Skip to main content

Solving Large Dynamical Systems by Constraint Sampling

  • Conference paper
  • First Online:
Book cover Applied Computer Sciences in Engineering (WEA 2019)

Abstract

The ability to conduct fast and reliable simulations of dynamic systems is of special interest to many fields of operations. Such simulations can be very complex and, to be thorough, involve millions of variables, making it prohibitive in CPU time to run repeatedly for many different configurations. Reduced-Order Modeling (ROM) provides a concrete way to handle such complex simulations using a realistic amount of resources. However, when the original dynamical system is very large, the resulting reduced-order model, although much “thinner”, is still as tall as the original system, i.e., it has the same number of equations. In some extreme cases, the number of equations is prohibitive and cannot be loaded in memory. In this work, we combine traditional interval constraint solving techniques with a strategy to reduce the number of equations to consider. We describe our approach and report preliminary promising results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bai, Z., Meerbergen, K., Su, Y.: Arnoldi methods for structure-preserving dimension reduction of second-order dynamical systems. In: Benner, P., Sorensen, D.C., Mehrmann, V. (eds.) Dimension Reduction of Large-Scale Systems. LNCSE, vol. 45, pp. 173–189. Springer, Heidelberg (2005). https://doi.org/10.1007/3-540-27909-1_7

    Chapter  MATH  Google Scholar 

  2. Benner, P., Quintana-Ortíz, E.: Model reduction based on spectral projection methods. In: Benner, P., Sorensen, D.C., Mehrmann, V. (eds.) Dimension Reduction of Large-Scale Systems. LNCSE, vol. 45, pp. 5–48. Springer, Heidelberg (2005). https://doi.org/10.1007/3-540-27909-1_1

    Chapter  Google Scholar 

  3. Berkooz, G., Holmes, P., Lumley, J.: The proper orthogonal decomposition in the analysis of turbulent flows. Ann. Rev. Fluid Mech. 25(1), 539–575 (1993)

    Article  MathSciNet  Google Scholar 

  4. Cai, L., White, R.E.: Reduction of model order based on proper orthogonal decomposition for lithium-ion battery simulations. J. Electrochem. Soc. 156(3), A154–A161 (2009)

    Article  Google Scholar 

  5. Ceberio, M., Granvilliers, L.: Horner’s rule for interval evaluation revisited. Computing 69(1), 51–81 (2002)

    Article  MathSciNet  Google Scholar 

  6. Flórez, H., Argáez, M.: Applications and comparison of model-order reduction methods based on wavelets and POD. In: Proceedings of 2016 Annual Conference of the North American Fuzzy Information Processing Society (NAFIPS), El Paso, TX, USA, pp. 1–8. IEEE (2016)

    Google Scholar 

  7. George, J., et al.: Idiopathic thrombocytopenic purpura: a practice guideline developed by explicit methods for the American Society of Hematology. Blood 88(1), 3–40 (1996)

    MathSciNet  Google Scholar 

  8. Granvilliers, L., Benhamou, F.: Realpaver: an interval solver using constraint satisfaction techniques. ACM Trans. Math. Softw. (TOMS) 32(1), 138–156 (2006)

    Article  MathSciNet  Google Scholar 

  9. Hansen, E., Greenberg, R.: An interval newton method. Appl. Math. Comput. 12(2–3), 89–98 (1983)

    MathSciNet  MATH  Google Scholar 

  10. Hansen, E., Walster, G.: Global Optimization Using Interval Analysis: Revised and Expanded, vol. 264. CRC Press, New York (2003)

    Google Scholar 

  11. Horner, W.G.: A new method of solving numerical equations of all orders, by continuous approximation. In: Philosophical Transactions of the Royal Society of London, New York, NY (1833)

    Article  Google Scholar 

  12. Jaulin, L.: Applied Interval Analysis: With Examples in Parameter and State Estimation, Robust Control and Robotics. Springer, London (2001)

