
not always be feasible in practice. As a result, pending future optimizations (see
below), Elmo’s automatic mode is useful in two scenarios:

— Live meetings: A question that typically arises during discussions among
project members is whether no “easy solutions” (i.e., those that require few
refactorings) are overlooked. In this case, Elmo’s automatic mode can be effec-
tively used with an explicit depth bound (i.e., maximum number of refactor-
ings that candidate solutions may consist of), significantly reducing the design
space to explore. If an easy solution is subsequently found that was previously
overlooked, this is of course valuable information; moreover, if no new easy
solution is found, this is valuable information, too, as it gives the project team
confidence (and objective data) to convince executives that a “hard solution”
is fundamentally needed. To give an indication, it takes only ten minutes to
automatically explore the design space of the full e-commerce system (case
study 1; Sect.2) up to depth 2.

— Off-line: In the absence of short deadlines, Elmo’s automatic mode can per-
fectly be run unrestricted, to fully explore the potentially huge design space.
A crucial observation is that the size of the design space is not a modeling
artifact, but an inherent characteristic of the problem. Without tool support,
SOA developers just have to plow through it by hand, which seems infeasible;
instead, only the more obvious directions are followed, based on experience
and best-practices, leaving a large part of the space unexplored and (poten-
tially better) solutions hidden. Our case studies confirm this (Sect.2): for
both systems, Elmo found better solutions that SOA developers did not find.

We are working on a number of optimizations to reduce the design space
wherever possible and speed up the exploration: (1) model annotations to fur-

3 More precisely, the only services that create additional services or calls are Split,
AddQueue, and AddCache. The number of times a service can be split is bound
by the number of types, while the services and calls added through AddQueue and
AddCache carry annotations that inform Elmo to not refactor them any further.

704 S.-S. Jongmans et al.

ther constrain which candidate solutions are truly acceptable;* (2) partial order
reduction to prune away commuting refactorings [20]; (3) parallelization.

6 Conclusion

Related Work. Other tools exist that aid in refactoring existing architectures.
These tools help to visualize architectures, detect code smells like dependency
cycles, or validate architectural rules (e.g. [4,6,11,21]). However, these tools
work at the implementation/code level and do not take deployment into account,
nor can they evaluate performance sensitivities like Elmo does. Moreover, a key
strength of Elmo is its rigorous foundation and formal correctness (i.e., the core
contribution of this paper); these other tools do not provide such guarantees.
Application performance monitoring tools (e.g. [2,7,8,18]) provide a quick
insight in interactions between services and aid in detecting performance prob-
lems. However, they can only do this when software is actually deployed; not
during design. These tools can identify bottlenecks, but they have only very lim-
ited support for finding solutions. Based on the formalization presented in this
paper, in contrast, Elmo can automatically compute series of refactorings.
UML component diagrams allow developers to document dependencies
between components/services. A key difference with our approach is that compo-
nent diagrams do not distinguish between pushes and pulls [14] (i.e., component
diagrams model dependencies between components, but they do not model the
direction and initiative of information flows that push and pull operations addi-
tionally convey); in our model, this is vital information to reason about refac-
torings and sensitivities. To provide such information in UML, complementary
behavioral diagrams (e.g., UML sequence diagrams) can be used, but then the
level of detail becomes too low for our purpose, while at the same time a mainte-
nance burden emerges. Also, mixing different types of diagrams is cumbersome.

Future Work. We are currently working along three axes: theory, implementa-
tion, and case studies. Along the theory axis, to better support situations where
the specified insensitivity goals are inconsistent (i.e., impossible to achieve), we

4 Elmo may find designs that solve the specified insensitivity goals, but that are

still unacceptable to SOA developers due to external constraints (e.g., the number
of machines exceeds the budget; some services should not be merged because it
requires reorganization of development teams). Instead of letting Elmo first explore
the entire design space and then filtering the unacceptable solutions, SOA developers
can specify additional model annotations upfront to constrain which refactorings
Elmo will try to apply; corners of unacceptable solutions in the design space are
skipped.

Specifically, in the initial deployment model, users can indicate that a service
must remain intact (i.e., it cannot be split, merged, or modified); that some services
cannot be merged; that some sets of types cannot be split; that a call must remain
intact (i.e., it cannot be flipped or replaced by a queue/cache); that some sets of
services must be collocated; that the number of machines must not exceed some
limit.

SOA and the Button Problem 705

are developing notions of Pareto efficiency of deployment models. The idea is to
devise formal machinery to compute Pareto frontiers: sets of deployment models
such that no deployment model in the set can be be further refactored to elimi-
nate an undesirable sensitivity without simultaneously (re)introducing one. We
are also considering to incorporate a form of simulation to provide quantitative
feedback on refactorings (e.g., [12]); this may be useful to analyze and reason
about, for instance, latency (currently not supported).

Along the implementation axis, we are working on the optimizations stated
in Sect.5 (model annotations; partial order reduction; parallellization).

References

1. Akamai Technologies Inc.: Akamai Online Retail Performance Report | Akamai
(2017). Accessed 28 June 2019. https://www.akamai.com/uk/en/about/news/
press/2017-press/akamai-releases-spring-2017-state-of-online-retail-performance-
report.jsp

2. AppDynamics LLC: Application Performance Monitoring and Management | App-
Dynamics (nd). Accessed 28 June 2019. https://www.appdynamics.com

3. Bertoli, M., Casale, G., Serazzi, G.: JMT: performance engineering tools for system
modeling. SIGMETRICS Perform. Eval. Rev. 36(4), 10-15 (2009)

4. Bischofberger, W., Kiihl, J., Loffler, S.: Sotograph — a pragmatic approach to source
code architecture conformance checking. In: Oquendo, F., Warboys, B.C., Morri-
son, R. (eds.) EWSA 2004. LNCS, vol. 3047, pp. 1-9. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24769-2_1

5. Brebner, P.: Real-world performance modelling of enterprise service oriented archi-
tectures: delivering business value with complexity and constraints (abstracts
only). SIGMETRICS Perform. Eval. Rev. 39(3), 12 (2011)

6. Caracciolo, A., Lungu, M.F., Nierstrasz, O.: A unified approach to architecture
conformance checking. In: WICSA, pp. 41-50. IEEE Computer Society (2015)

7. Datadog Inc.: Modern monitoring and analytics | Datadog (nd). Accessed 28 June
2019. https://www.datadoghq.com

8. Dynatrace LLC: Software intelligence for the enterprise cloud | Dynatrace (nd).
Accessed 28 June 2019. https://www.dynatrace.com

9. van Eekelen, M., Jongmans, S.S., Lamers, A.: Non-Quantitative Modeling of
Service-Oriented Architectures, Refactorings, and Performance. Technical Report
TR-OU-INF-2017-02, Open University of the Netherlands (2017)

10. Elmo Demo (2018). Accessed 28 June 2019. https://youtu.be/Oi9%kxqh_GBs

11. Headway Software Technologies Ltd.: Structurel01 Home — Structurel0l (nd).
Accessed 28 June 2019. https://structure101.com

12. Johnsen, E.B., Pun, K.I., Tapia Tarifa, S...: A formal model of cloud-deployed
software and its application to workflow processing. In: SoftCOM, pp. 1-6. IEEE
(2017)

13. Juan Ferrer, A., et al.: OPTIMIS: a holistic approach to cloud service provisioning.
Future Gener. Comp. Syst. 28(1), 6677 (2012)

14. Kobryn, C.: Modeling components and frameworks with UML. Commun. ACM
43(10), 31-38 (2000)

15. Kounev, S.: Performance modeling and evaluation of distributed component-based
systems using queueing petri nets. IEEE Trans. Softw.Eng. 32(7), 486-502 (2006)

https://www.akamai.com/uk/en/about/news/press/2017-press/akamai-releases-spring-2017-state-of-online-retail-performance-report.jsp
https://www.akamai.com/uk/en/about/news/press/2017-press/akamai-releases-spring-2017-state-of-online-retail-performance-report.jsp
https://www.akamai.com/uk/en/about/news/press/2017-press/akamai-releases-spring-2017-state-of-online-retail-performance-report.jsp
https://www.appdynamics.com
https://doi.org/10.1007/978-3-540-24769-2_1
https://www.datadoghq.com
https://www.dynatrace.com
https://youtu.be/Oi9kxqh_GBs
https://structure101.com

706

16.

17.

18.

19.

20.

21.

22.

S.-S. Jongmans et al.

Lamers, A., van Eekelen, M., Jongmans, S.-S.: Improved architectures/
deployments with elmo. In: Liu, X., et al. (eds.) ICSOC 2018. LNCS, vol. 11434, pp.
419-424. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17642-6_36
Milner, R.: Communication and concurrency. PHI Series in computer science. Pren-
tice Hall, New Jersey (1989)

New Relic Inc.: New Relic | Deliver more perfect software (nd). Accessed 28 June
2019. https://www.newrelic.com

Pautasso, C., Zimmermann, O., Amundsen, M., Lewis, J., Josuttis, N.M.: Microser-
vices in practice, part 1: reality check and service design. IEEE Software 34(1),
91-98 (2017)

Peled, D.: Partial-order reduction. In: Clarke, E., Henzinger, T., Veith, H., Bloem,
R. (eds.) Handbook of Model Checking, pp. 173-190. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-10575-8_6

SonarSource SA: Continuous Inspection | SonarQube (nd). Accessed 28 June 2019.
https://www.sonarqube.org

Zhu, L., Liu, Y., Bui, N.B., Gorton, I.: Revel8or: model driven capacity planning
tool suite. In: ICSE, pp. 797-800. IEEE Computer Society (2007)

https://doi.org/10.1007/978-3-030-17642-6_36
https://www.newrelic.com
https://doi.org/10.1007/978-3-319-10575-8_6
https://www.sonarqube.org

	SOA and the Button Problem
	1 Introduction
	2 Background
	3 Architectures and Refactorings
	3.1 Architecture Models
	3.2 Refactoring Framework
	3.3 Core Library of Refactorings

	4 Deployments and Sensitivities
	5 Implementation
	6 Conclusion
	References

