2012.03140v1 [cs.DC] 5 Dec 2020

arxXiv

Special issue on NETYS 2019 manuscript No.
(will be inserted by the editor)

Recoverable Mutual Exclusion with Abortability

Prasad Jayanti - Anup Joshi

Received: date / Accepted: date

Abstract Recent advances in non-volatile main memory (NVRAM) technology have spurred re-
search on designing algorithms that are resilient to process crashes. This paper is a fuller version of
our conference paper [21I], which presents the first Recoverable Mutual Exclusion (RME) algorithm
that supports abortability. Our algorithm uses only the read, write, and CAS operations, which are
commonly supported by multiprocessors. It satisfies FCFS and other standard properties.

Our algorithm is also adaptive. On DSM and Relaxed-CC multiprocessors, a process incurs
O(min(k,logn)) RMRs in a passage and O(f + min(k,logn)) RMRs in an attempt, where n is the
number of processes that the algorithm is designed for, k is the point contention of the passage
or the attempt, and f is the number of times that p crashes during the attempt. On a Strict CC
multiprocessor, the passage and attempt complexities are O(n) and O(f + n).

Attiya et al. proved that, with any mutual exclusion algorithm, a process incurs at least £2(logn)
RMRs in a passage, if the algorithm uses only the read, write, and CAS operations [3]. This lower
bound implies that the worst-case RMR complexity of our algorithm is optimal for the DSM and
Relaxed CC multiprocessors.

Keywords concurrent algorithm, synchronization, mutual exclusion, recoverable algorithm, fault
tolerance, non-volatile main memory, shared memory, multi-core algorithms

1 Introduction

Recent advances in non-volatile main memory (NVRAM) technology [I3][28][32][33] have spurred
research on designing algorithms that are resilient to process crashes. NVRAM is byte-addressable,

The first author is grateful to the Frank family and Dartmouth College for their support through James Frank Family
Professorship of Computer Science. The second author is grateful for the support from Dartmouth College.

Prasad Jayanti
Dartmouth College, Hanover NH 03755, USA
E-mail: prasad.jayanti@dartmouth.edu

Anup Joshi
Dartmouth College, Hanover NH 03755, USA
E-mail: anup.s.joshi.gr@dartmouth.edu

http://arxiv.org/abs/2012.03140v1

2 Prasad Jayanti, Anup Joshi

so it replaces main memory, directly interfacing with the processor. This development is excit-
ing because, if a process crashes and subsequently restarts, there is now hope that the process
can somehow recover from the crash by consulting the contents of the NVRAM and resume its
computation.

To leverage this advantage given by the NVRAM, there has been keen interest in reexamining
the important distributed computing problems for which algorithms were designed in the past for
the traditional (crash-free) model of an asynchronous shared memory multiprocessor. The goal is to
design new algorithms that guarantee good properties even if processes crash at arbitrary points in
the execution of the algorithm and subsequently restart and attempt to resume the execution of the
algorithm. The challenge in designing such “recoverable” algorithms stems from the fact that when
a process crashes, even though the shared variables that are stored in the NVRAM are unaffected,
the crash wipes out the contents of the process’ cache and CPU registers, including its program
counter. So, when the process subsequently restarts, it can’t have a precise knowledge of exactly
where it crashed. For instance, if the last instruction that a process executes before a crash is a
compare&swap (CAS) on a shared variable X, when it subsequently restarts, it can’t tell whether
the crash occurred just before or just after executing the CAS instruction and, if it did crash after
the CAS, it won’t know the response of the CAS (because the crash wipes out the register the
CAS’s response went into). The “recover” method, which a process is expected to execute when it
restarts, has the arduous task of ensuring that the process can still somehow resume the execution
of the algorithm seamlessly.

The mutual exclusion problem, formulated to enable multiple processes to share a resource that
supports only one process at a time [§], has been thoroughly studied for over half a century for the
traditional (crash-free) model, but its exploration for the crash-restart model is fairly recent. In the
traditional version of the problem, each process p is initially in the “remainder” section. When p
becomes interested in acquiring the resource, it executes the tryp() method; and when this method
completes, p is in the “critical section” (CS). To give up the CS, p invokes the exit,() method;
and when this method completes, p is back in the remainder section. An algorithm to this problem
specifies the code for the try and exit methods so that at most one process is in the CS at any
time and other desirable properties (such as starvation freedom, bounded exit, and First-Come-
First-served, or FCFS) are also satisfied. Golab and Ramaraju were the first to reformulate this
problem for the crash-restart model as Recoverable Mutual Exclusion (RME). In the RME problem,
a process p can crash at any time and subsequently restart [12]. If p crashes while in try, CS, or exit,
p’s cache and registers (aka local variables) are wiped out and p returns to the remainder section
(i.e., crash resets p’s program counter to its remainder section). When p restarts after a crash, it is
required to invoke a new method, named recover,(), whose job is to “repair” the adverse effects
of the crash and send p to where it belongs. In particular, if p crashed while in the CS, recover,()
puts p back in the CS (by returning IN_CS). On the other hand, if p crashed while executing try, (),
recover,() has a choice—it can either roll p back to the Remainder (by returning IN.REM) or put
it in the CS (by returning IN_CS). Similarly, if p crashed while executing exit,(), recover,() has
a choice of returning either IN.REM or IN_CS.

Golab and Ramaraju made a crucial observation that if p crashes while in the CS, then no other
process should be allowed into the CS until p restarts and reenters the CS. This Critical Section
Reentry (CSR) requirement was strengthed by Jayanti and Joshi’s Bounded CSR requirement: if p
crashes while in the CS, when p subsequently restarts and executes the recover method, the recover
method should put p back into the CS in a bounded number of its own steps [20]. There has been
a flurry of research on RME algorithms in the recent years [5][7] [10][1T] [12][17] [18][20] [21] [22].

Recoverable Mutual Exclusion with Abortability 3

Orthogonal to this development of recoverable algorithms, motivated by the needs of real time
systems and database systems, Scott and Scherer advocated the need for mutual exclusion algo-
rithms to support the “abort” feature, whereby a process in the try section can quickly quit the
algorithm, if it so desires [30]. More specifically, if p receives an abort signal from the environ-
ment while executing the try method, the try method should complete in a bounded number of
p’s steps and either launch p into the CS or send p back to the remainder section. In the past
two decades, there has been a lot of research on abortable mutual exclusion algorithms for the
traditional (crash-free) model [].

The possibility of crashes, together with the CSR requirement, renders abortability even more
important in the crash-restart model, yet there have been no abortable recoverable algorithms until
the conference publication of the algorithm in this submission [2I]. There has since been one more
algorithm, by Katzan and Morrison [22], and we will soon compare the two algorithms.

1.1 RMR complexity.

Remote Memory Reference (RMR) complexity is the standard complexity metric used for com-
paring mutual exclusion algorithms, so we explain it here. This metric is explained for the two
prevalent models of multiprocessors— Distributed Shared Memory (DSM) and Cache-Coherent (CC)
multiprocessors—as follows. In DSM, shared memory is partitioned into n portions, one per pro-
cess, and each shared variable resides in exactly one of the n partitions. A step in which a process
p executes an instruction on a shared variable X is considered an RMR if and only if X is not in
p’s partition of the shared memory.

In CC, the shared memory is remote to all processes, but every process has a local cache. A
step in which a process p executes an instruction op on a shared variable X is considered an RMR,
if and only if op is read and X is not in p’s cache, or op is any non-read operation (such as a write
or CAS). If p reads X when X is not present in p’s cache, X is brought into p’s cache. If a process
q performs a non-read operation op while X is in p’s cache, X’s copy in p’s cache is deleted in the
Strict CC model, but in the Relazed CC model it is deleted only if op changes X’s value. Thus, if X
is in p’s cache and ¢ performs an unsuccessful CAS on X, then X continues to remain in p’s cache
in the relaxed CC model.

A passage of a process p starts when p leaves the remainder section and completes at the
earliest subsequent time when p returns to the remainder (note that p returns to the remainder
either because of a crash or because of a normal return from try, exit or recover methods). An
attempt of p starts when p leaves the remainder and completes at the earliest subsequent time when
p returns to the remainder “normally,” i.e., not because of a crash. Note that each attempt includes
one or mMore passages.

The RMR complexity of a passage (respectively, attempt) of a process p is the number of RMRs
that p incurs in that passage (respectively, attempt).

1.2 Adaptive complexity.

A process is active if it is in the CS, or executing the try, exit, or recover methods, or crashed
while in try, CS, exit, or recover and has not subsequently invoked the recover method. The point
contention at any time ¢ is the number of active processes at ¢. The point contention of a passage
(respectively, attempt) is the maximum point contention at any time in that passage (respectively,

4 Prasad Jayanti, Anup Joshi

attempt). An algorithm is adaptive if the RMR complexity r of each passage (or attempt) of a
process p is a function of that passage’s (or attempt’s) point contention k such that » = O(1) if
k=0(1).

1.3 Our contribution.

We present the first abortable RME algorithm. Our algorithm is based on the ideas underlying
two earlier CAS-based algorithms—one that is recoverable but not abortable [20] and another
that is abortable but not recoverable [I6]. Our algorithm uses only the read, write, and CAS
operations, which are commonly supported by multiprocessors. It satisfies FCFS and other standard
properties (starvation-freedom, bounded exit, bounded CSR, and bounded abort). The algorithm’s
space complexity—the number of words of memory used—is O(n).

Our algorithm is also adaptive. On DSM and Relaxed CC multiprocessors, a process p incurs
O(min(k,logn)) RMRs in a passage and O(f + min(k,logn)) RMRs in an attempt, where n is the
number of processes that the algorithm is designed for, k is the point contention of the passage
or the attempt, and f is the number of times that p crashes during the attempt. On a Strict CC
multiprocessor, the passage and attempt complexities are O(n) and O(f + n).

Attiya et al. proved that, with any mutual exclusion algorithm (even if the algorithm does
not have to satisfy recoverability or abortability), a process incurs at least 2(logn) RMRs in a
passage, if the algorithm uses only the read, write, and CAS operations [3]. This lower bound
implies that the worst-case RMR complexity of our algorithm is optimal for the DSM and Relaxed
CC multiprocessors.

1.4 Comparison to Katzan and Morrison’s algorithm.

To the best of our knowledge, there is only one other abortable RME algorithm, published re-
cently by Katzan and Morrison [22]. They achieve sublogarithmic complexity: a process incurs at
most O(min(k,logn/loglogn) RMRs in a passage and O(f +min(k,logn/loglogn) in an attempt.
Furthermore, they achieve these bounds for even the Strict CC multiprocessor.

On the other hand, our work has the following merits. Unlike the CAS instruction employed in
our algorithm, the fetch&add instruction, which their algorithm employs to beat Attiya et al’s lower
bound and achieve sublogarithmic complexity, is not commonly supported by current machines.
Their algorithm does not satisfy FCFS and has a higher space complexity of O(n log®n /loglogn).
Their algorithm is stated to satisfy starvation-freedom if the total number of crashes in the run
is finite. In contrast, our algorithm guarantees that each attempt completes even in the face of
infinitely many crashes in the run, provided that there are only finitely many crashes during each
attempt.

Finally, Katzan and Morrison correctly point out a shortcoming in our conference paper: our
algorithm there admits starvation if there are infinitely many aborts in a run. The algorithm in this
submission has been revised to eliminate this shortcoming.

1.5 Related Research.

All of the works on RME prior to the conference version of our paper [2I] has focused on designing
algorithms that do not provide abortability as a capability. Golab and Ramaraju [12] formalized the

Recoverable Mutual Exclusion with Abortability 5

RME problem and designed several algorithms by adapting traditional mutual exclusion algorithms.
Ramaraju [27], Jayanti and Joshi [20], and Jayanti et al. [I7] designed RME algorithms that support
the First-Come-First-Served property [23]. Golab and Hendler [I0] presented an algorithm that has
sub-logarithmic RMR complexity on CC machines. Jayanti et al. [I8] presented a unified algorithm
that has a sub-logarithmic RMR complexity on both CC and DSM machines. In another work,
Golab and Hendler [I1] presented an algorithm that has the ideal O(1) passage complexity, but
this result assumes that all processes in the system crash simultaneously. Recently, Dhoked and
Mittal [7] present an RME algorithm whose RMR complexity adapts to the number of crashes, and
Chan and Woelfel [5] present an algorithm which has an O(1) amortized RMR complexity. Recently
Katzan and Morrison [22] gave an abortable RME algorithm that incurs sub-logarithmic RMR on
CC and DSM machines.

When it comes to abortability for classical mutual exclusion problem, Scott [29] and Scott and
Scherer [31] designed abortable algorithms that build on the queue-based algorithms [6][25]. Jayanti
[16] designed an algorithm based on read, write, and comparison primitives having O(logn) RMR
complexity which is also optimal [3]. Lee [24] designed an algorithm for CC machines that uses the
Fetch-and-Add and Fetch-and-Store primitives. Alon and Morrison [I] designed an algorithm for CC
machines that has a sub-logarithmic RMR, complexity and uses the read, write, Fetch-And-Store,
and comparison primitives. Recently, Jayanti and Jayanti [19] designed an algorithm for the CC
and DSM machines that has a constant amortized RMR complexity and uses the read, write, and
Fetch-And-Store primitives. While the works mentioned so far have been deterministic algorithms,
randomized versions of classical mutual exclusion with abortability exist. Pareek and Woelfel [26]
give a sublogarithmic RMR complexity randomized algorithm and Giakkoupis and Woelfel [9] give
an O(1) expected amortized RMR complexity randomized algorithm.

2 Specification of the problem

In this section, we rigorously specify the Abortable RME problem by defining what an abortable
RME algorithm is, modeling the algorithm’s runs, and stating the properties that these runs must
satisfy.

2.1 Abortable RME algorithm

An Abortable Recoverable Mutual Exclusion algorithm, abbreviated Abortable RME
algorithm, is a tuple (P, X, Vals, F, OP, A, M), where

— P is a set of processes. Each process p € P has a set of registers, including a program counter,
denoted PC,,, which points to an instruction in p’s code.

— X is a set of variables, which includes a Boolean variable ABORTSIGNAL[p], for each p € P. No
process except p can invoke any operation on ABORTSIGNAL[p], and p can only invoke a read
operation on ABORTSIGNAL[p].

Intuitively, the “environment” sets ABORTSIGNAL[p] to true when it wishes to communicate to
p that it should abort its attempt to acquire the CS and return to the Remainder.

— Vals is a set of values (that each variable in X’ can possibly take on). For example, on a 64-bit

machine, Vals would be the set of all 64-bit integers.

6 Prasad Jayanti, Anup Joshi

— F is a function that assigns a value from Vals to each variable in X. For all X € X, F(X) is
X’s initial value.
— OPis a set of operations that each variable in X — { ABORTSIGNAL[p] | p € P} supports.
For the algorithm in this paper, OP = {read, write, CAS}, where CAS(X,r, s), when executed
by a process p (and X is a variable and r, s are p’s registers), compares the values of X and
r; if they are equal, the operation writes in X the value in s and returns true; otherwise, the
operation returns false, leaving X unchanged.
— A is a partition of X into |P| sets, named A(p), for each p € P. Intuitively, A(p) is the set of
variables that reside locally at process p’s partition on a DSM machine, but has no relevance on
a CC machine.
— M is a set of methods, which includes three methods per process p € P, named tryp(), exity(),
and recover,(), such that:
— In any instruction of any method, at most one operation is performed and it is performed
on a single variable from X
— The methods try,() and recover,() return a value from {IN_CS,IN.REM}, and exit,()
has no return value.
— None of try, (), exity(), or recovery() calls itself or the other two. (This assumption simpli-
fies the model, but is not limiting in any way because it does not preclude the use of helper
methods each of which can call itself or the other helper methods.)

2.2 Abstract sections of code and abstract variables

For each process p € P, we model p’s code outside of the methods in M to consist of two disjoint
sections, named remainder,() and csy (). Furthermore, we introduce the following abstract variables,
which are not in A and not accessed by the methods in M, but are helpful in defining the problem.

— status, € {good, recover-from-try,recover-from-cs, recover-from-ezit, recover-from-rem}.
Informally, status, models p’s “recovery status”. If status, # good, it means that p is still
recovering from a crash, and in this case, the value of status, reveals the section of code where
p most recently crashed.

— CACHE,, holds a set of pairs of the form (X, v), where X € X and v € Vals. Informally, if (X, v)
is present in the cache, X is in p’s cache and v is its current value. This abstract variable helps
define what operations count as remote memory references (RMR) on CC machines.

2.3 Run, Fair Run, Passage, Attempt

A state of a process p is a function that assigns a value to each of p’s registers, including PCp, and
a value to each of status,, ABORTSIGNAL[p|, and CACHE,,.

A configuration is a function that assigns a state to each process in P and a value to each
variable in X. (Intuitively, a configuration is a snapshot of the states of processes and values of
variables at a point in time.)

An initial configuration is a configuration where, for each p € P, PC, = remaindery(),
status, = good, ABORTSIGNAL[p| = false, and CACHE, = (J; and, for each X € X, X = F(X).

A run is a finite sequence Cpy,a1,Ci,a2,Cs,...ap,Ck, or an infinite sequence
Cy, a1,C1,az,Cy, ... such that:

Recoverable Mutual Exclusion with Abortability 7

1. Cp is an initial configuration and, for each i, C; is a configuration and «; is either (p, normal)
or (p, crash), for some p € P.
We call each triple (C;—1, a;, C;) a step; it is a normal step of p if a; = (p, normal), and a crash
step of p if a; = (p, crash).

2. For each normal step (C;_1, (p, normal), C;), C; is the configuration that results when p executes
an enabled instruction of its code, explained as follows:

If PC, = remainder,() and status, = good in Cj_1, then p invokes either try,() or
recover,().

If PC, = remainder,() and status, # good in C;_1, then p invokes recover,().

If PC, = csp(), then p invokes exit,().

— Otherwise, p executes the instruction that PC), points to in C;_;.

If this instruction returns IN_CS (resp., IN.REM), PC,, is set to cs,() (resp., remainder,()).
If the instruction causes p to return from recover,(), status, is set to good in C;.

If p performs a read on X and X is not present in CACHE, in C;_1, then (X, v) is inserted
in CACHE,, where v is X’s value in C;_;.

In the Strict-CC model, if p performs a non-read operation on X, X is removed from CACHE,,
for all g € P.

In the Relaxed-CC model, if p performs a non-read operation on X that changes X’s value,
X is removed from CACHEq, for all ¢ € P.

3. For each crash step (C;_1, (p, crash), C;), we have:

— In C;, PC, is set to remainder,() and all other registers of p are set to arbitrary values, and
CACHE, is set to 0.

— If status, # good in C;_1, then status, remains unchanged in C;. Otherwise, if (in C;_1)
p is in try,() (vespectively, csp(), exity(), or recover,()), then status, is set in C; to
recover-from-try (respectively, recover-from-cs, recover-from-ezit, or recover-from-rem).

A run R = Cy,a1,Cq,as,Cs, ... is fair if and only if either R is finite or, for all configurations
C; and for all processes p € P, the following condition is satisfied: unless PC}, = remainder,() and
status, = good in Cj, p has a step in the suffix of R from Cj.

Thus, in a fair run, a crashed process eventually restarts, no process stays in the CS forever,
and no process permanently ceases to take steps when it is outside the Remainder section.

A passage of a process p is a contiguous sequence o of steps in a run such that p leaves
remainder,() in the first step of ¢ and the last step of o is the earliest subsequent step in the run
where p reenters remainder),() (either because p crashes or because p’s method returns IN.REM).

An attempt of a process p is a maximal contiguous sequence o of steps in a run such that p
leaves remaindery() in the first step of o with status, = good and the last step of ¢ is the earliest
subsequent normal step in the run that causes p to reenter remainder,() (which would be a return
from exity, or a return of IN.REM from try, or recovery).

2.4 Remote Memory Reference (RMR) and Point Contention

A step of p is an RMR on a DSM machine if and only if it is a normal step in which p performs
an operation on some variable that is not in A(p).

A step of p is an RMR on a Strict or Relaxed CC machine if and only if it is a normal
step in which p performs a non-read operation, or p reads some variable that is not present in p’s
cache.

Prasad Jayanti, Anup Joshi

The point contention at a configuration C' is the number of processes p such that (PC, #

remainder,) V (status, # good) in C.

2.5 Desirable properties

We now state the desirable properties of an abortable RME algorithm, which we divide into three
groups—general, recovery-related, and abort-related.

General properties:

P1
P2
P3

P4

P5

Mutual Exclusion: At most one process is in the CS in any configuration of any run.

Bounded Exit: There is an integer b such that if in any run any process p invokes and executes

exit,() without crashing, the method completes in at most b steps of p.

Weak Starvation Freedom (WSF): In every fair infinite run in which there are only finitely many
crash steps, if a process p is in the Try section in a configuration, p is in a different section in a
later configuration.

Starvation Freedom (SF): In every fair infinite run in which every attempt contains only finitely
many crash steps, if a process p is in the Try section in a configuration, p is in a different section
in a later configuration.

We note that SF implies WSF.

First-Come-First-Served (FCFS): There is an integer b such that in any run, if A and A’ are
attempts by any distinct processes p and p’, respectively, p performs at least b consecutive normal
steps in A before the attempt A’ starts, and p neither receives an abort signal nor subsequently
crashes in try,() in A, then p’ does not enter the CS in A’ before p enters the CS in A.

Recovery related properties:

P6

P7

P8

P9

P10

Critical Section Reentry (CSR) [12]: In any run, if a process p crashes while in the CS, no other
process enters the CS until p subsequently reenters the CS.

Bounded Recovery to CS: There is an integer b such that if in any run any process p executes
recovery() without crashing and with status, = recover-from-cs, the method completes in at
most b steps of p and returns IN_CS.

Bounded Recovery to Exit: There is an integer b such that if in any run any process p executes
recover,() without crashing and with status, = recover-from-ezit, the method completes in at
most b steps of p.

Fast Recovery to Remainder: There is an absolute constant b, i.e., a constant independent of
[P|, such that if in any run any process p executes recover,() without crashing and with
status, € {good, recover-from-rem}, the method completes in at most b steps of p.

Bounded Recovery to Remainder: There is an integer b such that if in any run recovery(), ex-
ecuted by a process p with status, = recover-from-try, returns IN.REM, p must have completed
that execution of recovery,() in at most b of its steps.

Abort related properties:

For any run R, any configuration C of R, and any process p, define the predicate (R, p,C) as true
if and only if in configuration C' it is the case that ABORTSIGNAL[p| is true and either p is in try, ()
or p is in recovery() with status, = recover-from-try.

Recoverable Mutual Exclusion with Abortability 9

P11 Bounded Abort: There is an integer b such that, for each R, C, p, if (R, p, C) is true, ABORTSIGNAL[p]
stays true for ever (i.e., stays true in the suffix R’ of the run from C), and p executes steps
without crashing (i.e., p has no crash steps in R’), then p enters either the CS or the remainder
in at most b of its steps (in R’).

P12 No Trivial Aborts: In any run, if ABORTSIGNAL[p] is false when a process p invokes try,(),
ABORTSIGNAL[p] remains false forever, and p executes steps without crashing, then try, () does
not return IN_REM.

3 The Algorithm

We present our abortable RME algorithm in Figure [[l The algorithm is designed for the set of
processes P = {1,2,...,n}. All the shared variables used by our algorithm are stored in NVRAM.
Variables with a subscript of p to their name are local to process p, and are stored in p’s registers.

3.1 Shared variables and their purpose

We describe below the role played by each shared variable used in the algorithm.

— TOKEN is an unbounded positive integer. A process p reads this variable at the beginning of
tryp() to obtain its token and then increments, thereby ensuring that processes that invoke the
try method later will get a strictly bigger token.

— CSSTATUS and SEQ: These two shared variables are used in conjunction, with SEQ holding an
unbounded integer and CSSTATUS holding a pair, which is either (true,p) (for some p € P)
or (false,SEQ). If CSSTATUS = (true,p), it means that p owns the CS and, if CSSTATUS =
(false, SEQ), it means that no process owns the CS. If SEQ has a value s while p is the CS,
when exiting the CS p increments SEQ to s+ 1 and writes (0, s+ 1) in CSSTATUS. As we explain
later, this act is crucial to ensuring that no process will be made the owner of the CS after it
has moved back to the remainder.

— Golp] has one of three values — —1, 0, or p’s token. The algorithm ensures that Go[p] = —1
whenever p is in the remainder “normally”, i.e., not because of a crash but because the try, exit,
or recover method returned normally. If Go[p] = 0, it means that p is made the owner of CS,
hence p has the permission to enter the CS. After p obtains a token in tryp(), p writes its token
in Go[p| and, subsequently when p must wait for its turn to enter the CS, it spins until either
Golp| turns 0 or it receives a signal to abort.

— REGISTRY is a min-array object [I5] of n locations that supports two operations:
REGISTRY[p|.write(v), which can only be executed by process p, writes v in REGISTRY[p];
and REGISTRY.findmin() returns the minimum value in the array. After p obtains a token ¢ in
try, (), it announces its interest to capture the CS by writing the pair (p,t) in REGISTRY [p], and
when no longer interested, it takes itself out by writing (p, o) in REGISTRY[p]. The “less than”
relation on pairs is defined as follows: (p,t) < (p/,¢') if and only if t <t/ or (t =1¢') A (p <p').
It turns out that the REGISTRY object has an implementation, using only read, write, and CAS
operations, with three nice properties [I5]: it is linearizable, wait-free, and idempotent, i.e., if p
crashes while executing the method REGISTRY [p].write(v) and reexecutes the method once more

10 Prasad Jayanti, Anup Joshi

Persistent variables (stored in NVRAM)
REGISTRY[1...|P]] : A min-array; initially REGISTRY[p] = (p, 00), for all p € P.
CSStatus € {0} x ({0} UNT) U {1} x P; initially (0, 1).
SEQ € N; initially 1.
Vp € P, Golp] € Nt U {—1,0}, initially L.
TOKEN € N, initially 1.

1. Remainder Section

procedure try,():

wait till Go[p] = 0V ABORTSIGNAL[p]
if Go[p] = 0: return IN_CS
return abort,()

2. tokp < TOKEN

3. CAS(TOKEN, tokyp, toky + 1)
4. Golp] « tokyp

5. RECGISTRY[p].write((p, tokp))
6. promote,(false)

7.

8.

9.

10. Critical Section

procedure exitp():
11. REGISTRY[p].urite((p, c0))
12. sp < SEQ
13. SEQ +—sp+1
14. CSStATUS (0,85 + 1)
15. promote,(false)
16. Go[p] + —1

procedure recovery,():
17. if Go[p] = —1: return IN_.REM
18. return abort,()

procedure aborty():
19. REGISTRY[p].urite((p, o))
20. promote,, (true)
21. if CSSTATUS = (1,p): return IN_CS
22. Go[p] + -1
23. return IN_.REM

procedure promote,(boolean flagp):
24. (bp,sp) + CSSTATUS; if by = 1: { peerp < sp; go to Line 27 }
25. (peerp, tokp) < REGISTRY.findmin(); if tok, = oo A flagp: peerp < p else if tok, = co: return
26. if ~CAS(CSSTATUS, (0, sp), (1, peerp)): return
27. gp < Go[peerp]; if g, € {—1,0}: return
28. if CSSTATUS # (1, peerp): return
29. CAS(Go[peerp], gp,0)

Fig. 1: Abortable RME Algorithm for CC and DSM machines. Code for process p.

Recoverable Mutual Exclusion with Abortability 11

upon restart, the effect is the same as executing the method once without ever crashing. The
implementation uses only O(n) variables and has only a logarithmic RMR complexity on a DSM
or a Relaxed CC machine: REGISTRY.findmin() incurs O(1) RMRs and REGISTRY[p].write(v)
incurs O(min(k,logn)) RMRs, where k is the maximum point contention during the execution
of REGISTRY[p].write(v). The idempotence property of the implementation makes it suitable
for use in our algorithm [20].

3.2 Informal description

In this section we present an intuitive understanding of the algorithm that explains the lines of
code and, more importantly, draws attention to potential race conditions and how the algorithm
overcomes them.

Understanding try,()

After a process p invokes try,(), it reads and then attempts to increments TOKEN (Lines [2] [3)).
The attempt to increment serves two purposes. First, if a different process ¢ invokes tryq() later, it
gets a strictly larger token, which helps realize FCFS. Second, if p were to abort its curent attempt
A, it will obtain a strictly larger token in its next attempt A’, which, as we will see, helps ensure
that any process ¢ that might attempt to release p from its busy-wait in the attempt A will not
accidentally release p from its busy-wait in the attempt A’. Process p writes its token in GO[p]
(Line MI), where it will later busy-wait until some process changes Go[p] to 0, and then announces
its interest in the CS by changing REGISTRY[p] from (p, o) to (p,its token) (Line [B]). It then calls
the promote, () procedure, which is crucial to ensuring livelock-freedom (Line [6).

Understanding promote,()

The promotep() procedure’s purpose is to push a waiting process into the CS, if the CS is
unoccupied. To this end, p reads CSSTATUS (Line 24]). If it finds that the CS is already owned (i.e.,
b, = 1), since it is possible that the owner peer, is still busywaiting unaware of its ownership, p
jumps to Line[27] where the code to release peery, starts. On the other hand, if the CS is unoccupied
(i.e., b, = 0), it executes Line[25lto find out the process that has the smallest token in the REGISTRY,
i.e., the process peer,, that has been waiting the longest. Since promote, () is called from p’s Line[6]
at which point REGISTRY[p] has a finite token number for p, at Line we have tok, # oco. So,
p proceeds to Line [26] where it attempts to launch peer, into the CS. If p’s CAS fails, it means
that someone else must have succeeded in launching a process into the CS between p’s Line and
Line[26} in this case p has no further role to play, so it returns from the procedure. On the other hand,
if p’s CAS succeeds, which means that peer, has been made the CS owner, p has a responsibility
to release peer, from its busywait, i.e., p must write 0 in Go[peer,]. However, there is potential for
a nasty race condition here, as explained by the following scenario: some process different from p
releases peer, from its busywait; peer, enters the CS and then exits to the remainder; some other
process ¢ is now in the CS; peer, executes the try method once more and proceeds up to the point
of busy-waiting. Recall that p is poised to write 0 in GO[peer,]. If p does this writing, peer, will
be released from its busywait, so peer, proceeds to the CS, where ¢ is already present. So, mutual
exclusion is violated! Our algorithm averts this disaster by exploiting the fact that, while peer,
busywaits, GO[peer,|’s value is never the same between different attempts of peer,. Specifically, p
reads Go[peer,] (Line 27)); if g, is —1 or 0, it means that peer, is not busywaiting, so p has no role
to play, hence it returns. If things have moved on and peer, no longer owns the CS, then too p has

12 Prasad Jayanti, Anup Joshi

no role to play, hence it returns (Line [28]). Otherwise, there are two possibilities: either Go[peer,]
is still g, or it has changed. In the former case, peer, must be busywaiting, so it is imperative
that p takes the responsibility to release peer, (by changing Golpeer,] to 0). In the latter case,
peer,, requires no help from p, so p must not change Go[peerp] (in order to avoid the race condition
described above). This is precisely what the CAS at Line accomplishes.

The rest of try,()

Upon returning from promote, (), p busywaits until it reads a 0 in GO[p] or it receives a request
to abort (Line [7). If p reads a 0 in GO[p], p infers that it owns the CS, so try,() returns IN.CS
(Line [8)). If p receives a request to abort, it calls abort,() (Line @), which we describe next.

Understanding abort,()

To abort, p writes (p,00) to make it known to all that it has no interest in capturing the CS
(Line @9)). If any process will invoke the promote procedure after this point, it will not find p in
REGISTRY, so it will not attempt to launch p into the CS. Does this mean that p can now return to
the remainder section? The answer is a thundering no because there are two nasty race conditions
that need to be overcome.

First, it is possible that, before p performed Line 9] some process ¢ performed its Line to
find p in REGISTRY, and then successfully launched p into the CS (by writing (1, p) in CSSTATUS).
Taking care of this scenario is easy: p can read CSSTATUS and if p finds that it owns the CS, it can
abort by simply returning IN_CS.

The second potential race is more subtle and harder to overcome. As in the earlier scenario,
suppose that, before p performed Line 9] some process ¢ performed its Line to find p in
REGISTRY (i.e., peery, = p). Furthermore, suppose that ¢ is now at Line[26land CSSTATUS = (0, s,).
So, after performing Line[I9] if p naively returns to the remainder and then ¢ performs Line [26] we
would be in a situation where p has been made the CS owner after it was back in the remainder!

To overcome the above two race conditions, p calls promote, (true) (Line 20).

The parameter true conveys that the call is made by p while aborting, and has the following
impact on how p executes promote,(): if p finds the CS to be unoccupied at Line and finds
REGISTRY to be empty at Line [25] to preempt the second race condition discussed above (where
some process ¢ is poised to launch p into the CS), p will attempt to launch itself into the CS (by
setting peer, to p at Line and attempting to change CSSTATUS to (1, peery)). The key insight
is that, after p performs the CAS at Line [26] only two possibilities remain: either p is already
launched into the CS (i.e., CSSTATUS = (1,p)) or it is guaranteed that no process will launch p
into the CS. In the former case, abort,() returns IN_CS at Line 21} and in the latter case, since it
is safe for p to return to the remainder, abort,() returns IN.REM at Line 23] after setting Go[p]
to —1 at Line (in order to respect the earlier mentioned invariant that Go[p] = —1 whenever p
returns to the remainder normally).

Understanding exit,()

There are two routes by which p might enter the CS. One is the “normal” route where p executes
try,() without aborting or crashing, and try,() returns IN_CS, thereby sending p to the CS. The
second route is where p receives an abort signal, calls at Line [@ abort,(), which returns IN_CS at
Line 21], causing tryp() also to return IN_CS at Line @l When p is in the CS, p’s announcement
in REGISTRY[p] (made at Line [B), would no longer be there if it entered the CS by the second
route (because of Line [I9)), but it would still be there if it entered the CS by the first route. So,
when p exits the CS, it removes its announcement in REGISTRY[p] (Line[IT]). It then increments the

Recoverable Mutual Exclusion with Abortability 13

number in SEQ and gives up its ownership of the CS by changing CSSTATUS from (1, p) to (0, SEQ)
(Lines M2} 3] I4). To launch a waiting process, if any, into the just vacated CS, p then executes
promote, () (Line[I5), and returns to the remainder after setting GO[p] to —1 at Line 18] (in order
to respect the earlier mentioned invariant that Go[p] = —1 whenever p returns to the remainder
normally).

Understanding recover,()

Process p executes recover,() when it restarts after a crash. If Go[p] has —1, p infers that
either recovery() was called when status, = good or the most recent crash had occured early in
try,(), so recovery,() simply sends p back to the remainder (Line [I7]). Otherwise, recover,()
simply calls abort,() (Line @7)), which does the needful. In particular, if p was in the CS at the
most recent crash, then CSSTATUS would have (1,p), which causes abort,() to send p back to
the CS. Otherwise, abort,() extricates p from the algorithm, sending it either to the CS or to the
remainder.

4 Proof of Correctness

FigurePlpresents the invariant satisfied by the Abortable RME algorithm given in Figure[ll We have
written the 13 statements comprising the invariant with the following conventions. All statements
about process p are universally quantified, i.e., Vp € P is implicit (these are Statements 3 through
11, and Statement 13). The program counter for a process p, i.e., PC,, can take any of the values
from the set [IL29]. However, when a call to procedure promote, () is made by p and p is executing
one of the steps from Lines [24129] for clearly conveying where the call was made from, we prefix
the value of PC, with the line number from where promote, () was called, along with the scope
resolution operator from C++, namely, “::”. Thus, PC, = means p called promote, () from
Line [6] and is now executing Line in that call. Sometimes, in the interest of brevity, we use the
range operator, i.e., [a, b], to convey something more than just saying the range of values from a to b
(inclusive). That is, if PC, € [6]], we also mean that PC), could take on values from [6}{24] [G} {29]
because there is a call to promote, () at Line [6l Similarly, PC, € (B[] means that PC, takes on
values from [6t{24][6t{29] because, again, there is a call to promote, () at Line

Lemma 1 (Mutual Exclusion) At most one process is in the CS in any configuration of any
run.

Proof Suppose there is a configuration C' such that two distinct processes p and g are in the CS,
ie., PC, = PC, =[0 By Condition [l CSStATUS = (1,p) and CSSTATUS = (1,¢) in C, which
means CSSTATUS has two different values in the same configuration, a contradiction.

Lemma 2 (Bounded Exit) There is an integer b such that if in any run any process p invokes
and executes exit,() without crashing, the method completes in at most b steps of p.

Proof As explained earlier, the call to REGISTRY [p].write() at Line [I1] takes O(logn) steps. From
an inspection of the algorithm we see that the rest of the execution of exit,() completes in a
constant number of steps (this includes the execution of REGISTRY.findmin() invoked from a call
to promote,()). It follows that for a certain constant c, the execution of exit,() completes in at
most clogn steps in a run, if p invokes and executes it without crashing.

14 Prasad Jayanti, Anup Joshi

Conditions:

1. TOKEN > 1
2. (CSStatUs = (0,SEQ)) V (3¢ € P, CSSTATUS = (1,49))
3. (=1 < Go[p] < ToKEN) A (PCp =[El= Go[p] = toky) N (PC)y € [BR] = Golp] € {0, tokp})
A (PCyp € {OHIBI8H22124H29} = Go[p] # —1)
A (PCp € ZHAR3} Vv (PC)y € {IIT} A status, € {good, recover-from-rem})) = Golp] = —1)
4. (3t € [1, TOKEN — 1] U {oo}, REGISTRY[p] = (p, t))
A (PCyp € [AB] = REGISTRY[p] = (p, tokp))
A ((PCyp € {BII2HIGIR0H22]} v Go[p] = —1) = REGISTRY[p] = (p,0))
5. (PCp € BB N Go[p] =0) vV PCp € [IOI4] V status, = recover-from-cs) = CSSTATUS = (1, p))
A ((PCp € {HR22} U A6 v Golp] = —1) = CSSTATUS # (1,p))
6. This condition states what values local variables of process p take on.
(PCp =Bl= 1 < tokp, < TOKEN) A (PCp € @B = 1 < tokp < TOKEN)
A (PCp =M@= sp = SEQ) A (PCp =M= s, = SEQ — 1)
A (PC, € 624629 U [RZATREI - flag, — false) A (PC, ¢ EREAZRE = flag, = true)
A (PCyp € 26129] = peerp € P)
A (PCp € 06 = statusp, = good)
7. (PCp =Bl= (Go[p] = 0V abort was requested)) A (PC, =[0= abort was requested)
PC, € {2826} = (sp < SEQ A (Vgq, PCq € {IBIIAL} = sp < s4q))
9. ((PCp =RBIA CSSTATUS = (0, 5pp)) =
Vq, (REGISTRY[q] (g, 00) = (PC, € {BHIIRII} v (PC, € {IIT} A Golq] # —1))))
A ((PCp =B8N CSSTATUS = (0, 5p)) = (PCpeer, € [BLE] U {I8H20 20t 241}
Vv (Pcpeerp € {mﬂﬂm} N Speer, = sp)

V (PCpeer, € {lID} A Go[peery] # —1)))
10. PC, = {2829} = 1 < gp < TOKEN

11. PCp =RA= ((PCpeer, € BlHA} = 1 < gp < tokpeer,)
A (PCpeer, =Bl= 1 < gp < Golpeerp])
A (PCpeer, € BB} A gp = Golpeery]) = CSSTATUS = (1, peerp)))
12. If a process is registered, some q is either in CS or can be counted on to launch a waiting process into CS.

%

min(REGISTRY) # (*,00) = 3q, (CSSTATUS = (1, q)
Vv (PCq € {lIT} A Golq] # —1) v PCqy € {605} I8H201 241}
V (PCq € {28261} A CSSTATUS = (0, 5¢)))
13. If p has the ownership of CS but Go[p] # 0, then there is some g that can be counted on to set Go[p] to 0.

(CSStatus = (1,p) A Go[p] # 0) = Jq, (PCy € {IBH2O R4} v (PCy =Z0A peerq = p)

V (PCq € {2823} A peerq = p A gq = GOlp])
Vv (PCq € LT} A Golg] # —1))

Fig. 2: Invariant of the Abortable RME Algorithm from Figure [

Lemma 3 (First Come First Served) There is an integer b such that in any run, if A and A’ are
attempts by any distinct processes p and p’, respectively, p performs at least b consecutive normal
steps in A before the attempt A’ starts, and p neither receives an abort signal nor subsequently
crashes in try,() in A, then p' does not enter the CS in A’ before p enters the CS in A.

Proof Let B be the earliest configuration when p has performed contiguous normal steps upto
Line [@ during its attempt A in which p does not receive an abort signal and p’ has not even
initiated its attempt A’. Since PC, =[il by Condition @l REGISTRY[p] = (p,tok,) in B. Let B’
be the earliest configuration following B when p’ has performed contiguous normal steps upto
Line [T during its attempt A’. Therefore, by the same argument, REGISTRY[p'] = (p',tok,) in B’.
It follows from the premise of the lemma that tok, < tok, (since p performed contiguous normal
steps upto Line [even before A’ started, applying Condition [6] right at the configuration when
p completes Line [3] tok, < TOKEN < tok,). Assume the lemma is false. Therefore, there is a

Recoverable Mutual Exclusion with Abortability 15

configuration C' following B’ such that p’ entered the CS during attempt A’ before p entered the
CS during attempt A. Therefore, PC),, = [0l and CSSTATUS = (1,p’) in C. It follows that there
is a configuration between B’ and C, call it C’, such that, CSSTATUS # (1,p’) in configurations
B’ to the one just before C’, and CSSTATUS = (1,p’) in configurations C’ to C. Let process p”
be the one that changed CSSTATUS to (1,p’) in C’. p” could have changed CSSTATUS this way
only at Line [26] since no other step sets the first bit of CSSTATUS to 1. It follows that p” read
the record of p’ from the REGISTRY.findmin() it executed at Line 28] or equally, p’ = p” and p/
itself set peer,, = p’ because it found the REGISTRY to be empty (this could happen because p’
either crashed in try, () or aborted). In either case, since tok, < tok,/, the findmin() by p” at
Line could have received (p’,tok,) (or (g,o0), for some g, denoting REGISTRY to be empty)
if and only if REGISTRY[p] # (p,tok,) (i.e., it is either (p,o0) or (p,x) for a token z higher than
tok,). This implies that p either already left the CS from the attempt A or crashed some time
after configuration B (and thereby removing its own entry from REGISTRY at Line [I9)) before p”
executed the findmin() at Line 25l and hence before the configuration C is reached. Therefore, we
have the lemma.

Lemma 4 (Starvation Freedom) In every fair infinite run in which every attempt contains only
finitely many crash steps, if a process p is in the Try section in a configuration, p is in a different
section in a later configuration.

Proof Suppose the claim is false. Therefore, there is a fair infinite run in which a process p starts
an attempt and never leaves the try () procedure, i.e., it forever loops in the procedure at Line [7]
after a certain configuration (this follows from the fact that every attempt contains only a finitely
many crash steps). Let C be the earliest configuration of the run such that p forever waits at Line[7]
after C, all other processes are either waiting with p at Line [7 or are in the Remainder Section
with status, = good, and no process in the Recover, CS, or Exit Section. Such a configuration
would exist because there are a finite number of processes each crashing finitely many times, and
by Lemma [3] the algorithm satisfies the First Come First Served property. Therefore, without loss
of generality, p be the process so that no other process can enter the CS before p enters it. It follows
that CSStaTUS = (0, k), for some integer k, and REGISTRY[p] = (p,tok,) from C onwards. By
Condition [it follows that some process is either in CS or can be counted on to launch a waiting
process into CS. This is a contradiction to our assumption that in C' all the processes that are active
in an attempt are waiting at Line [

Lemma 5 (Bounded Recovery to CS) There is an integer b such that if in any run any process
p executes recovery() without crashing and with status, = recover-from-cs, the method completes
in at most b steps of p, returning IN_CS.

Proof For p to execute recover,() with status, = recover-from-cs, it must have crashed in the CS
before. Let C be a configuration prior to a crash step when p is in the CS, i.e., PC, =[I0in C. By
Condition Bl CSSTATUS = (1, p), and, by ConditionB] Go[p] # —1 in C. Without loss of generality,
let C’ be the first configuration of a passage following C, such that, p executes Line 2] in this
passage due to a call to abort,() from recover,() in this passage. That is all passages, if any,
between C and C” ended with a crash in recover,() (or a crash within the nested call to abort,())
before reaching and executing Line [2I1 Also note, by the description of status,, it will retain the
value recover-from-cs even up to C’. Since no other process except for p itself sets the value of
Golp] to —1 at Lines[I6land [22] such a configuration is reachable in a bounded number of steps. It
follows by the similar argument that CSSTATUS retains the value (1,p) up to C’, because no other

16 Prasad Jayanti, Anup Joshi

process can write a value (0, k) at Line [I4] for some integer k, so that subsequently some process
can perform the CAS at Line Thus starting at configuration C’, p starts executing recover,()
and reaches Line [2I] At Line [27] p notices that CSSTATUS = (1, p) and it returns from abort,()
and subsequently from recover,() with the value IN_CS. From an inspection of the algorithm we
note that this happens within a constant number of steps from C’. The claim thus follows.

Lemma 6 (Critical Section Reentry) In any run, if a process p crashes while in the CS, no
other process enters the CS until p subsequently reenters the CS.

Proof Immediate from Lemma [I] and

Lemma 7 (Bounded Recovery to Exit) There is an integer b such that if in any run any
process p exvecutes recovery() without crashing and with status, = recover-from-exit, the method
completes in at most b steps of p.

Proof By an inspection of the algorithm, specifically that of recover;(), abort,(), and promote,(),
we note that any execution path that p takes after crashing with status, = recover-from-exit, if p
executes recover,() without crashing, then it completes the method in a constant number of steps.

Lemma 8 (Fast Recovery to Remainder) There is a constant b (independent of |P|) such that
if in any run any process p executes recovery,() without crashing and with status, € {good, recover-from-rem},
the method completes in at most b steps of p.

Proof By Condition[Blwe note that Go[p] = —1 when PC), =[land status, € {good, recover-from-rem}.
It follows that if p executes recovery(), it notices GO[p] = —1 at Line [I7] and immediately returns
to the Remainder.

Lemma 9 (Bounded Recovery to Remainder) There is an integer b such that if in any run
recovery(), executed by a process p with status, = recover-from-try, returns IN.REM, p must have
completed that execution of recovery() in at most b of its steps.

Proof From an inspection of the algorithm we note that any execution path that p takes when it
returns IN.REM from recover,(), it must have done so in a constant number of steps from the
latest step when it invoked recover,(). Thus the claim follows.

Lemma 10 (Bounded Abort) There is an integer b such that, for each R,C,p, if B(R,p,C) is
true, ABORTSIGNAL[p] stays true for ever (i.e., stays true in the suffiz R’ of the run from C), and
p executes steps without crashing (i.e., p has no crash steps in R'), then p enters either the CS or
the remainder in at most b of its steps (in R').

Proof For this we note that the only wait till loop that the algorithm has is at Line [7l Since
ABORTSIGNALIp] stays true for ever after C, p either notices that or sees that Go[p] = 0 at Line[7]
At Line 8 if p sees that Go[p] = 0, it moves to the CS, satisfying the condition. Otherwise, it
invokes abort,() at Line [0 From an inspection of abort,(), we note that the procedure returns
within a constant number of steps (i.e., O(logn) steps, where n = |P|) with a value of either IN_CS
or IN_.REM. It follows that the claim holds.

Lemma 11 (No Trivial Aborts) In any run, if ABORTSIGNAL[p| is false when a process p
invokes try,(), ABORTSIGNAL[p| remains false forever, and p executes steps without crashing,
then try,() does not return IN.REM.

Recoverable Mutual Exclusion with Abortability 17

Proof Since p executes steps without crashing and ABORTSIGNAL[p| remains false forever in the
run, the only place try,() could return IN.REM is due to the nested call to abort,() at Line
However, by Condition [{] we know that if p gets past the wait till loop at Line[7] then Go[p] =0
when PC, = [(since abort was not requested when try, () was invoked and ABORTSIGNAL[p]
remains false forever). It follows that p returns IN_CS in such a run.

4.1 RMR Complexity

We discuss the RMR, complexity a process incurs per passage as follows. As described in Lemma 2
of Jayanti and Joshi’s work [20], the REGISTRY.write() operation incurs O(min(k,logn)) RMRs on
both CC and DSM machines, where k is the maximum point contention during the REGISTRY .write()
operation. On DSM machines, when the variable Go[p] is hosted in p’s memory partition, any step
of the algorithm other than REGISTRY.write() (at Lines[5] @] I9) incurs a constant RMR. There-
fore, on DSM machines our algorithm incurs O(min(k,logn)) RMR per passage. On CC machines,
similarly, it would be tempting to believe that all these other operations incur constant RMRs,
however, it is not so due to the following. On Strict-CC machines where a failed CAS could incur
an RMR, the RMR complexity shoots up to O(n) for the following reason. There could be n/2
processes that are waiting to execute Line to perform a CAS on GoOl[p]. Out of these processes
only one succeeds and the rest fail. However, each failed CAS still incurs an RMR. Therefore, on
Strict-CC machines our algorithm incurs O(n) RMR per passage. To summarize, the algorithm
incurs O(min(k,logn)) RMRs per passage on DSM and Relaxed-CC machines and O(n) RMRs per
passage on Strict-CC machines.

For an attempt having f failures, the implementation of REGISTRY taken from Jayanti and
Joshi’s work [20] would incur O(f + min(k,logn)) RMRs for the REGISTRY.write() operation.
Therefore, the algorithm incurs O(f +logn) RMRs per attempt on DSM and Relaxed-CC machines
and O(f +n) RMRs per attempt on Strict-CC machines in the presence of f crashes in an attempt.

4.2 Proof of Invariant

Lemma 12 The algorithm in Figure[l satisfies the invariant (i.e., the conjunction of all the con-
ditions) stated in Figure [3, i.e., the invariant holds in every configuration of every run of the
algorithm.

Proof The proof is by induction, but it is omitted because of the page limitation on the submission.
The full version of this paper, including this proof, can be found at
http://people.csail.mit.edu/siddhartha/archive.html

4.3 Main theorem

The theorem below summarizes the result of our paper.

Theorem 1 The algorithm in Figure[l is an abortable recoverable mutual exclusion algorithm for
n processes and satisfies properties P1-P12 stated in Section[3. A process incurs O(min(k,logn))
RMRs per passage on DSM and Relazed-CC machines and O(n) RMRs per passage on Strict-CC
machines. In presence of f crashes during an attempt, a process incurs O(f + min(k,logn)) RMRs

http://people.csail.mit.edu/siddhartha/archive.html

18 Prasad Jayanti, Anup Joshi

per attempt on DSM and Relazed-CC machines and O(f + n) RMRs per attempt on Strict-CC
machines.

Acknowledgment: We thank Siddhartha Jayanti for his careful reading and critical comments on
the first three sections of this submission and the Netys '19 reviewers for their feedback.

References

1. ALON, A., AND MORRISON, A. Deterministic abortable mutual exclusion with sublogarithmic adaptive rmr
complexity. In Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing (New York,
NY, USA, 2018), PODC ’18, ACM, pp. 27-36.

2. ArTivA, H., BEN-BARUCH, O., AND HENDLER, D. Nesting-Safe Recoverable Linearizability: Modular Construc-
tions for Non-Volatile Memory. In Proceedings of the 2018 ACM Symposium on Principles of Distributed
Computing (2018), ACM, pp. 7-16.

3. ArTivA, H., HENDLER, D., AND WOELFEL, P. Tight RMR Lower Bounds for Mutual Exclusion and Other
Problems. In Proc. of the Fortieth ACM Symposium on Theory of Computing (New York, NY, USA, 2008),
STOC ’08, ACM, pp. 217-226.

4. BERRYHILL, R., GOLAB, W., AND TRIPUNITARA, M. Robust Shared Objects for Non-Volatile Main Memory.
In 19th International Conference on Principles of Distributed Systems (OPODIS 2015) (Dagstuhl, Germany,
2016), E. Anceaume, C. Cachin, and M. Potop-Butucaru, Eds., vol. 46 of Leibniz International Proceedings in
Informatics (LIPIcs), Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, pp. 1-17.

5. CHAN, D. Y. C., AND WOELFEL, P. Recoverable mutual exclusion with constant amortized rmr complexity from
standard primitives. In Proceedings of the 39th Symposium on Principles of Distributed Computing (New York,
NY, USA, 2020), PODC ’20, Association for Computing Machinery, p. 181-190.

6. CraiG, T. S. Building FIFO and Priority-Queuing Spin Locks from Atomic Swap. Tech. Rep. TR-93-02-02,
Department of Computer Science, University of Washington, February 1993.

7. DHOKED, S., AND MITTAL, N. An adaptive approach to recoverable mutual exclusion. In Proceedings of the 39th
Symposium on Principles of Distributed Computing (New York, NY, USA, 2020), PODC ’20, Association for
Computing Machinery, p. 1-10.

8. DuKSTRA, E. W. Solution of a Problem in Concurrent Programming Control. Commun. ACM 8, 9 (Sept. 1965),
569-.

9. GIAKKOUPIS, G., AND WOELFEL, P. Randomized abortable mutual exclusion with constant amortized rmr
complexity on the cc model. In Proceedings of the ACM Symposium on Principles of Distributed Computing
(New York, NY, USA, 2017), PODC ’17, ACM, pp. 221-229.

10. GoraB, W., AND HENDLER, D. Recoverable mutual exclusion in sub-logarithmic time. In Proceedings of the ACM
Symposium on Principles of Distributed Computing (New York, NY, USA, 2017), PODC ’17, ACM, pp. 211-220.

11. GoraB, W., AND HENDLER, D. Recoverable Mutual Exclusion Under System-Wide Failures. In Proceedings of
the 2018 ACM Symposium on Principles of Distributed Computing (New York, NY, USA, 2018), PODC 18,
ACM, pp. 17-26.

12. GoraAB, W., AND RAMARAJU, A. Recoverable Mutual Exclusion: [Extended Abstract]. In Proceedings of the
2016 ACM Symposium on Principles of Distributed Computing (New York, NY, USA, 2016), PODC ’16, ACM,
pp. 65-74.

13. INTEL. Intel® Optane™ DC Persistent Memory Product Brief. https://www.intel.com/content/dam/www/public/us/en/documents/,
2019 (accessed November 26, 2020).

14. IzZRAELEVITZ, J., MENDES, H., AND ScoTT, M. L. Linearizability of persistent memory objects under a full-
system-crash failure model. In Distributed Computing (Berlin, Heidelberg, 2016), C. Gavoille and D. Ilcinkas,
Eds., Springer Berlin Heidelberg, pp. 313-327.

15. JavyanTi, P. f-arrays: Implementation and Applications. In Proceedings of the Twenty-first Symposium on
Principles of Distributed Computing (New York, NY, USA, 2002), PODC ’02, ACM, pp. 270-279.

16. JavanTi, P. Adaptive and efficient abortable mutual exclusion. In Proceedings of the Twenty-second Annual
Symposium on Principles of Distributed Computing (New York, NY, USA, 2003), PODC ’03, ACM, pp. 295-304.

17. JAYANTI, P., JAYANTI, S., AND JOsHI, A. Optimal Recoverable Mutual Exclusion using only FASAS. In The 6th
Edition of The International Conference on Networked Systems (2018), NETYS 2018.

https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/optane-dc-persistent-memory-brief.pdf

Recoverable Mutual Exclusion with Abortability 19

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

JAYANTI, P., JAYANTI, S., AND JOSHI, A. A recoverable mutex algorithm with sub-logarithmic rmr on both cc
and dsm. In Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing (New York, NY,
USA, 2019), PODC 19, Association for Computing Machinery, p. 177-186.

JAYANTI, P., AND JAYANTI, S. V. Constant Amortized RMR Complexity Deterministic Abortable Mutual Ex-
clusion Algorithm for CC and DSM Models. In Accepted for publication in PODC’ 19 (2019).

JAYANTI, P., AND JOsHI, A. Recoverable FCFS mutual exclusion with wait-free recovery. In 31st International
Symposium on Distributed Computing (2017), DISC 2017, pp. 30:1-30:15.

JAYANTI, P.,; AND JosHI, A. Recoverable mutual exclusion with abortability. In Networked Systems (Cham,
2019), M. F. Atig and A. A. Schwarzmann, Eds., Springer International Publishing, pp. 217-232.

KaTzAN, D., AND MORRISON, A. Recoverable, Abortable, and Adaptive Mutual Exclusion with Sublogarith-
mic RMR Complexity. In Proceedings of The International Conference on Principles of Distributed Systems
(OPODIS 2020) (2020), OPODIS 2020.

LAMPORT, L. A New Solution of Dijkstra’s Concurrent Programming Problem. Commun. ACM 17, 8 (Aug.
1974), 453-455.

LEE, H. Fast local-spin abortable mutual exclusion with bounded space. In Proceedings of the 14th Interna-
tional Conference on Principles of Distributed Systems (Berlin, Heidelberg, 2010), OPODIS’10, Springer-Verlag,
pp- 364-379.

MELLOR-CRUMMEY, J. M., AND ScotT, M. L. Algorithms for Scalable Synchronization on Shared-memory
Multiprocessors. ACM Trans. Comput. Syst. 9, 1 (Feb. 1991), 21-65.

PAREEK, A., AND WOELFEL, P. Rmr-efficient randomized abortable mutual exclusion. In Distributed Computing
(Berlin, Heidelberg, 2012), M. K. Aguilera, Ed., Springer Berlin Heidelberg, pp. 267-281.

RAMARAJU, A. RGLock: Recoverable mutual exclusion for non-volatile main memory systems. Master’s thesis,
University of Waterloo, 2015.

RaAoux, S., BURR, G. W., BREITWISCH, M. J., RETTNER, C. T., CHEN, Y.-C., SHELBY, R. M., SALINGA, M.,
KREBS, D., CHEN, S.-H., LuNG, H.-L., ET AL. Phase-change random access memory: A scalable technology. IBM
Journal of Research and Development 52, 4/5 (2008), 465.

Scort, M. L. Non-blocking Timeout in Scalable Queue-based Spin Locks. In Proceedings of the Twenty-first
Annual Symposium on Principles of Distributed Computing (New York, NY, USA, 2002), PODC ’02, ACM,
pp. 31-40.

ScorT, M. L., AND SCHERER, W. N. Scalable queue-based spin locks with timeout. In Proceedings of the Eighth
ACM SIGPLAN Symposium on Principles and Practices of Parallel Programming (New York, NY, USA, 2001),
PPoPP ’01, ACM, pp. 44-52.

ScorT, M. L., AND SCHERER, W. N. Scalable Queue-based Spin Locks with Timeout. In Proceedings of the
Eighth ACM SIGPLAN Symposium on Principles and Practices of Parallel Programming (New York, NY, USA,
2001), PPoPP ’01, ACM, pp. 44-52.

STRUKOV, D. B., SNIDER, G. S., STEWART, D. R., AND WiLLIAMS, R. S. The missing memristor found. nature
453, 7191 (2008), 80.

TEHRANI, S., SLAUGHTER, J. M., DEHERRERA, M., ENGEL, B. N., Rizzo, N. D., SALTER, J., DURLAM, M.,
Dave, R. W., JANESKY, J., BUTCHER, B., ET AL. Magnetoresistive random access memory using magnetic
tunnel junctions. Proceedings of the IEEE 91, 5 (2003), 703-714.

	1 Introduction
	2 Specification of the problem
	3 The Algorithm
	4 Proof of Correctness