    Book  Google Scholar 

  13. Kerschen, G., Golinval, J.: Physical interpretation of the proper orthogonal modes using the singular value decomposition. J. Sound Vibr. 249(5), 849–865 (2002)

    Article  MathSciNet  Google Scholar 

  14. Liang, Y., Lee, H., Lim, S., Lin, W., Lee, K., Wu, C.: Proper orthogonal decomposition and its applications, part i: theory. J. Sound Vibr. 252(3), 527–544 (2002)

    Article  Google Scholar 

  15. Lin, Y., Stadtherr, M.: Validated solutions of initial value problems for parametric ODEs. Appl. Numer. Math. 57(10), 1145–1162 (2007)

    Article  MathSciNet  Google Scholar 

  16. Millet, A., Morien, P.: On implicit and explicit discretization schemes for parabolic SPDEs in any dimension. Stoch. Process. Their Appl. 115(7), 1073–1106 (2005)

    Article  MathSciNet  Google Scholar 

  17. Nedialkov, S.: Computing Rigorous Bounds on the Solution of an Initial Value Problem for an Ordinary Differential Equation. University of Toronto, Toronto, Canada (2000)

    Google Scholar 

  18. Rewienski, M., White, J.: A trajectory piecewise-linear approach to model order reduction and fast simulation of nonlinear circuits and micromachined devices. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst. 22(2), 155–170 (2003)

    Article  Google Scholar 

  19. Sam-Haroud, D., Faltings, B.: Consistency techniques for continuous constraints. Constraints 1(1), 85–118 (1996)

    Article  MathSciNet  Google Scholar 

  20. Schilders, W.A., Van der Vorst, H., Rommes, J.: Model Order Reduction: Theory, Research Aspects and Applications. Springer, Berlin (2008)

    Book  Google Scholar 

  21. Stahl, V.: Interval Methods for Bounding the Range of Polynomials and Solving Systems of Nonlinear Equations. Johannes-Kepler-Universität, Linz (1995)

    Google Scholar 

  22. Willcox, K., Peraire, J.: Balanced model reduction via the proper orthogonal decomposition. Am. Inst. Aeronaut. Astronaut. AIAA J. 40(11), 2323–2330 (2002)

    Article  Google Scholar 

  23. Hassanalian, M., Throneberry, G., Abdelkefi, A.: Wing shape and dynamic twist design of bio-inspired nano air vehicles for forward flight purposes. Aerosp. Sci. Technol. 68, 518–529 (2017)

    Article  Google Scholar 

  24. Hassanalian, M., Throneberry, G., Abdelkefi, A.: Investigation on the planform and kinematic optimization of bio-inspired nano air vehicles for hovering applications. Meccanica 53, 1–14 (2018)

    Article  Google Scholar 

  25. Hassanalian, M., Throneberry, G., Abdelkefi, A.: Wing shape analysis and optimization of bio-inspired flapping wing nano air vehicles for forward flight. In: Proceeding of the SciTech 2017, AIAA Aerospace Sciences Meeting, AIAA Science and Technology Forum and Exposition 2017, Texas, USA, 09–13 January (2017)

    Google Scholar 

  26. Ghommem, M., et al.: Sizing and aerodynamic analysis of biplane flapping wing nano air vehicle: theory and experiment. In: Proceeding of the SciTech 2019, AIAA Aerospace Sciences Meeting, AIAA Science and Technology Forum and Exposition 2019, California, USA, 07–11 January (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omeiza Olumoye .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Olumoye, O., Throneberry, G., Garcia, A., Valera, L., Abdelkefi, A., Ceberio, M. (2019). Solving Large Dynamical Systems by Constraint Sampling. In: Figueroa-García, J., Duarte-González, M., Jaramillo-Isaza, S., Orjuela-Cañon, A., Díaz-Gutierrez, Y. (eds) Applied Computer Sciences in Engineering. WEA 2019. Communications in Computer and Information Science, vol 1052. Springer, Cham. https://doi.org/10.1007/978-3-030-31019-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31019-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31018-9

  • Online ISBN: 978-3-030-31019-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics