Skip to main content

A Generic Dynamic Logic with Applications to Interaction-Based Systems

  • Chapter
  • First Online:
From Software Engineering to Formal Methods and Tools, and Back

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11865))

  • 1166 Accesses

Abstract

We propose a generic dynamic logic with the usual diamond and box modalities over structured actions. Instead of using regular expressions of actions our logic is parameterised by the form of the actions which can be given by an arbitrary language for complex, structured actions. In particular, our logic can be instantiated by languages that describe complex interactions between system components. We study two instantiations of our logic for specifying global behaviours of interaction-based systems: one on the basis of global session types and the other one using UML sequence diagrams. Moreover, we show that our proposed generic logic, and hence all its instantiations, satisfy bisimulation invariance and a Hennessy-Milner theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Städtische Galerie im Lenbachhaus, München, https://www.lenbachhaus.de/?L=1.

  2. 2.

    This means that for any atomic action a and any state s there are at most finitely many outgoing transitions labelled with a.

References

  1. Andrade, L., et al.: AGILE: software architecture for mobility. In: Wirsing, M., Pattinson, D., Hennicker, R. (eds.) WADT 2002. LNCS, vol. 2755, pp. 1–33. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-40020-2_1

    Chapter  Google Scholar 

  2. Castagna, G., Dezani-Ciancaglini, M., Padovani, L.: On global types and multi-party sessions. Log. Methods Comput. Sci. 8(1), 1–45 (2012)

    Article  MathSciNet  Google Scholar 

  3. Cengarle, M.V., Knapp, A., Mühlberger, H.: Interactions. In: Lano, K. (ed.) UML 2-Semantics and Applications, pp. 205–248. Wiley, Hoboken (2009)

    Google Scholar 

  4. Deniélou, P.-M., Yoshida, N.: Multiparty session types meet communicating automata. In: Seidl, H. (ed.) ESOP 2012. LNCS, vol. 7211, pp. 194–213. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28869-2_10

    Chapter  Google Scholar 

  5. Gnesi, S., Mazzanti, F.: An abstract, on the fly framework for the verification of service-oriented systems. In: Wirsing and Hölzl [22], pp. 390–407

    Google Scholar 

  6. Groote, J.F., Mousavi, M.R.: Modeling and Analysis of Communicating Systems. MIT Press, Cambridge (2014)

    Book  Google Scholar 

  7. Object Management Group. Unified Modeling Language 2.5. http://www.omg.org/spec/UML/2.5. Accessed 21 May 2019

  8. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge (2000)

    Book  Google Scholar 

  9. Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency. J. Assoc. Comput. Mach. 32, 137–162 (1985)

    Article  MathSciNet  Google Scholar 

  10. Hennicker, R.: Role-based development of dynamically evolving esembles. In: Fiadeiro, J.L., Ţuţu, I. (eds.) WADT 2018. LNCS, vol. 11563, pp. 3–24. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23220-7_1

    Chapter  Google Scholar 

  11. Hennicker, R., Wirsing, M.: Dynamic logic for ensembles. In: Margaria, T., Steffen, B. (eds.) ISoLA 2018. LNCS, vol. 11246, pp. 32–47. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03424-5_3

    Chapter  Google Scholar 

  12. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In: Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL 2008), pp. 273–284. ACM (2008)

    Google Scholar 

  13. Knapp, A., Mossakowski, T.: UML interactions meet state machines-an institutional approach. In: Bonchi, F., König, B. (eds.) 7th Conference on Algebra and Coalgebra in Computer Science, CALCO 2017, 12–16 June 2017, Ljubljana, Slovenia, LIPIcs, vol. 72, pp. 15:1–15:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2017)

    Google Scholar 

  14. Knapp, A., Wuttke, J.: Model checking of UML 2.0 interactions. In: Kühne, T. (ed.) MODELS 2006. LNCS, vol. 4364, pp. 42–51. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-69489-2_6

    Chapter  Google Scholar 

  15. Lange, J., Tuosto, E., Yoshida, N.: From communicating machines to graphical choreographies. In: POPL 2015, pp. 221–232 (2015)

    Google Scholar 

  16. Micskei, Z., Waeselynck, H.: The many meanings of UML 2 sequence diagrams: a survey. Softw. Syst. Model. 10(4), 489–514 (2011)

    Article  Google Scholar 

  17. Morin, R.: Recognizable sets of message sequence charts. In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 523–534. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45841-7_43

    Chapter  Google Scholar 

  18. Pugliese, R., Tiezzi, F.: A calculus for orchestration of web services. J. Appl. Log. 10(1), 2–31 (2012)

    Article  MathSciNet  Google Scholar 

  19. ter Beek, M.H., Carmona, J., Hennicker, R., Kleijn, J.: Communication requirements for team automata. In: Jacquet, J.-M., Massink, M. (eds.) COORDINATION 2017. LNCS, vol. 10319, pp. 256–277. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59746-1_14

    Chapter  Google Scholar 

  20. ter Beek, M.H., Gnesi, S., Mazzanti, F.: From EU projects to a family of model checkers. In: De Nicola, R., Hennicker, R. (eds.) Software, Services, and Systems. LNCS, vol. 8950, pp. 312–328. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15545-6_20

    Chapter  Google Scholar 

  21. Tuosto, E., Guanciale, R.: Semantics of global view of choreographies. J. Log. Algebr. Meth. Program. 95, 17–40 (2018)

    Article  MathSciNet  Google Scholar 

  22. Wirsing, M., Hölzl, M. (eds.): Rigorous Software Engineering for Service-Oriented Systems. LNCS, vol. 6582. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20401-2

    Book  Google Scholar 

Download references

Acknowledgement

We would like to thank Alexander Knapp for very helpful comments and remarks concerning the interpretation of UML sequence diagrams and corresponding tools.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rolf Hennicker or Martin Wirsing .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hennicker, R., Wirsing, M. (2019). A Generic Dynamic Logic with Applications to Interaction-Based Systems. In: ter Beek, M., Fantechi, A., Semini, L. (eds) From Software Engineering to Formal Methods and Tools, and Back. Lecture Notes in Computer Science(), vol 11865. Springer, Cham. https://doi.org/10.1007/978-3-030-30985-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30985-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30984-8

  • Online ISBN: 978-3-030-30985-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics