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Abstract. In the area of Natural Computing, reaction systems are a
qualitative abstraction inspired by the functioning of living cells, suit-
able to model the main mechanisms of biochemical reactions. This model
has already been applied and extended successfully to various areas of
research. Reaction systems interact with the environment represented by
the context, and pose problems of implementation, as it is a new compu-
tation model. In this paper we consider the link-calculus, which allows
to model multiparty interaction in concurrent systems, and show that
it allows to embed reaction systems, by representing the behaviour of
each entity and preserving faithfully their features. We show the correct-
ness and completeness of our embedding. We illustrate our framework
by showing how to embed a lac operon regulatory network. Finally, our
framework can contribute to increase the expressiveness of reaction sys-
tems, by exploiting the interaction among different reaction systems.

Keywords: Process algebras · Reaction systems · Multi-party interac-
tion.

1 Introduction

Natural Computing is an emerging area of research which has two main aspects:
human designed computing inspired by nature, and computation performed in
nature. Reaction Systems (RSs) [9] are a rewriting formalism inspired by the
way biochemical reactions take place in living cells. This theory has already
shown to be relevant in several different fields, such as computer science [17],
biology [2,15,1,3], and molecular chemistry [18]. Reaction Systems formalise the
mechanisms of biochemical systems, such as facilitation and inhibition. As a
qualitative approximation of the real biochemical reactions, they consider if a
necessary reagent is or not present, and likewise they consider if an inhibit-
ing molecule is or not present. The possible reactants and inhibitors are called
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‘entities’. RSs model in a direct way the interaction of a living cell with the en-
vironment (called ‘context’). However, two RSs are seen as independent models
and do not interact.

In this paper, we present an encoding from RSs, to the open multiparty
process algebra cCNA4, a variant of the link-calculus [5,8] without name mo-
bility. This formalism allows several processes to synchronise and communicate
altogether, at the same time, with a new communicating mechanism based on
links and link chains. Our initial motivation for introducing this mechanism was
to encode Mobile Ambients [12], obtaining a much stronger operational corre-
spondence than any one available in the literature, such as the one in [10]. This
allowed us to easily encode calculi for biology equipped with membranes, as
in [6]. Process calculi have been used successfully to model biological processes,
see [4] for a recent survey. We illustrate our embedding by means of some simple
basic examples, and then we consider a more complex example, by modeling
a RS representing a regulatory network for lac operon, presented in [15]. We
also show that our embedding preserves the main features of RSs, and prove its
correctness and completeness. Our main contributions are as follows:

– the behaviour of the context, for each single entity, can be specified in a
recursive way as an ordinary process;

– our translation results in a cCNA system where from each state only one
transition can be generated, thus the cCNA computation is fully deterministic
as that of the encoded RS;

– we can express the behaviour of entity mutation, in such a way that the
mutated entity s′ can take part to only a subset of rules requiring entity s;

– with a little coding effort, two RSs can communicate; i.e. a subset of those
entities that the context can provide, are then provided by a second RS.

The main drawback of our proposal, is that the cCNA translation is verbose.
Nevertheless it is clear that our translation can be automatised by means of a
proper front-end in an implementation of the link-calculus.

As we have remarked, in our translation, Reaction Systems get the ability to
interact between them in a synchronized manner. This interaction is not foreseen
in the basic RS framework, as it can only happen with the context. By exploiting
recursion, the kind of interactions which can be defined can be complex and
expressive. Example 3 and more in general the discussion in Section 6 show that
the interaction between RSs can help to model new scenarios.

Structure of the paper. Section 2 describes RSs and their semantics (interactive
processes). Section 3 describes briefly the cCNA process algebra and its opera-
tional semantics. Section 4 defines the embedding of RSs in cCNA processes and
shows some simple examples to illustrate it. Section 5 shows a more complex
example taken from the literature on RSs and illustrates a lac operon. Section 6
presents some features and advantages of our embedding for the compositionality
of RSs. Finally, Section 7 discusses future work and concludes.

4 After ‘chained Core Network Algebra’.
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2 Reaction Systems

Natural Computing is concerned with human-designed computing inspired by
nature as well as with computation taking place in nature. The theory of Re-
action Systems [9] was born in the field of Natural Computing to model the
behaviour of biochemical reactions taking place in living cells. Despite its initial
aim, this formalism has shown to be quite useful not only for modeling biological
phenomena, but also for the contributions given to computer science [17], the-
ory of computing, mathematics, biology [2,15,1,3], and molecular chemistry [18].
Here we briefly review the basic notions of RSs, see [9] for more details.

The mechanisms that are at the basis of biochemical reactions and thus
regulate the functioning of a living cell, are facilitation and inhibition. These
mechanisms are reflected in the basic definitions of Reaction Systems.

Definition 1 (Reaction). A reaction is a triplet a = (R, I, P ), where R, I, P
are finite, non empty sets and R ∩ I = ∅. If S is a set such that R, I, P ⊆ S,
then a is a reaction in S.

The sets R, I, P are also written Ra, Ia, Pa and called the reactant set of a,
the inhibitor set of a, and the product set of a, respectively. All reactants are
needed for the reaction to take place. Any inhibitor blocks the reaction if it is
present. Products are the outcome of the reaction. Also, Ra ∪ Ia is the set of the
resources of a and rac(S) denotes the set of all reactions in S. Because R and I
are non empty, all products are produced from at least one reactant and every
reaction can be inhibited in some way. Sometimes artificial inhibitors are used
that are never produced by any reaction. For the sake of simplicity, and without
loss of generality, in some examples, we will allow I to be empty.

Definition 2 (Reaction System). A Reaction System (RS) is an ordered pair
A = (S,A) such that S is a finite set, and A ⊆ rac(S).

The set S is called the background set of A, its elements are called entities,
and they represent molecular substances (e.g., atoms, ions, molecules) that may
be present in the states of a biochemical system. The set A is the set of reactions
of A. Since S is finite, so is A: we denote by |A| the number of reactions in A.

Definition 3 (Reaction Result). Given a finite set of entities S, let T ⊆ S.

1. Let a ∈ rac(S) be a reaction. Then a is enabled by T , denoted by ena(T ), if
Ra ⊆ T and Ia ∩ T = ∅.

2. Let a ∈ rac(S) be a reaction. The result of a on T , denoted by resa(T ), is
defined by: resa(T ) = Pa if ena(T ), and resa(T ) = ∅ otherwise.

3. Let A ⊆ rac(S) be a finite set of reactions. The result of A on T , denoted by
resA(T ), is defined by: resA(T ) =

⋃
a∈A resa(T ).

The theory of Reaction Systems is based on the following assumptions.

– No permanency. An entity of a set T vanishes unless it is sustained by a
reaction. This reflects the fact that a living cell would die for lack of energy,
without chemical reactions.
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– No counting. The basic model of RSs is very abstract and qualitative, i.e.
the quantity of entities that are present in a cell is not taken into account.

– Threshold nature of resources. From the previous item, we assume that
either an entity is available and there is enough of it (i.e. there are no con-
flicts), or it is not available at all.

The dynamic behaviour of a RS is formalized in terms of interactive processes.

Definition 4 (Interactive Process). Let A = (S,A) be a RS and let n ≥ 0.
An n-step interactive process in A is a pair π = (γ, δ) of finite sequences s.t.
γ = {Ci}i∈[0,n] and δ = {Di}i∈[0,n] where Ci, Di ⊆ S for any i ∈ [0, n], D0 = ∅,
and Di = resA(Di−1 ∪ Ci−1) for any i ∈ [1, n].

Living cells are seen as open systems that continuously react with the exter-
nal environment, in discrete steps. The sequence γ is the context sequence of π
and represents the influence of the environment on the Reaction System. The
sequence δ is the result sequence of π and it is entirely determined by γ and A.
The sequence τ = W0, . . . ,Wn with Wi = Ci ∪Di, for any i ∈ [0, n] is called a
state sequence. Each state Wi in a state sequence is the union of two sets: the
context Ci at step i and the result of the previous step.

For technical reasons, we extend in a straightforward way the notion of an
interactive process to deal with infinite sequences.

Definition 5 (extended interactive process). Let A = (S,A) be a RS, and
let π = (γ, δ) be an n-step interactive process, with γ = {Ci}i∈[0,n] and δ =
{Di}i∈[0,n]. Then, let π′ = (γ′, δ′) be the extended interactive process of π =
(γ, δ), defined as γ′ = {C ′i}i∈N, δ′ = {D′i}i∈N, where C ′j = Cj for j ∈ [0, n] and
C ′j = ∅ for j > n, D′0 = D0 and D′j = resA(D′j−1 ∪ C ′j−1) for j ≥ 1.

The next example shows that the functioning of the interacting processes is
deterministic, once the context is fixed.

Example 1. Let A = (S,A) be a RS with S = {s1, s2, s3, s4}, and A = {a1, a2},
where a1 = ({s1}, {s3}, {s1}), a2 = ({s2}, {s4}, {s2}). Now, we show the first
three steps of an interacting process π = (γ, δ) where the context provides entities
as follows: γ = {C0 = {s1, s2}, C1 = {s3}, C2 = {s1, s4}, C3 = ∅, C4, . . . , Cn}.
Initally D0 = ∅ and from C0 ∪ D0 = {s1, s2} we get to C1 ∪ D1 = {s1, s2, s3}
by applying a1, a2 (they both are enabled); after that we get to C2 ∪ D2 =
{s1, s2, s4}, by applying a2 only (a1 is not enabled); finally we get to C3 ∪D3 =
{s1} by applying a1 (a2 is not enabled). Thus δ = {D0 = ∅, D1 = {s1, s2}, D2 =
{s2}, D3 = {s1}, D4, . . . , Dn}. We remark that at every state Ci ∪ Di all the
reactions which are enabled are applied, so the computation is deterministic.

3 Chained CNA (cCNA)

In this section we introduce the syntax and operational semantics of a variant
of the link-calculus [5], the cCNA (chained CNA), where the prefixes are link
chains.
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Link Chains. Let C be the set of channels, ranged over by a, b, ..., and let N =
C ∪ { τ } ∪ {� } be the set of actions, ranged over by α, β, ..., where the symbol
τ denotes a silent action, while the symbol � denotes a virtual (non-specified)
action. A link is a pair ` = α\β ; it is solid if α, β 6= �; the link �\� is called
virtual ; the link τ\τ is called silent. A link is valid if it is solid or virtual. A link
chain is a finite sequence v = `1...`n of valid links `i = αi\βi

such that:

1. for any i ∈ [1, n− 1],

{
βi, αi+1 ∈ C implies βi = αi+1

βi = τ iff αi+1 = τ

2. ∃i ∈ [1, n]. `i 6= �\�.

A link chain whose links are silent is also called silent. Virtual links �\�
represent missing elements of a chain. The equivalence IJ models expansion
and contraction of virtual links to adjust the length of a link chain.

Definition 6 (Equivalence IJ). We let IJ be the least equivalence relation
over link chains closed under the axioms (whenever both sides are well defined):

v�\� IJ v v1
�\��\�v2 IJ v1

�\�v2
�\�v IJ v v1

α\aa\βv2 IJ v1
α\�a \a�\βv2

Two link chains of equal length can be merged whenever each position occu-
pied by a solid link in one chain is occupied by a virtual link in the other chain
and solid links in adjacent positions match. Positions occupied by virtual links
in both chains remain virtual. Merging is denoted by v1 • v2. For example, given
v1 = a\�b \��\� and v2 = �\b�\�c \� we have v1 • v2 = a\bb\�c \�.

Some names in a link chain can be restricted as non observable and trans-
formed into silent actions τ . This is possible only if they are matched by some
adjacent link. Restriction is denoted by (ν a)v. For example, given v = a\bb\�c \�
we have (ν b)v = a\ττ\�c \�.

Syntax. The cCNA processes are generated by the following grammar:

P,Q ::=
∑
i∈I υi.Pi | P |Q | (ν a)P | P [φ] | A

where υi is a link chain, φ is a channel renaming function, and A is a process
identifier for which we assume a definition A , P is available in a given set ∆
of (possibly recursive) process definitions. We let 0, the inactive process, denote
the empty summation.

The syntax of cCNA extends that of CNA [8] by allowing to use link chains
as prefixes instead of links. This extension was already discussed in [8] and it
preserves all the main formal properties of CNA. For the rest it features non-
deterministic choice, parallel composition, restriction, relabelling and possibly
recursive definitions of the form A , P for some constant A. Here we do not
consider name mobility, which is present instead in the link-calculus.
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v IJ vj j ∈ I
(Sum)∑

i∈I υi.Pi
v−→ Pj

P
v−→ P ′ (A , P ) ∈ ∆

(Ide)

A
v−→ P ′

P
v−→ P ′

(Rel)

P [φ]
φ(v)−−−→ P ′[φ]

P
v−→ P ′

(Res)

(ν a)P
(ν a)v−−−−→ (ν a)P ′

P
v−→ P ′

(Lpar)

P |Q v−→ P ′|Q
P

v′−→ P ′ Q
v−→ Q′

(Com)

P |Q v•v′−−−→ P ′|Q′

Fig. 1: SOS semantics of the cCNA (rules (Rel) and (Rpar) omitted).

Semantics. The operational semantics of cCNA is defined in the SOS style by
the inference rules in Fig.1. The rules are reminiscent of those for Milner’s CCS
and they essentially coincide with those of CNA in [8], except for the presence
of prefixes that are link chains instead of single links. Briefly: rule (Sum) selects
one alternative and uses, as a label, a possible contraction/expansion v of the
link chain vj in the selected prefix; rule (Ide) selects one transition of the process
defined by a constant; rule (Rel) renames the channels in the label as indicated
by φ; rule (Res) restricts some names in the label (it cannot be applied when
(ν a)v is not defined); rules (Lpar) and (Rpar) account for interleaving in parallel
composition; rule (Com) synchronises interactions (it cannot be applied when
v • v′ is not defined). Analogously to CNA, the operational semantics of cCNA

satisfies the so called Accordion Lemma: whenever P
v−→ Q and v′ IJ v then

P
v′−→ Q. As a matter of notation, we write P → Q when P

v−→ Q for some
silent link chain v and call it a silent transition. Similarly, a sequence of j silent
transitions is denoted P →j Q.

3.1 Notation for link chains

Hereafter we make use of some new notations for link chains that will facilitate
the presentation of our translation.

Definition 7 (Replication). Let υ be a link chain. Its n times replication υn

is defined recursively by letting υ0 = ε (i.e. the empty chain) and υn = υn−1υ,
with the hypothesis that all the links in the resulting link chains match.

For example, the expression (a\�b \�)3 denotes the chain a\�b \a�\�b \a�\�b \�.
We introduce the half link that will be used in conjunction with the open block
of chain to form regular link chains. Let a\ denote the half left link of a link
a\x, and conversely let \a denote the half right link of x\a.

Definition 8 (Open block). Let R be a totally ordered, finite set of names.
We define an open block as

(∖∖
�
ci\

co
�

)
c ∈ R

, where ci and co are annotated version of

the name c, as follows
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set open block expression result
R = ∅

(∖∖
�
ci\

co
�

)
c ∈ R

ε

R = {a}
(∖∖

�
ci\

co
�

)
c ∈ R

�
ai\

ao
�

R = {a} ]R′ with a = minR
(∖∖

�
ci\

co
�

)
c ∈ R

�
ai\

ao
� \

(∖∖
�
ci\

co
�

)
c ∈ R′

We then combine half links and open blocks to form regular link chains.
For example, for R = {a, b} the expression

(∖∖
�
ci\

co
�

)
c ∈ R

denotes the block of chains

�
ai\

ao
� \

�
bi
\bo� ; and the expression r1\

(∖∖
�
ci\

co
�

)
c ∈ R

\r2 denotes the chain r1\�ai\
ao
� \

�
bi
\bo� \r2 .

4 From Reaction Systems to cCNA

Here we present a translation from Reaction Systems to cCNA. The idea is to
define separated processes for representing the behaviour of each entity, each
reaction, and for the provisioning of each entity by the context.

Processes for entities. Given an entity s ∈ S, we exploit four different names
for the interactions over s: names si, so are used to test the presence of s in
the system; names ŝi, ŝo are used to test the provisioning of s from the context;
names s̃i, s̃o are used to test the production of s by some reaction; names si, so
are used to test the absence of s in the system; and names si, so are used to test
the absence of s from the context. We let Ps be the process implementing the
presence of s in the system, and Ps its absence. They are defined below:

Ps ,
∑
h≥0,k≥0(si\�so\�)h ŝi\�ŝo\�(s̃i\�s̃o\�)k.Ps

+∑
h≥0,k≥1(si\�so\�)h si\�so\�(s̃i\�s̃o\�)k.Ps

+∑
h≥0(si\�so\�)h si\so .Ps

Ps ,
∑
h≥0,k≥0(si\�so\�)h ŝi\�ŝo\�(s̃i\�s̃o\�)k.Ps

+∑
h≥0,k≥1(si\�so\�)h si\�so\�(s̃i\�s̃o\�)k.Ps

+∑
h≥0(si\�so\�)h si\so .Ps

The first line of Ps accounts for the case where s is tested for presence by
h reactions and produced by k reactions, while being provided by the context
(ŝi\ŝo). Thus, s will be present at the next step (the continuation is Ps). Here
h and k are not known a priori and therefore any combination is possible. By
knowing the number of reactions that test s, we can bound the maximum values
of h and k. The second line accounts for the analogous case where s is not
provided by the context (si\so). The condition k ≥ 1 guarantees that s will
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remain present (the continuation is Ps). The third line accounts for the case
where s is tested for presence by h reactions, but it is neither produced nor
provided by the context. Therefore, in the next step s will be absent in the
system (the continuation is Ps). Note that in the case of Ps the test for presence
of s in the system is just replaced by the test for its absence. As before, s will
be present again in the system if s will be produced (rows 1 and 2 in Ps code),
or if the context will provide it (row 1 in Ps code).

Processes for reactions. We assume that each reaction a is assigned a progressive
number j. The process for reaction aj = (Rj , Ij , Pj) must assert either the
possibility to apply the reaction or its impossibility. The first case happens when
all its reactants are present (the link si\so is requested for any s ∈ Rj) and all
its inhibitors are absent (the link ei\eo is requested for any e ∈ Ij), then the
product set is released (the link c̃i\c̃o is requested for any c ∈ Pj). The next
case can happen for two reasons: one of the reactants is absent (the link si\so
is requested for some s ∈ Rj) or one of the inhibitors is present (the link ei\eo
is requested for some e ∈ Ij). The process is recursive so that reactions can be
applied at any step.

Paj , rj\
(∖∖

�
si\

so
�

)
s ∈ Rj

\
(∖∖

�
ei
\eo�
)

e ∈ Ij

\�rj+1
\pj� \

(∖∖
�
c̃i
\c̃o�
)

c ∈ Pj

\pj+1 .Paj {aj is applicable}

+∑
s∈Rj

rj\�si\
so
� \

�
rj+1
\pj� \pj+1 .Paj {aj is not applicable}

+∑
e∈Ij

rj\�ei\
eo
� \

�
ri+1
\pj� \pj+1

.Paj {aj is not applicable}

Formally speaking, the definition of the case when aj is applicable (row 1) re-
quires Rj , Ij and Pj to be totally ordered, because open block expressions are
used. It is worth noting that the chosen orders are inessential for exploiting Paj
in the encoding of a RS, but they are needed to disambiguate its definition.
Without loss of generality, we assume that all the entities are enumerated, like-
wise reactions, so that Rj , Ij and Pj inherit the same order. We exploit names
rj , pj to join the chains provided by the application of all the reactions. Channels
rj and rj+1 enclose the enabling/disabling condition of reaction aj . Channels pi
and pj+1 enclose the links related to the entities produced by aj . We will see
that all the link chain labels of transitions follow the same schema: first we find
all the reactions limited to the reactants and inhibitors (chained using rj chan-
nels), then all the supplies by the contexts (chained using cxtj channels, to be
introduced next), and finally the products for all the reactions (chained using pj
channels). In the following there is an example explaining this schema.

Processes for contexts. For each entity s ∈ S, we introduce another process Cxts,
participating in each transition and determining whether the entity s is provided
by the context or not. As already said, we assume that entities are enumerated
and use the names cxtj to concatenate the chains formed by the application of
all the contexts. For each entity s with number j, at step n > 0 there are two
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possible behaviours:

Cxtns ,

{
cxtj\�ŝi\

ŝo
� \cxtj+1

.Cxtn+1
s if the context provides s at the n-th step

cxtj\�si\
so
� \cxtj+1

.Cxtn+1
s otherwise

Cxts , Cxt1s

We only consider Cxtns with n > 0, as the entities such that s ∈ C0 (resp.
s 6∈ C0) are modeled by the Ps processes (resp. Ps) in the initial cCNA process.
The intrinsic modularity of cCNA allows us to run different context behaviours
for the same system by changing the definitions of Cxtns .

Definition 9 (Translation). Let A = (S,A) be a RS, and let π = (γ, δ) be an
extended interactive process in A, with γ = {Ci}i∈N. We define its cCNA trans-
lation JA, γK as follows:

JA, γK = (ν reacts, cxts, ents, prods)(Πs∈C0
Ps|Πs/∈C0

Ps|Πa∈APa|Πs∈SCxts),

with reacts be the set of reaction names rj, cxts the set of context names cxtj,
ents the set of decorated entity names {si, so, ŝi, ŝo, s̃i, s̃o, si, so, si, so|s ∈ S}, and
prods be the set of names pj associated to each reaction. In the following, we set
names = reacts ∪ cxts ∪ ents ∪ prods. For notational convenience, we fix that
r1 = τ , ru+1 = cxt1 for u the number of reacts, and cxtw+1 = p1 pu+1 = τ for
w the number of entities.

It is important to observe that, for each transition, our cCNA encoding re-
quires all the processes Pa, with a ∈ A, and Cxts and Ps, with s ∈ S, be
interacting in that transition. This is due to the fact that all the channels rj , pj ,
cxtj , and si, and so are restricted. Each reaction defines a pattern to be satis-
fied, i.e. each reaction inserts as many virtual links as the number of reactants,
inhibitors, and products, as required by the corresponding reaction.

Lemma 1. Let A = (S,A) be a RS and let π = (γ, δ) be an extended interactive
process in A. Let P = JA, γK its cCNA translation. If there exists P ′ such that

t = (P
(ν names)υ−−−−−−−→ P ′) is a transition of P , then

1. for each reaction aj ∈ A, the corresponding channels rj and pj appear in
υ; for each entity sh ∈ S (where h is the identifying number of s), the
corresponding channel sh (suitably decorated), and the corresponding channel
cxth appear in υ;

2. for each reaction a ∈ A and each entity s ∈ S, each virtual link offered
by processes Pa and Cxts is overlapped by exactly one solid link offered by
processes representing entities.

Example 2. Let A be a RS whose specification contains two entities, s1 and s2,
and, among the others, the reaction a = ({s1}, {. . . }, {s1}) that guarantees the
persistence of the entity s1 once it is present in the system. Note that we use
here a dummy inhibitor (. . . ) which will never be present. Then, we assume an
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τ

s1i

�

�

s1o

r2

. . .
cxt1

ŝ1i

. . .
cxt2

ŝ2i

�

�

ŝ2o

p1

p1

s̃1i

�

�

s̃1o

τ

Fig. 2: The link chain structure arising from reactions and context processes.

extended interactive process π = (γ, δ) where the context γ provides s1 and s2.
Our translation includes the processes:

Pa , τ\�s1i\
s1o
� \

�
r2\

p1
� \

�
s̃1i
\s̃1o� \p2 .Pa + . . . ;

Ps1 , s1i\�s1o\
ŝ1i
� \

�
ŝ1o
\s̃1i� \

.
s̃1o
Ps1 + . . . ; Ps2 , ŝ2i\ŝ2o .Ps2 + . . . ;

Cxts1 , cxt1\�
ŝ1i
\ŝ1o� \cxt2 .Cxts1 Cxts2 , cxt2\�

ŝ2i
\ŝ2o� \p1 .Cxts2

Now, we assume that s1 is in the initial state of A, and in Figure 2 we show the
structure of a link chain label related to the execution of a transition of the cCNA
system: (ν names)(Ps1|Ps2|Pa| . . . |Cxts1|Cxts2). The yellow blocks are referred
to the processes encoding the reactions (Pa, in our case) and the contexts (Cxts1
and Cxts2). As the figure puts in evidence, these two kinds of processes determine
the structure of the link chain, from end to end, i.e. from the left τ to the right
one. We could say that these processes form the backbone of the interaction. In
contrast, the processes encoding the entities (Ps1, and Ps2, in our case) provides
the solid links to overlap the virtual links of the backbone.

Example 2 outlines two different roles of the processes defining the translation
of an interactive process: those processes encoding the reactions and the context
provide the backbone of each transition, whereas the processes encoding the
entities provide the resources needed for the communication to take place.

With the next proposition, we analyse the structure of a cCNA process en-
coding of a reactive process after one step transition. In the following four state-
ments, for brevity, we let A = (S,A) be a RS, and let π = (γ, δ) be an extended
interactive process in A, with γ = {Ci}i∈N and δ = {Di}i∈N. Moreover, we de-
note by πj the shift of π starting at the j-th state sequence; formally we let
πj = (γj , δj) with γj = {C ′i}i∈N, δj = {D′i}i∈N such that C ′0 = Cj ∪Dj , D

′
0 = ∅,

and C ′i = Ci+j , D
′
i = Di+j for any i ≥ 1.

Proposition 1 (Correctness 1). Let P = JA, γK with

P = (ν names)(Πa∈APa|Πs∈SCxt
1
s|Πs∈C0

Ps|Πs/∈C0
P s).

If P
v−→ Q, then v is a silent action and Q = JA, γ1K, namely

Q = (ν names)(Πa∈APa|Πs∈SCxt
2
s|Πs∈C1∪D1

Ps|Πs/∈C1∪D1
P s).

Now, we extend the previous result to a series of transitions.

Corollary 1 (Correctness 2). Let P = JA, γK and j ≥ 1. If there exists Q
such that P →j Q, then Q = JA, γjK.
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Conversely, we prove that the cCNA process JA, γK can simulate all the evo-
lutions of the underlying interactive process.

Proposition 2 (Completeness 1). JA, γK→ JA, γ1K.

Now, we extend the previous result to a series of transitions.

Corollary 2 (Completeness 2). JA, γK→j JA, γjK.

5 Example: lac operon

In this section we present the encoding of a RS example taken from [15].

5.1 The lac operon

An operon is a cluster of genes under the control of a single promoter. The
lac operon is involved in the metabolism of lactose in Escherichia coli cells; it is
composed by three adjacent structural genes (plus some regulatory components):
lacZ, lacY and lacA encoding for two enzymes Z and A, and a transporter Y ,
involved in the digestion of the lactose. The main regulations are:

– the gene lacI encodes a repressor protein I;
– the DNA sequence, called promoter, is recognised by a RNA polymerase to

iniziate the transcription of the genes lacZ, lacY and lacA;
– a DNA segment, called the operator (OP ), obstructs the RNA polymerase

functionality when the repressor protein I is bound to it forming I-OP ;
– a short DNA sequence, called the CAP -binding site, when it is bound to

the complex composed by the protein CAP and the signal molecule cAMP ,
acts as a promoter for the interaction between the RNA polymerase and the
promoter.

The functionality of the lac operon depends on the integration of two control
mechanisms, one mediated by lactose, and the other one mediated by glucose.

In the first control mechanism, an effect of the absence of the lactose is that
I is able to bind the operator sequence preventing the lac operon expression. If
lactose is available, I is unable to bind the operator sequence, and the lac operon
can be potentially expressed.

In the second control mechanism, when glucose is absent, the molecule cAMP
and the protein CAP increase the lac operon expression, thanks to the fact that
the binding between the molecular complex cAMP -CAP and the CAP -binding site
increases. In summary, the condition promoting the operon gene expression is
when the lactose is present and the glucose is absent.

In the following we report the description of the lac operon mechanism in
the reaction system formalism and then show its encoding in cCNA.
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5.2 The RS formalization

The reaction system for the lac operon is defined as Alac = (S,A), where the set
S represents the main biochemical components involved in this genetic system,
while the reaction set A contains the biochemical reactions involved in the reg-
ulation of the lac operon expression. Formally, the lac operon reaction system is
defined as follows: S is the set

{lac, Z, Y,A, lacI, I, I-OP, cya, cAMP, crp, CAP, cAMP -CAP, lactose, glucose},

and A consists of the following 10 reactions:

a1 = ({lac}, {...}, {lac}), a6 = ({cya}, {...}, {cAMP}),
a2 = ({lacI}, {...}, {lacI}), a7 = ({crp}, {...}, {crp}),
a3 = ({lacI}, {...}, {I}), a8 = ({crp}, {...}, {CAP}),
a4 = ({I}, {lactose}, {I-OP}), a9 = ({cAMP,CAP}, {glucose}, {cAMP -CAP}),
a5 = ({cya}, {...}, {cya}), a10 = ({lac, cAMP -CAP}, {I-OP}, {Z, Y,A}).

The default context (DC) is composed by those entities that are always present
in the system DC = {lac, lacI, I, cya, cAMP, crp, CAP}, whereas the lactose
and the glucose are given non-deterministically by the context.

5.3 The RS encoding

For the sake of readability, the encoding we propose exploits the specific features
of the example in hand to perform some simplifications:

– for the entities in the default context, s ∈ DC, as they are persistent, we do
not provide the Ps processes and the Cxts processes;

– for the reactions requiring the presence of entities s ∈ DC, we do not provide
the reaction alternative behaviour when s is absent;

– the Cxts processes are specified only for those entitiess that are really pro-
vided by the context.

Moreover, we do not model the dummy entity that is specified by dots (. . . ) by
the RS reactions in Section 5.2. Finally, we exclude the duplication reactions (a1,
a2, a5, a7), and renumber the remaining reactions :

old new reactions
a3 a1 = ({lacI}, {...}, {I}),
a4 a2 = ({I}, {lactose}, {I-OP}),
a6 a3 = ({cya}, {...}, {cAMP}),
a8 a4 = ({crp}, {...}, {CAP}),
a9 a5 = ({cAMP,CAP}, {glucose}, {cAMP -CAP}),
a10 a6 = ({lac, cAMP -CAP}, {I-OP}, {Z, Y,A}).

Expression reactions. First we define the parametric process

Pi(s1, s2) , ri\�s1i\
s1o
� \

�
ri+1
\pi� \

�
s̃2i
\s̃2o� \pi+1

.Pi(s1, s2)

Then, we let Pa1 , P1(lacI, I), Pa3 , P3(cya, cAMP ), and Pa4 , P4(crp, CAP ).
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Regulation reactions.

Pa2 , r2\�Ii\
Io
� \

�
lactosei

\lactoseo� \�r3\
p2
� \

�
Ĩ-OP i

\Ĩ-OPo
� \p3 .Pa2

+
r2\�lactosei\

lactoseo
� \�r3\

p2
� \p3 .Pa2 + r2\�

Ii
\Io� \

�
r3\

p2
� \p3 .Pa2

Pa5 , r5\�cAMPi
\cAMPo
� \�CAPi

\CAPo
� \�

glucosei
\glucoseo� \�r6\

p5
� \

�
˜cAMP -CAP i

\ ˜cAMP -CAPo
� \p6 .Pa5

+
r5\�glucosei\

glucoseo
� \�r6\

p5
� \p6 .Pa5

+
r5\�

cAMP i
\cAMPo
� \�r6\

p5
� \p6 .Pa5 + r5\�

CAP i
\CAPo
� \�r6\

p5
� \p6 .Pa5

Pa6 , r6\�laci\
laco
� \�cAMP -CAPi

\cAMP -CAPo
� \�

I-OP i
\I-OPo
� \�cxt1\

p6
� \

�
z̃i
\z̃o� \

�
ỹi
\ỹo� \

�
Ãi
\Ão
� \τ .Pa6

+
r6\�I-OPi

\I-OPo
� \�cxt1\

p6
� \τ .Pa6

+
r6\�

laci
\laco� \�cxt1\

p6
� \τ .Pa6 + \�

cAMP -CAP i
\cAMP -CAPo
� \�cxt1\

p6
� \τ .Pa6

Processes for the entities. We exploit the specificity of the example in hand to
optimise the code, and we specify exactly the number of solid links that each
process encoding an entity must offer. For the always present entities we let:

Pcya , cyai\cyao .Pcya Pcrp , crpi\crpo .Pcrp
PlacI , lacIi\lacIo .PlacI Plac , laci\laco .Plac

For the entities always produced (i.e. not present only at the first step), we
provide a parametric definition Pe(s) , si\�so\

s̃i
�\s̃o .Pe(s) + s̃i\s̃o .Pe(s).

