Skip to main content

Turbulence Enhancement for SPH Fluids Visualization

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11792))

Abstract

In this paper, we present a novel method to restore turbulence details for Smoothed Particle Hydrodynamics (SPH) using the viscosity based vorticity field as a cooperative project of numerical simulation and computer visualization. One of the major issues that hinder the accuracy of the fluid simulation is the numerical dissipation, which comes along with the discretization of space and time. Therefore unrealistic results are unavoidable. To recover kinetic energy from the numerical dissipation, we propose a vorticity refinement solver for SPH fluids without extra restriction to the time step. In our method, the vorticity field of the fluid is enhanced proportional to the loss of energy due to the viscosity force. This means our method not only can increase existing vortices but also creating additional turbulence. Compared with Biot-Savart integrals, our method is more efficient by applying stream function to recover the velocity field from the vorticity field.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Monaghan, J.J.: Simulating free surface flows with sph. J. Comput. Phys. 110(2), 399–406 (1994)

    Article  Google Scholar 

  2. Ihmsen, M., Orthmann, J., Solenthaler, B., Kolb, A., Teschner, M.: SPH fluids in computer graphics

    Google Scholar 

  3. de Goes, F., Wallez, C., Huang, J., Pavlov, D., Desbrun, M.: Power particles: an incompressible fluid solver based on power diagrams. ACM Trans. Graph. 34(4), 50:1–51:11 (2015)

    Article  Google Scholar 

  4. Bender, J., Koschier, D., Kugelstadt, T., Weiler, M.: Turbulent micropolar SPH fluids with foam. IEEE Trans. Vis. Comput. Graph. 25, 2284–2295 (2018)

    Article  Google Scholar 

  5. Fedkiw, R., Stam, J., Jensen, H.W.: Visual simulation of smoke. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 15–22. ACM (2001)

    Google Scholar 

  6. Macklin, M., Müller, M.: Position based fluids. ACM Trans. Graph. (TOG) 32(4), 104 (2013)

    Article  Google Scholar 

  7. Lentine, M., Aanjaneya, M., Fedkiw, R.: Mass and momentum conservation for fluid simulation. In: Proceedings of the 2011 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 91–100. ACM (2011)

    Google Scholar 

  8. Jang, T., Kim, H., Bae, J., Seo, J., Noh, J.: Multilevel vorticity confinement for water turbulence simulation. Vis. Comput. 26(6–8), 873–881 (2010)

    Article  Google Scholar 

  9. Weißmann, S., Pinkall, U.: Filament-based smoke with vortex shedding and variational reconnection. ACM Trans. Graph. (TOG) 29, 115 (2010). Citeseer

    Article  Google Scholar 

  10. Weißmann, S., Pinkall, U., Schröder, P.: Smoke rings from smoke. ACM Trans. Graph. (TOG) 33(4), 140 (2014)

    Article  Google Scholar 

  11. Pinkall, U., Thuerey, N., Eberhardt, S., Weissmann, S.: Hierarchical vorticity skeletons. In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, - SCA, pp. 1–11 (2017)

    Google Scholar 

  12. Zhu, B., Yang, X., Fan, Y.: Creating and preserving vortical details in SPH fluid. In: Computer Graphics Forum, vol. 29, pp. 2207–2214. Wiley Online Library (2010)

    Google Scholar 

  13. Golas, A., Narain, R., Sewall, J., Krajcevski, P., Dubey, P., Lin, M.: Large-scale fluid simulation using velocity-vorticity domain decomposition. ACM Trans. Graph. (TOG) 31(6), 148 (2012)

    Article  Google Scholar 

  14. Zhang, X., Bridson, R., Greif, C.: Restoring the missing vorticity in advection-projection fluid solvers. ACM Trans. Graph. (TOG) 34(4), 52 (2015)

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from the National Key Research and Development Program of China (No. 2016YFB0700500), and the National Science Foundation of China (No. 61873299, No. 61702036, No. 61572075), and Key Research Plan of Hainan Province (No. ZDYF2018139).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojuan Ban .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, Y., Ban, X., Peng, Y., wang, X., Liu, S., Zhou, J. (2019). Turbulence Enhancement for SPH Fluids Visualization. In: Luo, Y. (eds) Cooperative Design, Visualization, and Engineering. CDVE 2019. Lecture Notes in Computer Science(), vol 11792. Springer, Cham. https://doi.org/10.1007/978-3-030-30949-7_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30949-7_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30948-0

  • Online ISBN: 978-3-030-30949-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics