
Formal Methods in Designing Critical
Cyber-Physical Systems

Mehrnoosh Askarpour1, Carlo Ghezzi1, Dino Mandrioli1, Matteo Rossi1, and
Christos Tsigkanos2

1 Politecnico di Milano, DEIB, Milan, Italy
name.surname@polimi.it

2 Vienna University of Technology, Vienna, Austria
name.surname@tuwien.ac.at

Abstract. Cyber-Physical Systems (CPS) are increasingly applied in
critical contexts, where they have to support safe and secure operations,
often subject to stringent timing requirements. Typical examples are sce-
narios involving automated living or working spaces in which humans op-
erate, or human-robot collaborations (HRC) in modern manufacturing.
Formal methods have been traditionally investigated to support model-
ing and verification of critical systems. In this paper, we review some
of the main new challenges arising in the application of formal methods
to modeling and verification of CPS. We do that by presenting two case
studies (emergency response in a smart city and a smart manufacturing
system), reflecting past work of the authors, from which some general
lessons are distilled.

Keywords: Cyber-Physical Systems (CPS)· Formal Model· Formal Ver-
ification· Model-based Design

1 Introduction

The revolutionary advancements of embedded computing have led to a genera-
tion of systems that integrate computing and physical processes, called cyber-
physical systems (CPS) [23,2]. Such systems incorporate functions of sensing,
actuation, and control while making decisions in a predictive or adaptive man-
ner. This manifests in various novel fields such as the Internet of Things (IoT)
[3]. The use of CPSs is growing every day with the developments of new ap-
plication areas. For example, CPSs enable the creation of smart spaces [29,26],
i.e., spatial environments including both cyber and physical elements and sup-
porting new kinds of advanced functionalities. A particular case of smart spaces
are smart factories [33], where computational and communication features are
embedded in a manufacturing workspace to combine the flexibility of humans
with the efficiency of machines and to allow for collaboration between them
in a safe way [25]. To design such new kinds of complex systems, it is crucial
to analyze, specify, and then verify their expected properties. Often properties
are classified in functional vs non-functional ones, where the former capture the

2 Askarpour et al.

expected results of the system, whereas the latter correspond to its complemen-
tary properties—such as space, time, safety, security, fault tolerance, continuous
adaptation, communication and process time, energy, or cost—and are no less
relevant than the functional ones.

Model-based techniques could considerably simplify the design of such com-
plex systems, and make the analysis of all of their required properties precise and
rigorous. Although the separation of cyber and physical concerns in the mod-
eling and design of CPSs could be beneficial for tractability, it complicates the
assessment of the impacts and tradeoffs of the two domains [22]. The interplay
between cyber and physical elements raises new challenges, and their effective
orchestration requires semantic models that reflect properties of interest in both
of them [19].

Formal languages should be defined to support specification both of a formal
model of a CPS—e.g., a smart space—and of the properties it is expected to
satisfy. These models could be input to automated formal verification tools to
enable analysis and validation during design. Furthermore, the physical aspect of
CPSs brings more uncertainty and dynamism into the picture w.r.t traditional
embedded systems, due to the runtime physical intercommunication with the
world (e.g., human-robot interaction, sensing or actuating on the elements of
the environment). Thus, formal methods should also be brought to runtime,
to support runtime verification and possible automatic adaptations to detected
changes.

In this paper, we report the results of our analysis of the state of the art con-
cerning the main issues regarding the modeling of CPSs and discuss the value of
formal methods in resolving them. The paper reviews three issues that we found
highly critical and then describes two case-studies –a smart city and a smart
factory– designed and verified by formal modeling and validation techniques.

The rest of this paper is structured as follows: Section 2 argues about the most
important challenges in the modeling of CPSs and the use of formal methods
to address them; Section 3 reports two case-studies designed and verified in a
formal manner; finally, Section 4 concludes.

2 Key Factors in the Design of CPSs

This section introduces a set of common, critical issues that have been raised in
the literature concerning the design of CPSs.

2.1 Space and Time

From a software engineering perspective, cyber-physical systems live within a
dynamic spatial environment populated with devices, human agents, changing
context and/or localized resources. This can be abstracted into a cyber-physical
space (CPSp), a structure indicating a spatial environment comprised of both
computational and communication elements, which are interrelated and form
some composite topological structure [29]. Such cyber-physical spaces are much

Formal Methods in Designing Critical Cyber-Physical Systems 3

more dynamic than traditional—physical—spatial environments used to be. Hu-
mans or devices moving around connecting and disconnecting from wireless net-
works are an example of entities dynamically performing actions while operating
in a composite CPSp. Such dynamics have to be considered in the design of sys-
tems operating within spatial environments. Moreover, as for any other software-
intensive system, maintaining a CPSp which operates in a dynamic environment
is faced with the manifold challenges of software system evolution [13,32] and
demands for operational management to observe a constantly changing space
and potentially react to environmental changes.

The physical environment in which CPSs operate or where CPSps are real-
ized, is perceived not only across space, but also over time. Hence, CPSs exhibit
spatio-temporal features and their correct behavior is defined in both space and
time. A formal representation of a CPS should predicate upon the flow of events
along time, while reflecting spatial characteristics such as the distribution of sys-
tems in space [6], including positions or distances of different components. Such
spatial characteristics also affect the timing of events within the system and
the overall execution workflow, as only particular spatial distributions of objects
would lead to the correct and safe execution of the business logic. Moreover, even
though the resulting models should be a reflection of the physical reality, they
should also suit formal verification. Hence, these models are usually an approx-
imation of the reality resulting by appropriately abstracting the temporal [11]
and spatial domains in which the system lives. In other words, the formal models
of CPSs, like those of other types of systems, trade precision and exhaustiveness
for simplicity and tractability and accept some level of abstraction.

Let us illustrate through an example the importance of capturing both space
and time requirements in CPSs. Consider a manufacturing workspace in which
humans and robots collaborate without any fences or physical segregation be-
tween them. A formal model of such a system needs to capture different temporal
requirements of the collaboration (e.g., what the expected response time is, or
what is the sequencing of jobs the robot should execute before the operator) and
also spatial characteristics of the workspace (e.g., which mobility paths are more
frequent for robots, where the exact place for execution of each job is, which
areas are more prone to more frequent and dangerous contacts between humans
and robots). It is important for robots and humans to perform the right action,
at the right time and in the right place. For example, assume that a human and
an industrial robotic arm with a screwdriver end-effector are expected to per-
form a collaborative pick-and-place task (e.g., picking workpieces with different
shapes from a bin, then place and screwdrive them on a pallet). The correct way
of performing this task is the following: “first the operator picks the workpieces
one by one and places them on the pallet, then she removes her hand from the
pallet; only then the robot end-effector moves above the pallet and starts to
screwdrive the pieces”. If the operator violates this instruction and, for example,
tries to slightly move the workpiece while the robot is screwdriving it, then the
execution may be interrupted—hence prolonged—or, worse, the operator could
get hurt.

4 Askarpour et al.

The interplay between space and time and its relevance to the satisfaction
of requirements is exacerbated for novel types of pervasive systems, technolo-
gies and paradigms such as the Internet of Things (IoT), which often feature
physically distributed entities roaming inside the physical space [30], exhibit-
ing collective behaviors. Spatially-distributed IoT systems live within a dynamic
spatial environment populated with devices, a changing context and/or local-
ized resources. This spatial environment is often only partially known—or even
unknown—at design time, which creates the need for suitable reasoning fa-
cilities and analyzable models used to observe, evaluate and react to a con-
stantly changing space [35]. Frequently, these activities must be performed dur-
ing the system operation, when analysis techniques working at runtime ensure
that possible changes occurring due to the evolving spatial distribution and
context—for example due to actions performed by active agents, or by the ex-
ternal environment—do not lead to violations of requirements [28]. This can
be achieved through an autonomic, self-adaptive approach such as a MAPE
loop [18]: (M)onitoring the spatial environment for changes, (A)nalyzing possi-
ble requirement violations, (P)lanning necessary countermeasures (e.g., moving
a device from one point in space to another) and then (E)xecuting such actions
and updating the shared model of space for the next loop.

2.2 Human-Robot Interaction

A distinguishing feature of many smart space applications is the presence of
interactions between humans and robots. We can broadly classify the types of
robots involved in these applications in the following categories:

– Robots with interface devices are such that the operator usually has no
physical contact with the robot and the communication occurs via interface
devices. They are used in a variety of domains such as healthcare, manu-
facturing, disaster management. Examples are medical and surgeon robots,
large manufacturing robots and earthquake rescue robots.

– Service provider or domestic robots are usually employed as caregivers
for elderlies or people with physical disabilities. Interaction with this type
of robots occurs via interfaces, but it also features some level of physical
contact with human operators (i.e., the care receivers). In the applications
where these types of robots are used, the output of the robot is not contin-
uously dependent on human inputs, and once a command is received from
the interface device, the robot proceeds with its execution. In these scenarios
humans are mostly passive receivers of services.

– Collaborative robots should attain a predefined goal by working in col-
laboration with humans. The specified objective—i.e., a job—is typically
divided into atomic parts—i.e., actions— that must be carried out either by
humans, or by robots, or by both of them concurrently. In these scenarios
robots coordinate their actions with those of the humans—e.g., the operator
must place a workpiece in position x before the robot can screwdrive it there.

Formal Methods in Designing Critical Cyber-Physical Systems 5

These are general types of robots and could potentially be applied in very dif-
ferent areas, from disaster response to entertainment.

In general, the presence of humans (either as physical participants, or as
command triggers)—who are, by their own nature, unpredictable agents—raises
significant modeling issues when one wants to guarantee a certain level of safety
and reliability for the application. To capture the unpredictable nature of hu-
man actions, stochastic models could be defined to describe the probability with
which a certain behavior is taken, thus allowing designers to focus on the most
probable ones. Building meaningful stochastic models, however, requires huge
and reliable log data concerning human actions—and in particular human in-
teractions with robots—to identify suitable probabilistic distributions (e.g., how
probable it is for the operator to make an error and perform an action ear-
lier or later than when it needs to be done). Unfortunately, such data logs are
usually not available. To overcome this problem, nondeterministic modeling ap-
proaches can be used, which render unpredictability by describing alternative
behaviors that are chosen in a nonobservable manner. Formal models could, for
example, capture reasonably foreseeable human behaviors, for different types of
human operators (experienced user vs novice user, attentive vs absent-minded,
etc.). Nondeterministic and stochastic models could also be combined; for exam-
ple, nondeterminism could be used to describe the choices that an operator can
make based on her level of fatigue, but each fatigue level could have a different
probability.

2.3 Managing Uncertainty at Runtime through Self-Adaptation

The difficulty of requirement validation for CPSs is exacerbated by the fact that
they include both computational and physical aspects, they are susceptible to
emergent behaviors, and their operational environment is often only partially
known—or even unknown—at design time. Therefore, requirement analysis—
preferably through formal verification—is a key activity in the design of CPSs.
Requirement analysis consists in evaluating whether the system (as deployed
in some environment) satisfies some intended behavior. However, the extent of
the assurances obtained through the analysis depends on whether they address
concerns that arise at design time or at runtime.

A consequence of relying only on design time verification is that the quality
of provided guarantees depends strongly on the quality of the generated model.
If the people who brainstormed to build the model have left out even only one
possible situation, serious problems could occur during system operation (e.g.,
issues arising from people forgetting to take back their cards from an ATM).
Consider, for example, a smart manufacturing facility where both humans and
robots operate. In addition to the sources of uncertainty that are known at de-
sign time (e.g., human errors, malfunctioning sensors and actuators), unexpected
events could occur during system operation, which had not been foreseen at de-
sign time. Examples of such events could be the unplanned entrance of another
human operator in the workcell, or the unloading of workpieces to be grabbed
by a robot that are geometrically unknown for the robot gripper. Even sources

6 Askarpour et al.

of uncertainty that are foreseeable at design time can be difficult to manage at
runtime, as they could generate special sub-cases that have not been analyzed
during design. For example, the fact that humans might make errors when in-
teracting with a robot is quite expectable, but it is very difficult to consider all
possible such errors and their potential critical consequences.

The above example shows that satisfaction of certain requirements cannot
always be guaranteed at design time. Instead, evaluation must be deferred at run-
time, and subsequently their satisfaction must be ensured by adaptively generat-
ing counteractions that can prevent the system from violating requirements [31].
These counteractions, in turn, may threaten the satisfaction of system require-
ments. Uncertainty and its attributes has been investigated in the past [21,10],
and classified [21] by (1) the place where it manifests, (2) its level, and (3) its
nature—i.e., whether it originates from imperfect knowledge or from variabil-
ity. Research on self-adaptive systems has long tackled managing uncertainty at
runtime, considering both functional and non-functional requirements [4].

3 Case-studies

In this section we report on two exemplars of critical CPSs where formal methods
prove to be highly useful. The first one is a disaster scenario within a smart city,
highlighting both design time reasoning of a space-intensive CPS as well as its
runtime verification. The second is a smart factory, highlighting the validation
of domain-specific requirements concerning the human operator’s physical safety
during the interaction with a robot system. Different formalisms and modeling
approaches are adopted to enable reasoning on the two case studies, showing the
potential that formal methods can bring to the design and analysis of complex
CPSs.

Let us remark that the main concerns in the two case studies are different.
The first example is more oriented towards the verification of general concepts
(safety, reliability, integrity and confidentiality) with stronger focus on spatial
system aspects and their modeling; the second one verifies domain-specific re-
quirements (physical safety of human while interacting with the robot system)
with a stronger focus on temporal aspects.

3.1 Case study one: Reasoning on Space-Intensive CPS

In this section, we introduce a case study concerning the emergency response
in a smart city as an illustrative scenario of a space-intensive CPS, reasoning
upon which is enabled by its consideration as a cyber-physical space (CPSp).
We describe the scenario in a succinct manner; the interested reader can refer
to [29] for a complete treatment. The scenario presented is a generalized case
which can be instantiated for a variety of spatio-temporal reasoning cases. We
begin with a brief description of the static structure of the cyber-physical space
and then we consider its dynamics—i.e., how the space may change over time.
Subsequently, we introduce two characteristic analysis scenarios exposing typical

Formal Methods in Designing Critical Cyber-Physical Systems 7

design challenges that are relevant for design and operation. We suggest that
satisfaction of critical requirements arising from these scenarios can be either
checked at design time, or at runtime.

Autonomous Unmanned Aerial Vehicles (UAVs) can be used as radio relay
platforms in environments characterized by poor connectivity. These environ-
ments can be regions where no global connectivity exists, e.g. due to a disaster
or even absence of line of sight between ground transmitters and receivers. We
consider a setting of UAV-carried communication infrastructure [34] in a disaster
scenario for smart city applications such as emergency response. The setting we
present, including the model and its dynamics, is a generalized case [9] which
can be concretized for a variety of urban warfare, search and rescue, home-
land security or surveillance scenarios where autonomous UAVs operate in a
space-dependent environment and global system properties need to be formally
verified.

Emergency Response in a Smart City. Communication is disabled in a city due
to a disaster; search and rescue must be performed. Parts of the city may be
unsafe, and victims may be stranded in various locations. Autonomous UAVs
are dispatched to locate and provide communication infrastructure to victims,
leading them to safety. UAVs move in the city environment in specific ways, by
flying over buildings. UAVs carry short-range antennas, and victims are able to
connect when they are in the vicinity. If a UAV is close to a victim, it can lead her
to a safe zone. A safe zone is some part of the city which can lead to a hospital.
To utilize our approach, the designer specifies the model, the ways UAVs can
move and desired properties of the system, specification steps illustrated in the
following.

Modeling Space and its Dynamics. In general, graphs are a natural way to
model the topology of a CPSp, such as the urban scenario at hand. The basic
intuition is that entities are represented by nodes, while relations between entities
are represented by edges. We distinguish two fundamental kinds of relations
between entities to which we refer to as containment and linking. Containment
signifies that an entity is located within another, while linking expresses the
fact that two entities are connected in some way. In Figure 1, the topological
structure of a city is presented, where buildings, roads and city blocks form a
city. Various such entities may be connected, signifying that one can physically
move from e.g. a building to an adjacent one. Such a model may enjoy formal
semantics.

Bigraphs [20] are an emerging formalism for structures in ubiquitous com-
puting, dealing with both containment and linking among entities and thus fit
our intuition of modelling the topology of a cyber-physical environment. We use
the basic notion of a bigraph which consists of two superimposed yet orthogonal
graphs: a place graph is a forest, a set of trees defined over a set of nodes, and
a link graph is a hypergraph over the same set of nodes, where edges between
nodes can cross locality boundaries. Nodes are typed, and the node types are
called controls in the bigraphical terminology.

8 Askarpour et al.

We abstain from providing details of the formalism and instead rely on intu-
ition; the interested reader can refer to the vast body of literature on the topic
for complete definitions and proofs the bigraphical theory [20]. Bigraphs can be
described in algebraic terms according to Formulae 1a-1e. Basically, nodes are
written in terms of their controls, i.e., names that define a node’s type, such as P,
Q, and U. The hierarchical structure of nodes through containment relationships
is expressed according to Formula 1a, while the notation in Formula 1b is used to
indicate that two nodes are placed at the same hierarchical level. Bigraphs form
rooted hierarchies; in Formula 1c, W and R indicate different roots. Bigraphs can
contain sites, a special kind of node that denotes a placeholder, indicating the
presence of unspecified nodes. A node may contain any number of sites, which
are simply indexed in the context of their defining bigraph, as expressed in For-
mula 1d. Second, connections of an edge with its node are treated as separate
elements of a bigraph, referred to as ports. Port names appear in the algebraic
notation; in Formula 1e, the node of control K has port names in w. These port
names are used to identify nodes, which may be omitted if a single instance node
of a given type exists in the bigraph, and to express the linking structure: ports
with the same name are connected forming a hyper-edge in the link graph. Port
names prefixed by ’@’ are variables ranging over the names of a bigraph.

P.Q Nesting pP contains Qq

P | Q Juxtaposition of nodes

W ‖ R Juxtaposition of bigraphs

´i Site numbered i

Kw Node with control K having ports w

(1a)

(1b)

(1c)

(1d)

(1e)

In practice, we can obtain a bigraphical model of space for our smart city case
study from a domain model; this occurs in two steps. To obtain the basic topo-
logical structure of a city, we automatically extract a bigraph from city models
described in CityGML [14], a widely used XML-based standard for the exchange
of city models, widely used within the architectural informatics discipline. Sub-
sequently, further entities of interest such as UAVs and disaster victims are
placed in that model. A conceptual representation of the topological structure
extracted from a CityGML model with 20 buildings is illustrated in Figure 1.
A 2D projection of the roads and buildings is shown in light grey in the back-
ground, while the conceptual bigraphical structure is shown in the foreground.
The bigraph exposes the following placing structure: A City node serves as root
of the extracted bigraph. It contains nodes of type Road which in turn contain
nodes of type RoadSegment and Crossroad, a road segment representing the part
of a road between two crossroads. Moreover, a City node contains nodes of type
Block, a block representing the area surrounded by road segments. Blocks may
contain an arbitrary number of Building nodes, each one representing a building.
Auxiliary nodes (e.g. for City and Road) are not shown in Figure 1 for sake of
readability. Other entities are present in the city as well, such as hospitals, air-
ports, etc. As for the linking structure of the extracted bigraph, each building
is connected to the building next to it (represented by blue links in Figure 1),
and to a block’s surrounding road segment if it is located in the respective block

Formal Methods in Designing Critical Cyber-Physical Systems 9

boundary (represented by green links). Moreover, road segments are linked to
the crossroads being connected by that road segment (represented by red links).
An equivalent, partial algebraic representation of the city space is found in For-
mula 3; the formula shows how two buildings, Bld2 and Bld4 (found within the
same block Blk1), are connected through a link C4, signifying that UAV3 may go
from one to another. A Hospital is also contained in the city block (not shown
in Figure 1).Other entities in various parts of the model are abstracted away in
the formula representation using the formalism’s sites facility.

City.pBlk1.pBld2.pUAV3.p´11q | Bg2Bg.pC4 | ´1q | ´5q

| Hospital | Bld4.pBg2Bg.pC4 | ´4q | ´3q | ´2q | ´9 | ´10q. (2)

Crossroad Crossroad Crossroad

C
ro
ssro

a
d

CrossroadCrossroadCrossroad

C
ro
ss
ro
a
d

Crossroad

Building
Building

Building Building Building

Building

Building

BuildingBuilding

Building

Building

Building

Building

Building

Building Building

Building

BuildingBuilding
Building

RoadSegment RoadSegment

R
o
a
d
S
e
g
m
e
n
t

R
o
a
d
S
e
g
m
e
n
t

RoadSegment RoadSegment

R
o
a
d
S
e
g
m
e
n
t

R
o
a
d
S
e
g
m
e
n
t

RoadSegment

RoadSegment RoadSegment

Block

Block

Block

Block

Fig. 1: Bigraphical structure extracted from a city model.

Space is rarely static, thus a formalism for modeling evolving space-intensice
systems should also capture system dynamics to enable reasoning about the
effects of changes in space. Bigraphical Reactive Systems (BRS) [20] extend
bigraphs with well defined semantics of dynamic behavior expressed as a set
of rules. BRS essentially allow describing possible ways in which the structure
of the space can evolve through the application of transformation rules which
selectively rewrite parts of a bigraph; they are called reaction rules. Reaction
rules have the general form of R Ñ R1, where R is called the redex and R1 is
called the reactum; both the redex and reactum are bigraphs. If an occurrence
of a redex can be found in a host bigraph, it may be replaced by the reactum, in
a fashion similar to graph rewriting [8]. Redex and reactum can be considered

10 Askarpour et al.

as patterns, which are parametric; they describe some structure that can be
transformed into another, which may not be concretely specified.

To this end, we can model the changes inherent in the disaster scenario
using a BRS specification. For reasons of simplicity, we consider one such type
of dynamics specification; how UAVs may move from a building to another. In
Formula 3, a parametric reaction rule captures how a UAV moves from a building
(Bld@a) to another connected one (i.e., through a connection C@b which has the
same port name). Essentially, the CPSp model is transformed, to record that
the UAV is now found inside the Bld@b. Note how the reaction is parametric;
presence of other UAVs, buildings or other entities is not described, but merely
that the UAV moves inside the structure specified. Similarly to this reaction
rule, we may additionally consider e.g. that victims located by UAVs move with
them until a safe zone is reached.

Blk@w.pBld@a.pUAV@UAVid.p´11q | Bg2Bg.pC@b | ´1q | ´5q

| Bld@b.pBg2Bg.pC@a | ´4q | ´3q | ´2q | ´9 Ñ

Blk@w.pBld@a.pBg2Bg.pC@b | ´1q | ´5q

| Bld@b.pUAV@UAVid.p´11q | Bg2Bg.pC@a | ´4q | ´3q | ´2q | ´9. (3)

Analysis Scenarios and Verification. We consider two different analysis
scenarios; the first aims at early requirements validation, as typically performed
at design time. The second highlights validation at runtime, where the underlying
system model is only known while in operation.

Scenario A: Verification of System Requirements. While bigraphs and bigraph-
ical reaction rules are adequate for describing the topology of a CPSp and its
inherent dynamics, a quality evaluation model to support systematic reasoning
on the behaviour of the changing system is required. We assume that a CPSp is
specified by a BRS as discussed previously. To enable automated reasoning, this
specification can be transformed into an equivalent transition system generally
known as a (Doubly) Labelled Transition System (dLTS) [7]. States of this tran-
sition system describe bigraphical configurations of the CPSp, while transitions
describe how the configuration of the system can change by moving from one
state to its successors. Interpreting a BRS specification as a dLTS entails de-
scribing its possible evolution based on the application of reaction rules. Labelled
transition systems are amenable to formal verification via explicit-state model
checking. Model checking performs an exhaustive analysis of the state space to
check the validity of a property. We abstain from describing the mechanisms be-
hind this, and instead illustrate a characteristic case; the interested reader can
refer to [29] for a complete treatment.

We consider the setting where victims and UAVs are positioned in various
parts of the city; the initial state of the system is thus known. Recall that
there is a hospital in the city, and that victims are considered safe if they are
in the hospital. UAVs roam inside the city, and if they locate a victim, they

Formal Methods in Designing Critical Cyber-Physical Systems 11

lead it to safety. Normally, UAVs follow some path planning strategy [24]; from
all possible movements of a UAV at any point, a strategy selects the optimal,
based on the strategy and local environmental conditions. Moreover, interesting
problems arise with target search and surveillance scenarios, which can lead
to complex controller algorithms [9]. We are not concerned with the design of
a controller here, but with verifying properties of the system which concern
any decisions that the system of UAVs may take while operating within a city
environment. Behaviors that may violate a global property of the system must
be investigated, so every possible system behavior must be verified, possibly
with an overall goal of using violating sequences to learn (or debug) a controller
strategy. We consider a generic global requirement of the system, which states
that if victims exist in the city, eventually all victims are found inside the hospital
(i.e., no victims are located in other buildings). An LTL property (with the usual
semantics) encoding the requirement is found in Formula 4, utilizing a parametric
bigraphical pattern to express that no victim is eventually found in a building.
Such a property can be used to validate the domain modeling, by verifying that
the model and dynamics specified indeed lead to a valid system.

lpVictimÑ ˛ Building?.pVictim | ´0qq. (4)

Scenario B: Spatial Verification at Runtime. In this scenario, we assume that
UAVs are deployed in a spatial environment that is unknown at design time.
The spatial model is instead built and updated at runtime, for example through
a monitoring infrastructure in place [30]. Furthermore, we consider the following
property, specifying that “all disaster victims are located in places in the city so
that they can reach the hospital through road segments or crossroads”. This is an
example of a property of interest that cannot be expressed in LTL, since it does
not predicate about the temporal evolution, but about certain relations in space
– its topology. Hereafter, we illustrate the use of a spatial logic by which we can
capture and verify the property at hand. We abstain from describing precisely
semantics and verification procedures, and instead illustrate an exemplar case;
the interested reader can refer to [29] for a complete treatment.

The spatial reasoning approach is based on SLCS [6], an extension of the
topological semantics of modal logics to closure spaces, a closure space being a
generalization of a standard topological space [12]. SLCS is a spatial logic for
closure spaces which serves as the basis for our approach to complex reasoning
over topological properties of a CPSp. A logical property will be evaluated ac-
cordingly upon updated models of the CPSp obtained at runtime, assuming no
knowledge about the structure of the model at design time, beyond the actual
property specification. A spatial formula in our case, consists of propositions
representing bigraphical patterns along with SLCS operators. The logic features
boolean operators, a “one step” modality turning closure into a logical operator,
and a surrounds operator. Given that p is drawn from a set of bigraph patterns,
the syntax of SLCS is defined by the following grammar:

12 Askarpour et al.

φ ::“ p | J | φ | φ^ ψ | C φ | φ S ψ. (5)

In Formula 5, J denotes true, is negation, ^ is conjunction, C is the closure
operator, and S is the spatial surrounds operator. When used for the sake of
spatial model checking, SLCS formulae are evaluated upon bigraphical closure
models [29]. While the elementary syntax presented in Formula 5 features the
two fundamental spatial operators of closure and surrounds, a set of more com-
plex operators may be derived from them. In [5], for instance, complex operators
reflecting the notions of nearness and reachability have been derived. In particu-
lar, the so-called “reach through” operator is defined as φ <pψq ζ. Informally, it
is satisfied for a point x, if x satisfies φ and there is a sequence of points starting
from x, all satisfying ψ, reaching a target point satisfying ζ.

Formula 6 below formally encodes a property which needs to be verified upon
a model monitored at runtime. Note that there is no information encoded on
how a victim should reach the hospital, and the specification is able to capture
every possible instance of a reachability realization through crossroads and road
segments that may appear on a model.

Victim <pRoadSegment_ Crossroadq Hospital.p´1qq. (6)

To support runtime verification of the CPSp in our operational scenario, proper-
ties like the one presented in Formula 6 can be evaluated whenever the monitor-
ing indicates a change in the CPSp’s toplogy, which is reflected into the bigraph-
ical closure model. In the simplest case, an alarm may be generated if a critical
property is violated. More advanced systems could be self-adaptive, counteract-
ing property violations by triggering measures that ensure that requirements
are satisfied. While the specification of such systems is beyond the scope of this
paper, related research has proposed a number of such strategies [27]. Although
self-adaptation has been largely studied for temporal properties, we believe that
the fundamentals may be adopted for the spatial domain as well.

3.2 Case study two: Reasoning on Temporal modeling of CPS

In this scenario, we have analyzed a mobile robot unit which autonomously
relocates in the layout shown in Fig. 2. This robot system is configured as a
combination of a driverless truck (i.e., AGV) and a manipulator, which mainly
moves between three assembly stations— 1 , 2 and 3 —and a sensor-based

inspection station 4 , as shown in Figure 2(a). The robot unit can be manu-
ally relocated by operators around its predefined positions. The robot unit can
travel and access the whole workspace (the blue area in Figure 2(b)), including
a load/unload area for raw materials and finished parts. Two human operators
(OP1 and OP2) are employed in the application. OP1 is mostly present in sta-
tions 1 and 2 , while OP2 works mainly in 3 or executes auxiliary manual

tasks on the workbench in 4 . Both operators can freely hold and resume their
tasks, swap posts, or join one another in some area. The main robot-assisted
intended tasks are: pallet assembly at stations 1 and 2 , including bin-picking

Formal Methods in Designing Critical Cyber-Physical Systems 13

aisle

1 2

3

4

Loading area (raw materials,...)

shuttle

shuttle

storage

10
00

40
00

70
00

3
5
0
0

10000

4000

800

1050

1200

900
30020

0

shuttle and
storage

Test
stations

Assembly
stations

3 4 1 2

Loading area (raw
materials, finished, ..)

aisle

(a) (b)
Guide

Operators OP1 , OP2

 (main locations)
Operators OP1 , OP2

(alternative locations)
Other operators (crossing area

without assigned tasks)
Robot mobile unit
(main locations)

Robot mobile unit
 (alternative locations)

All sizes in mm

Fig. 2: Sketch of a cyber-physical space of a smart factory: (a) precise workcell
depiction, (b) actual layout.

from a local storage carried by the mobile unit; pallet disassembly (reversal of
assembly) at 1 and 2 , including bin-dumping; pallet inspection at station

3 ; lead-through programming of assembly, disassembly, and inspection tasks

(trajectories, parameters, etc.) at stations 1 , 2 and 3 ; material handling on
load/unload areas. Other manual tasks by OP1 and OP2 include manual loading
of parts/boxes; (additional) visual inspection of pallet at stations 1 , 2 and

3 ; manual assembly/disassembly of pallet at stations 1 and 2 ; manual mea-

surements of parts at station 4 ; cleaning pallets at stations 1 and 2 ; kitting

of tools and parts at stations 1 , 2 and 3 ; general supervision at stations

1 , 2 and 3 . The generated formal model of the described system replicates
all combinations of robot/manual task assignments (e.g., robot holds and OP1

screw-drives jigs and vice versa, switching tasks on the fly, quitting a manual
task and assigning the robot to proceed autonomously). Frequently, robot base
and operators move side-to-side across the central aisle, or other operators tran-
sit along the aisle because the target area is part of a larger plant and access to
it is not restricted (Fig. 2(b)).

14 Askarpour et al.

Table 1: List of derived TRIO operators; φ, ψ denote propositions, and v is a
variable and d is a constant value.

TRIO Operator Definition Meaning

Past pφ, dq d ą 0^ Dist pφ,´dq φ occurred d time units in the past

Futr pφ, dq d ą 0^ Dist pφ, dq φ occurs d time units in the future

Alw pφq @tpDist pφ, tqq φ always holds

Som pφq DtpDist pφ, tqq φ occurs sometimes

Until pφ, ψq DtpFutr pψ, tq ^ p@t1p0 ă t1 ă tq ñ
Dist

`

φ, t1
˘

qq

ψ will eventually occur and φ will
hold till then

Untilw pφ, ψq Until pφ, ψq _ Alw pφq weak until: ψ may never occur in
the future

WithinF pφ, dq Dtp0 ă t ă d^ Dist pφ, tqq φ will occur within d time units

Modeling Time and its dynamics. The model includes a descretized replica
of human (thead, chest, leg, arm, fingersu) and robot tR1, R2, Ree, Rbaseu. This
example, unlike the previous one, focuses more strongly on time. This preference
is driven by the overall goal of the project, which was centered on human physical
safety analysis. As described in Section 2.2, different timings of human and robots
actions could lead to different situations which could be harmful to human.
Harmful situations could also be of different intensities and need to be evaluated
differently. For example if human and robot have a contact in 1 , the harmfulness
of the contact could differ if the robot is already there and then human enters
1 and hits the robot or viceversa.

In order to model these temporal configurations we have used TRIO, a logical
language which assumes an underlying linear temporal structure and features a
quantitative notion of time [11]. TRIO formulae are built out of the usual first-
order connectives, operators, and quantifiers, as well as a single basic modal
operator, called Dist, that relates the current time, which is left implicit in the
formula, to another time instant: given a time-dependent formula φ (i.e., a term
representing a mapping from the time domain to truth values) and a (arithmetic)
term t indicating a time distance (either positive or negative), formula Dist pφ, tq
specifies that φ holds at a time instant at a distance of exactly t time units from
the current one. While TRIO can exploit both discrete and dense sets as time
domains, in this work we assume the standard model of the nonnegative integers
N as discrete time domain. For convenience in the writing of specification formu-
lae, TRIO defines a number of derived temporal operators from the basic Dist,
through propositional composition and first-order logic quantification. Table 1
defines some of the most significant ones.

Yet, modeling the space is very important because of the placement of sensors
and endeffectors of the robot. The workspace is discretized in 23 regions with
different characteristics and not all areas have static properties. The robot is

Formal Methods in Designing Critical Cyber-Physical Systems 15

constantly moving around and the areas mostly situated on the aisle could have
different characteristic from time to time. In order to resemble the human rea-
soning about spatial properties and construct a 3D model of the workspace, each
region is modeled in three layers: lower, middle and upper sections. The mobile
base of the robot is always allowed in the lower layer, while the manipulator arm
could move in the middle and upper layers.

For example in order to capture the contact in which robot hits the operator,
predicate ArrivedBeforeijk is introduced which states that the human part i P
thead, chest, leg, arm, fingersu hits robot part j P tR1, R2, Ree, Rbaseu in the
layout section k P 1...23 because it arrived at k earlier than j. This formula is only
an example of the interplay between time and space, as explained in Section 2.1.
Examples of other formulae are presented in Table 23. The relative values of force

Table 2: Selected formulae of the second case study.

The parts of discretized operator, robot and layout are shown by Oi, Rj , Lk.

1.@Oi P t head, chest, leg, arm, fingersu
2.@Rj P tR1, R2, Ree, Rbaseu

3.@Oi.D!Lkppi “ Lkq

4.@Rj .D!Lkppj “ Lkq

5.Sepij P tclose, mid, faru
a.Sepij “ closeØ DLkppi “ pj “ Lkq

b.Sepij “ midØ Adjppi, pjq
c.Sepij “ farØ Sepij ‰ pmid|closeq

6.InSameLijk ô Sepij “ close

7.ArrivedBeforeijk ô InSameLijk ^ Past ppi “ Lk, 1q ^ Past ppj ‰ Lk, 1q
8.Reachijk ô InSameLijk ^ Past

`

Sepij ą close, 1
˘

9.Leaveijk ô Past pInSameLijk, 1q ^ pi ‰ Lk ^ pj ‰ Lk

10.Contactijk ô InSameLijk ^movingRj

11.@Rj :
a.vi “ noneô Lasted ppj “ Lk, 2q
b.vj “ lowô Lasted ppj “ Lk, 1q ^ past ppj , 2q‰Lk

c.vj “ midô past ppj , 1q ‰ pj
d.vj “ highô past ppj , 2q ‰ past ppj , 1q ‰ pj
e.past ppj , 1q “ pj _ Adjppast ppj , 1q , pjq

12.Sepfingers,arm P tclose, midu
Action 1. Robot moves to bin from an initial point (all other actions has not started yet).

Pre-condition 1 ô pbase “ initial point^ @x‰1 : astsx “ns

Post-condition 1 ô pbase “ pbin
Action 2. Robot arm is stretching out towards bin right after action 1 is done.

Pre-condition 2 ô asts1 “dn^ movingbase ^ movingee
Post-condition 2 ô movingbase ^ pee “ bin

and velocity, that are very important in evaluation of the danger of a contact, are

3 The full formal model is available on github/safer-hrc

https://github.com/Askarpour/SAFER-HRC/tree/master/test-case3/3D-withoutexit

16 Askarpour et al.

captured by the model via two variables whose variations are descretized with
four possible values none, low, mid, high. Temporal modeling allows for creating
a meaningful and smooth fluctuation between these values. For example, the
value of velocity cannot jump from none to high. These variations are modeled
in formulae 11 of Table 2. The same formulae hold also for the force.

Another important role of time in modeling, is for reproducing the executing
actions of human and robot that together create the full executing task (i.e.,
job). As we have described in Section 2.3, a more thorough analysis would be
provided by defining a rough sense of sequencing between different actions of a
task, but not enforcing a static workflow. This is what we do by describing each
action with a pair of pre and post conditions which are combinations of temporal
and spatial requirements such as required positions of objects, or actions that
should have been terminated beforehand. They give a realistic realization to the
actions (e.g., human cannot pick a workpiece if he or she is not in front of bin,
thus pre-condition of bin-picking action is the correct position for the operator)
but generate and explore dynamically all the meaningful and possible workflows
(e.g., what happens if operator instead of continuing the bin-picking, stops and
switches to inspection action, ...).

The model also contains definitions of physical hazards according to [16] and
consistent risk values [17] for detecting the harmful contacts. Here we do not
provide detail on the modeling of hazards and risks for the sake of brevity. It
suffices to say that each hazard, based on the severity of the harm it could cause
and its occurrence frequency, is assigned a risk value among t0, 1, 2u. If the value
of risk is 0, everything is good and risk value equal to 1 is negligible. Otherwise,
if there is a risk with value equal to 2, the human operator is in danger. Hence,
the latter situation needs to be avoided.

Analysis Scenarios and verification

Scenario A: Detecting Hazards. The main requirement of this case-study was to
verify the physical safety of the human operator while working with the robot
system. The physical safety itself needs to be interpreted in a general and stan-
dard way, and that is why the well-known industrial standards such as [16,15,17]
are used in modeling the system. The formal verification procedure is supposed
to detect and highlight any possible situation in which the movements of human
and robot would violate the constraints implicated by the standards, meaning
detecting cases in which risk value is 2. The formula below states the above prop-
erty, which states for each hazardous situation involving human part i, robot part
j, in layout k, the risk should be below 2.

@BPi.@Rj .@Lk : Alwpriskijk ď 1q (7)

The verification has been applied via a model checker called Zot [36] that re-
ports the state of the system at each instant of time (e.g., positioning of the
human and robot, the state of task execution, the criticality of human and robot
interaction,...).

Formal Methods in Designing Critical Cyber-Physical Systems 17

Scenario B: Detecting Human Errors at Runtime Physical Safety of human is a
critical issue that needs to be considered in early stages of design. Anticipating
hazardous situations and a proper remedy for them are usually tackled during
design. However, not every situation is predictable in advance. For example, as
discussed in Section 2.3, human operator and her presence brings uncertainty
in to the picture and one could never fully predict her behavior during the
execution. In order to make the model closer to a real human, we have generated
a erroneous behavior model [1] which includes formalized definition of the most
frequent human errors that could influence the workflow, which are temporal
and spatial oriented. It allows for a model that is applicable also for runtime
verification.

4 Conclusions

In this paper, we discussed why formal modeling and verification are needed
in designing and operating CPSs, to offer assurances about their dependable
use in many practical application areas in which they are increasingly deployed.
We also discussed why and how modeling and verification methods need to ac-
commodate the specific new requirements arising from interaction of computing
elements with the physical environment, which is typical of CPSs. In particular,
we focused on CPSs where the notion of space in which the system operates and
time constraining operations are key. We also stressed how uncertainty, at differ-
ent levels, heavily affects CPSs and asks for new approaches to formal methods
that break the traditional boundary between design time and runtime. We also
presented how in our past work we provided solutions to these problems, and
case studies we developed in which we such solutions were applied.

The work we presented here, however, can only be viewed as a solution to
some of the problems we need to face when formal methods are applied in the de-
sign and operation of CPSs. A community effort is needed to consolidate methods
and provide both support tools and libraries including application-independent
components and open to extensions to ad-hoc components specialized towards
single application fields.

References

1. Askarpour, M., Mandrioli, D., Rossi, M., Vicentini, F.: Formal model of human
erroneous behavior for safety analysis in collaborative robotics. Robotics and
Computer-Integrated Manufacturing 57, 465 – 476 (2019)

2. Baheti, R., Gill, H.: Cyber-physical systems. The impact of control technology
12(1), 161–166 (2011)

3. Bures, T., Weyns, D., Schmerl, B.R., Tovar, E., Boden, E., Gabor, T.,
Gerostathopoulos, I., Gupta, P., Kang, E., Knauss, A., Patel, P., Rashid, A.,
Ruchkin, I., Sukkerd, R., Tsigkanos, C.: Software engineering for smart cyber-
physical systems: Challenges and promising solutions. ACM SIGSOFT Software
Engineering Notes 42(2), 19–24 (2017)

18 Askarpour et al.

4. Cheng, B., Lemos, R.D., Giese, H., et al.: Software engineering for self-adaptive
systems: A research roadmap. In: Software engineering for self-adaptive systems,
pp. 1–26. Springer (2009)

5. Ciancia, V., Grilletti, G., Latella, D., Loreti, M., Massink, M.: An experimental
spatio-temporal model checker. In: International Conference on Software Engineer-
ing and Formal Methods. pp. 297–311. Springer (2015)

6. Ciancia, V., Latella, D., Loreti, M., Massink, M.: Specifying and verifying proper-
ties of space. In: IFIP International Conference on Theoretical Computer Science.
pp. 222–235. Springer (2014)

7. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT press (1999)

8. Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R., Löwe, M.: Algebraic
approaches to graph transformation-part i: Basic concepts and double pushout
approach. In: Handbook of Graph Grammars. pp. 163–246 (1997)

9. Eaton, C.M., Chong, E.K., Maciejewski, A.A.: Multiple-scenario unmanned aerial
system control: A systems engineering approach and review of existing control
methods. Aerospace 3(1), 1 (2016)

10. Esfahani, N., Malek, S.: Uncertainty in self-adaptive software systems. In: Berlin,
H. (ed.) . Springer Berlin Heidelberg, pp. 214–238 (2013)

11. Furia, C.A., Mandrioli, D., Morzenti, A., Rossi, M.: Modeling Time in Computing.
Monographs in Theoretical Computer Science. An EATCS Series, Springer (2012)

12. Galton, A.: A generalized topological view of motion in discrete space. Theoretical
Computer Science 305(1), 111–134 (2003)

13. Godfrey, M.W., German, D.M.: The past, present, and future of software evolution.
In: Frontiers of Software Maintenance, 2008. FoSM 2008. pp. 129–138. IEEE (2008)

14. Gröger, G., Kolbe, T.H., Czerwinski, A., Nagel, C., et al.: Opengis city geography
markup language (citygml) encoding standard, version 1.0. 0 (2008)

15. ISO 10218-1: Robots and robotic devices – Safety requirements for industrial robots
– Part 1: Robots. International Organization for Standardization, Geneva, Switzer-
land (2011)

16. ISO 10218-2: Robots and robotic devices – Safety requirements for industrial robots
– Part 2: Robot systems and integration. International Organization for Standard-
ization, Geneva, Switzerland (2011)

17. ISO 12100: Safety of machinery – General principles for design – Risk assess-
ment and risk reduction. International Organization for Standardization, Geneva,
Switzerland (2010)

18. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1),
41–50 (2003)

19. Lee, E.A.: Cyber physical systems: Design challenges. In: 2008 11th IEEE Inter-
national Symposium on Object and Component-Oriented Real-Time Distributed
Computing (ISORC). pp. 363–369 (May 2008)

20. Milner, R.: The Space and Motion of Communicating Agents. Cambridge Univer-
sity Press (2009)

21. Perez-Palacin, D., Mirandola, R.: Uncertainties in the modeling of self-adaptive
systems: A taxonomy and an example of availability evaluation. In: 14, , New
York, NY, USA ACM. pp. 3–14. Proceedings of the 5th ACM/SPEC International
Conference on Performance Engineering, ICPE (2014)

22. Rajhans, A., Cheng, S.W., Schmerl, B., Garlan, D., Krogh, B.H., Agbi, C., Bhave,
A.: An architectural approach to the design and analysis of cyber-physical systems.
Electronic Communications of the EASST 21 (2009)

Formal Methods in Designing Critical Cyber-Physical Systems 19

23. Rajkumar, R.R., Lee, I., Sha, L., Stankovic, J.: Cyber-physical systems: the next
computing revolution. In: Proc. of the 47th Design Automation Conference. pp.
731–736. ACM (2010)

24. Sánchez-Garćıa, J., Garćıa-Campos, J.M., Toral, S., Reina, D., Barrero, F.: An
intelligent strategy for tactical movements of UAVs in disaster scenarios. Interna-
tional Journal of Distributed Sensor Networks 2016 (2016)

25. Tan, J.T.C., Duan, F., Zhang, Y., Watanabe, K., Kato, R., Arai, T.: Human-
robot collaboration in cellular manufacturing: Design and development. In: 2009
IEEE/RSJ International Conference on Intelligent Robots and Systems. pp. 29–34

26. Tsigkanos, C., Kehrer, T., Ghezzi, C., Pasquale, L., Nuseibeh, B.: Adding static
and dynamic semantics to building information models. In: Proc. of the 2nd Intl.
Workshop on Software Engineering for Smart Cyber-Physical Systems. pp. 1–7.
ACM (2016)

27. Tsigkanos, C., Pasquale, L., Ghezzi, C., Nuseibeh, B.: On the interplay between
cyber and physical spaces for adaptive security. IEEE Transactions on Dependable
and Secure Computing PP(99), 1–1 (2016)

28. Tsigkanos, C., Kehrer, T., Ghezzi, C.: Architecting dynamic cyber-physical spaces.
Computing 98(10), 1011–1040 (2016)

29. Tsigkanos, C., Kehrer, T., Ghezzi, C.: Modeling and verification of evolving cyber-
physical spaces. In: Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering, ESEC/FSE 2017, 2017. pp. 38–48 (2017)

30. Tsigkanos, C., Nenzi, L., Loreti, M., Garriga, M., Dustdar, S., Ghezzi, C.: Infer-
ring analyzable models from trajectories of spatially-distributed internet-of-things.
In: IEEE/ACM Intl. Symposium on Software Engineering for Adaptive and Self-
Managing Systems, SEAMS@ICSE 2019, Montreal, Canada, May 25-26, 2019.
IEEE Computer Society (2019)

31. Tsigkanos, C., Pasquale, L., Ghezzi, C., Nuseibeh, B.: On the interplay between
cyber and physical spaces for adaptive security. IEEE Trans. Dependable Sec.
Comput. 15(3), 466–480 (2018)

32. Vogel-Heuser, B., Feldmann, S., Folmer, J., Kowal, M., Schaefer, I., Ladiges, J., Fay,
A., Haubeck, C., Lamersdorf, W., Lity, S., et al.: Selected challenges of software
evolution for automated production systems. In: Industrial Informatics, 2015 IEEE
13th Intl. Conf. pp. 314–321. IEEE (2015)

33. Wang, S., Wan, J., Li, D., Zhang, C.: Implementing smart factory of industrie 4.0:
an outlook. International Journal of Distributed Sensor Networks 12(1) (2016)

34. Xie, J., AI-Emrani, F., Gu, Y., Wan, Y., Fu, S.: UAV-carried long distance wi-fi
communication infrastructure. In: AIAA Infotech@ Aerospace (2016)

35. Yan, Z., Chakraborty, D., Parent, C., Spaccapietra, S., Aberer, K.: Semantic tra-
jectories: Mobility data computation and annotation. ACM Transactions on Intel-
ligent Systems and Technology (TIST) 4(3), 49 (2013)

36. Zot: a bounded satisfiability checker. available from github/fm-polimi/zot (2012)

http://github.com/fm-polimi/zot

	Formal Methods in Designing Critical Cyber-Physical Systems