There are three entities of the second type:

PcAMP , Pe(cAMP ) PCAP , Pe(CAP ) PI , Pe(I).

The entity I-OP can be either produced (by a2) or tested for absence (by
a6). Correspondingly, the process PI-OP is defined as follows:

PI-OP ,
∑1
h=0(I-OPi\�I-OPo

\�)h Ĩ-OP i\
Ĩ-OP o

.PI-OP + I-OPi\I-OPo
.PI-OP

PI-OP ,
∑1
h=0(I-OP i\�

I-OP o
\�)h Ĩ-OP i\

Ĩ-OP o
.PI-OP + I-OP i\I-OP o

.PI-OP

The process PcAMP -CAP is similar to PI-OP , as it is produced by a5 and tested
for presence by a6. Its code is omitted.

The lactose is provided by the context and tested for absence by a2.
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Plactose ,
∑1
h=0(lactosei\�lactoseo\�)h

̂lactosei\ ̂lactoseo
.Plactose

+∑1
h=0(lactosei\�lactoseo\�)h lactosei\lactoseo .Plactose

Plactose ,
∑1
h=0(lactosei\�

lactoseo
\�)h

̂lactosei\ ̂lactoseo
.Plactose

+∑1
h=0(lactosei\�

lactoseo
\�)h lactosei\lactoseo .Plactose

The process Pglucose is similar to Plactose and tested for absence by a5. Its code
is omitted.

The entity z can only be produced by rule a6, while it is never provided by
the context. Moreover, there is no rule for testing its presence or absence.

Pz , z̃i\�z̃o\
zi
�\zo .Pz + zi\zo .Pz Pz , z̃i\�z̃o\

zi
�\zo .Pz + zi\zo .Pz

The entities y and A are treated likewise z. Their processes are omitted.

Context. The entities inDC are assumed always present by default, so no context
process is needed for them. The entities z, y, and A are assumed never provided
by the context:

Cxtz , cxt1\�zi\
zo
� \cxt2 .Cxtz Cxty , cxt2\�y

i
\
y
o

� \cxt3 .Cxty
CxtA , cxt3\�Ai

\Ao

� \cxt4 .CxtA

Also, for the sake of presentation, we assume that the glucose is never provided
and lactose is always provided by the context:

Cxtlactose , cxt4\�̂lactosei\
̂lactoseo
� \cxt5 .Cxtlactose

Cxtglucose , cxt5\�glucose
i

\
glucose

o

� \p1 .Cxtglucose

In the following we let CXT , Cxtz|Cxty|CxtA|Cxtlactose|Cxtglucose be the
processes for context. The whole system is as follows:

lacOp , (ν names)(Π6
i=1Pai|Πs∈DCPs|Πs∈S\DCP s|CXT )

Execution. Now, we show the execution of two transitions. After the first tran-
sition, the entity cAMP -CAP is produced due to the absence of glucose(see
Pa5), while the presence of lactose inhibits the production of I-OP (see Pa2):

lacOp
(ν names)v−−−−−−−→ lacOp′, where

v = τ\laci . . .
lactoseo\r3 . . . r5\cAMPi . . .

glucoseo\r6 . . . p5\ ˜cAMP -CAP i
. . . p6\τ

lacOp′ , (ν names)(Π6
i=1Pai|Πs∈APPs|Πs∈S\APP s|CXT )

with AP = DC ∪ {cAMP -CAP} the actual context.
After the second step the entities z, y and A are produced, due to the presence of
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cAMP -CAP and the absence of I-OP (see Pa6), thus lacOp′
(ν names)v′−−−−−−−−→ lacOp′′

where:

v′ = τ\laci . . .
laco\cAMP−CAPi . . .

I−OPo\...cxt1
glucose

o\p1p1\
p6
... \z̃iz̃i\

z̃o
z̃o
\ỹiỹi\

ỹo
ỹo
\Ãi

Ãi
\Ão

Ão
\τ

lacOp′′ , (ν names)(Π6
i=1Pai|Πs∈AP ′Ps|Πs∈S\AP ′P s|CXT )

with AP ′ = DC ∪ {z, y, A}.

6 Enhanced Reaction Systems

Our encoding increases the expressivity of RS concerning: the behaviour of the
context, the possibility of alternative behaviour of mutated entities and the com-
munication between two different reaction systems. It is important to note that
our encoding guarantees that from each state, in the cCNA transition system,
only one transition comes out, as the dynamics is totally deterministic.

6.1 Recursive contexts

In RS, the behaviour of the context is finite. For the first n steps, it is specified
which are the entities that are provided from the context. Using cCNA we can
describe in a natural way the behaviour of the context in a recursive way. Then,
the context behaviour would not necessarily end after n steps, and could be
infinite. For example, in an extended interactive process, we may want that the
entity s is intermittently provided by the context every two steps:

Cxts , cxtj\�ŝi\
ŝo
� \cxtj+1

.Cxts′ , context provides s;

Cxts′ , cxtj\�si\
so
� \cxtj+1 .Cxts′′ , context doesn’t provide s;

Cxts′′ , cxtj\�si\
so
� \cxtj+1 .Cxts, context doesn’t provide s.

6.2 Mutating entities

In RS, when an entity is present, it can potentially be involved in each reaction
where it is required. With a few more lines of code, in cCNA it is possible to
describe the behaviour of a mutation of an entity, in a way that the mutated
version of the entity can take part to only a subset of the rules requiring the nor-
mal version of the entity. For example, let us assume that entity s1 is consumed
by reactions a1 and a2. Reaction a1 produces s1 if s2 is present, otherwise a1
produces a mutated version of s1, say s1′. When s1′ is produced, reaction a1
behaves in the same way as if s1 would be absent, whereas a2 recognises the
presence of s1′ and behaves in the same way as if s1 would be present. Techni-
cally, in both cases it is enough to add one more non deterministic choice in the
code of Pa1 and Pa2.
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rs1 rs2

a1 = (s, , x) a2 = (y, , s)

Table 1: The two reaction systems rs1 and rs2.

6.3 Communicating reaction systems

We sketch how it is possible to program two RS encodings, in a way that the
entities that usually come from context of one RS will be provided instead from
the other RS.

Example 3. Let rs1 and rs2 be two RSs, defined by the rules in Table 1.
Now, we set our example such that the two contexts, for rs1 and rs2, do not
provide any entities. We also assume that entity s in rs1 is provided by rs2,
as rs2 produces a quantity of s that is enough for rs1 and rs2. For technical
reasons, we can not use the same name for s in both the two RSs, then we
use the name ss in rs2. We need to modify our translation technique to suite
this new setting. As we do not model contexts, we introduce dummy channel
names dx and dss to model the case x and ss are not produced. Also, thanks to
the simplicity of the example, we can leave out the use of the pi channels. This
streamlining does not affect the programming technique we propose to make two
RSs communicate. First, we translate the reaction in rs1:

Ja1K , Pa1 , τ\�si\
so
� \

�
x̃i
\x̃o

� \a2 .Pa1 + τ\�si\
so
� \

�
dxi
\dxo

� \a2 .Pa1

Please note, that prefixes of process Pa1 end with the channel name a2, as the
link chain is now connected with the reaction of rs2. The translation for the
entities follows.

JsK , Ps , si\�so\
ŝi
�\ŝo .Ps + si\so .Ps JxK , Px , x̃i\x̃o .Px + dxi\dxo .Px

Ps , si\�so\
ŝi
�\ŝo .Ps + si\si .Ps Px , x̃i\x̃o

.Px + dxi\dxo
.Px

The translation for the rs2 follows.

Ja2K , Pa2 , a2\�yi\
yo
� \

�
s̃si
\s̃so� \τ .Pa2 + a2\�yi\

yo
� \

�
dssi
\dsso� \τ .Pa2

In the translation of the entities in rs2, we introduce the mechanism that allows
the entity s (ss in rs2) to be provided in rs1. Every time ss is produced in rs2,
a virtual link is created to synchronise with rs1 on link ŝi\ŝo :

JssK , Pss , s̃si\�ŝi\
ŝo
� \s̃so .Pss + dssi\dsso .Pss JyK , Py , yi\yo .Py

Pss , s̃si\�ŝi\
ŝo
� \s̃so .Pss + dssi\dsso .Pss Py , yi\yo .Py

We now assume that the initial system is S , (ν names)(Pa1 |Pa2 |Ps|Py|Px|Pss),
i.e. only entities s and y are present. Now, the only possible transition has the
following label (that we report without restriction):

τ\sisi\
so
so\

x̃i

x̃i
\x̃o

x̃o
\a2a2\

yi
yi\

yo
yo\

s̃si
s̃si
\ŝiŝi\

ŝo
ŝo
\s̃sos̃so
\τ ,
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where the black links belong to the prefixes of Pa1 , and Pa2 , the blue links belong
to Ps, the gray links belong to Py, and Px and the red links belong to Pss. Af-
ter the execution, the entity s is still present in rs1 as it has been provided by rs2.

As we have briefly sketched, our model of two communicating reaction sys-
tems can enable the study of the behaviour of one RS in relation to another one.
Thus, the products of the reactions of one RS can become the input for another
one. This could allow for a modular approach to modeling complex systems, by
composing different Reaction Systems.

7 Conclusion

In this paper we have exploited a variant of the link-calculus where prefixes are
link chains and no more single links. This variant was already briefly discussed by
the end of [8]. This variant allowed us to define an elegant embedding of reaction
systems, an emerging formalism to model computationally biochemical systems.
This translation shows several benefits. For instance, the context behaviour can
also be expressed recursively; entity mutations can be expressed easily; reaction
systems can communicate between them.

We believe that our embedding can contribute to extend the applications
of reaction systems to diverse fields of computer science, and life sciences. As
we have already mentioned, the evolution of each process resulting from our
embedding is deterministic, thus we do not have the problem of having infinitely
many transitions in the produced labelled transition system. In any case, we can
exploit the implementation of the symbolic semantics of the link-calculus [11]
that is available at [19].

As future work, we plan to implement a prototype of our framework, with
an automatic translation from RSs to the link-calculus. We believe that our
work can also help to extend the framework of RSs towards a model which can
improve the communication between different RSs. We also believe that our
work can make possible to investigate how to apply formal techniques to prove
properties of the modeled systems [13,20,7,16,14].
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