
HAL Id: hal-02526355
https://inria.hal.science/hal-02526355

Submitted on 31 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Testing Chatbots Using Metamorphic Relations
Josip Bozic, Franz Wotawa

To cite this version:
Josip Bozic, Franz Wotawa. Testing Chatbots Using Metamorphic Relations. 31th IFIP Interna-
tional Conference on Testing Software and Systems (ICTSS), Oct 2019, Paris, France. pp.41-55,
�10.1007/978-3-030-31280-0_3�. �hal-02526355�

https://inria.hal.science/hal-02526355
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Testing Chatbots using Metamorphic Relations

Josip Bozic[0000−0001−6086−8846] and Franz Wotawa[0000−0002−0462−2283]

Graz University of Technology
Institute of Software Technology

A-8010 Graz, Austria
{jbozic,wotawa}@ist.tugraz.at

Abstract. Modern-day demands for services often require an availabil-
ity on a 24/7 basis as well as online accessibility around the globe. For
this sake, personalized software systems, called chatbots, are applied.
Chatbots offer services, goods or information in natural language. These
programs respond to the user in real-time and offer an intuitive and
simple interface to interact with. Advantages like these makes them in-
creasingly popular. Chatbots can even act as substitutes for humans for
specific purposes. Since the chatbot market is growing, chatbots might
outperform and replace classical web applications in the future. For this
reason, ensuring correct functionality of chatbots is of high and increasing
importance. However, since different implementations and user behavior
result in unpredictable results, the chatbot’s output is difficult to predict
and classify as well. In fact, testing of chatbots represents a challenge be-
cause of the unavailability of a test oracle. In this paper, we introduce
a metamorphic testing approach for chatbots. In general, metamorphic
testing can be applied to situations where no expected values are avail-
able. In addition, we discuss how to obtain test cases for chatbots, i.e.
sequences of interactions with a chatbot, in an according manner. We
demonstrate our approach using a hotel booking system and discuss first
experimental results.

Keywords: Metamorphic testing · functional testing · chatbots.

1 Introduction

Virtual assistants are programs that realize the communication with a user in
natural language. These programs, called chatbots [13], offer the advantage to
resemble a natural and intuitive way of interaction. Usually, these programs
comprehend information from a certain domain. In such way, the chatbot pro-
vides specific information in an often entertaining and anonymous manner [5].
Natural language interfaces (NLI) handle the communication between chatbot
and user. On the side of the chatbots, this is usually implemented either by a
set of rules or by means of natural networks. Here pre-specified patterns define
boundaries of possible user interaction [24, 20]. Since several studies predict the
rise of the chatbot market in the future, addressing the functionality of these
systems becomes essential [2]. Until now, only a few testing approaches exist
that check the correctness of chatbots (e.g. [23, 22, 4]).

2 J. Bozic and F. Wotawa

Since the behavior of a chatbot might be difficult to predict, traditional
testing approaches might not always provide an optimal solution. In testing, it’s
common practice to rely on test oracles in order to obtain test verdicts. However,
problems may arise due to non-testable programs or because of the high amount
of manual effort needed to draw a test conclusion. Difficulties with test oracles
have been initially pointed to by Weyuker [25]. The author addressed the issue
when test oracles are not available during testing. This can be due to multiple
reasons, like high costs or complexity of implementations or the domain.

Driven by the same motivation, the concept of metamorphic testing (MT) has
been introduced by Chen et al. [7]. In MT, the output of a system is not checked
against an expected value but a metamorphic relation (MR). These describe a
relation between the input data and the corresponding output. New test cases
are inferred from previous ones according to the specified MRs. These inferred
test cases are meant to detect errors that the former ones failed to do. MT is not
meant only to detect errors in cases where no expected values are defined, but
helps to reveal errors in the production phase as well. In addition to that, MT
does not depend on a specific testing strategy; thus, it can be combined with
other test selection approaches (see Section 4).

In this paper, we introduce a metamorphic testing approach for chatbots. The
approach is defined by terms of MT and checks the functionality of a chatbot in
an automated manner. Basically, the motivation of our approach is to guarantee
functional correctness of a system under the absence of expected data. We pro-
vide the theoretical background and elaborate the implementation on a chatbot
from the tourism industry. To our knowledge, this is the first adaptation of MT
for testing of chatbots.

The remainder of the paper is structured as follows: Section 2 introduces
metamorphic testing and its adaptation to testing of chatbots. Then, Section 2.1
describes the underlying test generation. Section 2.2 discusses the test execution
as well as the underlying algorithm of the approach. The implementation is
evaluated in Section 3, whereas related work is enumerated in Section 4. Finally,
Section 5 concludes the work.

2 Metamorphic Testing for Chatbots

The bulk of this paper addresses two major fields: Metamorphic testing and one
concrete manifestation of AI systems, namely chatbots. In our previous work in
[4] we introduced a functional testing approach for chatbots, where the expected
values were known in advance. The chatbot, a hotel booking system, is checked
whether valid reservations are processed correctly. However, due to unpredic-
tive behavior of such systems, MT addresses situations where only sparse or no
knowledge exist about a system.

First, let’s denote the basic principles of MT, as initially described in [7]
and [17]. In contrast to other testing techniques, the basic principle for test
generation differs in MT.

Testing Chatbots using Metamorphic Relations 3

Definition 1. Let f be an implemented function of a program P . Rf defines a
property that must be valid for all inputs x1, x2, ..., xn over f , and the correspond-
ing outputs f(x1), f(x2), ..., f(xn). The relation Rf represents a metamorphic re-
lation (MR) over the input-output pairs, thus Rf ((x1, f(x1)), (x2, f(x2)), ..., (xn, f(xn))),
where n > 1.

Since no expected test value is available, properties have to be defined that
must hold for all test inputs against a program, regardless of their value. How-
ever, conditions can be specified as part of a MR that put restrictions on test
cases [17]. A metamorphic relation can represent any suitable type of relation,
such as equalities, properties, constraints etc. The function of MR is twofold: 1)
it serves as a guideline for generation of test inputs from existing data, and 2)
acts as an output relation, which is checked after the test execution. In such way,
MR replaces the test oracle by comparing the input-output pairs from test cases.
We call this comparison a metamorphic check (MC). A metamorphic check fails
in case that the input-output pair satisfies a metamorphic relation.

Definition 2. An initial source test case x1 that does not trigger an error or
vulnerability in P , is a successful test case. A follow-up test case x2 is inferred
from x1 according to a selection criteria, as specified by Rf . The pair of the
source and follow-up test case can be defined as a metamorphic test case.

Usually, the source test case represents a random value or is derived from
partial knowledge about the domain of P . All new test cases are derived from
the successful test cases. For the source test case x1 and its output f(x1), new
test cases will be generated based on the input-output pair (x1, f(x1)). During
test execution, the applied MRs must hold for input-output pairs of both, source
and the follow-up, test cases. If the MR does not hold for a certain metamorphic
test case [17], then we conclude that a fault or inconsistency is detected in P .

In general, three tasks constitute a MT-based approach, regardless of the
domain:

1. Definition of metamorphic relations
2. Test generation
3. Test execution

In the following sections, we will address each of the challenges individually.
For all three cases, the adaptation of MT for chatbots has to be addressed in
detail.

2.1 Metamorphic Test Generation

We describe our MT approach for testing of chatbots and evaluate it on a real
example. The tested chatbot is a hotel booking system that was introduced
in [4]. In this paper, we will omit technical details about the implementation
but provide a few details about its functionality. The agent is implemented in
Dialogflow [1] and communicates with the user by sending and receiving messages

4 J. Bozic and F. Wotawa

in natural language. Since the goal of the chatbot is to make a hotel booking,
the chatbot demands some information in order to finalize a reservation. On the
side of the chatbot, this information is hard coded in form of eight mandatory
parameters. During communication, the chatbot will ask the user to provide this
information. Also, we assume that the chatbot comprises the natural processing
and necessary data. A typical communication flow, initiated by the user, does
look as follows.

I want to book a room in Vienna.

- Do you want a hotel, hostel or apartment?

book a hotel

- Which one do you prefer?

Fairmont

- When do you want to start your stay?

I want to check-in today.

- How many adults?

1 adult

- How many children?

2 children

- How many nights?

1 night

- How many stars do you prefer?

i want 5 stars

- Let me sum up! Location: Vienna, Name: Fairmont, Check-In:

2019-05-20, Accommodation: hotel, People: 1 adults, 2 children,

Nights: 1, Stars: 5 stars

In case that the user does not provide a specific information, the chatbot
will continue to ask for clarification. Thus, no reservation will be made. On the
other hand, the behavior of the user can be unpredictable to a certain degree
as well. For example, the user can make an inquiry by rephrasing sentences or
providing multiple information in one message. This fact will play a role in the
test generation process. The chatbot is expected to recognize different types of
input utterances. In fact, the chatbot understands additional messages (like exit
or abort), but in our example, we ignore such situations. However, regardless of
the user input, the chatbot demands information about the following parameters.

$location, $venue-type, $venue-title, $checkin-date, $adult,

$child, $night, $star

In our previous work, we tested whether the chatbot makes a valid reserva-
tion. However, in this paper, the functionality is tested from another perspective.
From the starting point of view, the chatbot is unpredictable for the user. How-
ever, the user is unpredictable in front of the chatbot as well. In fact, we assume
that the user initially knows the information that she or he intends to submit.
Also, the intention of the user is to make a valid reservation with this informa-
tion. That is, the information in a reservation must not deviate from the provided

Testing Chatbots using Metamorphic Relations 5

values. Additionally, according to practice in MT, we assume that some infor-
mation about the domain is known in advance. One sequence of messages from
the point of the user is considered to be one test case. We suppose that the input
values for the source test case are denoted as Is, whereas the follow-up values
are given as If . Also, their outputs are defined as Os and Of , respectively. The
obtained output serves as an indicator for the test verdict. The output differs for
individual inquiries and available information. For example, different numerical
inputs will result in different registration information. The type of responses,
however, will remain the same.

As can be seen Table 1, Is consists of eight actions that will be submitted
as individual requests. The individual actions themselves comprise several terms
and numerical values that are considered keywords. As will be described below,
these play an important role for further test generation. After every request,
the chatbot is programmed to give a corresponding response. During testing, we
record all responses for every submitted action. On the right side of the table
the chatbot’s mandatory parameters are enumerated. The chatbot processes the
individual actions and, if possible, assigns provided values to their parameter.

Table 1. Source test case

Action Parameter

0: I want to book a room in Vienna $location
1: book a hotel $venue-type
2: Fairmont $venue-title
3: I want to check-in today. $checkin-date
4: 1 adults $adult
5: 2 children $child
6: 1 night $night
7: i want 5 stars $star

Now, we define the following properties of the chatbot as MRs. As already
mentioned, these relations must be valid for test inputs and outputs. The source
test case from Table 1 encompasses sentences in natural language. However,
several keywords are emphasized that will be addressed by the MRs. The MRs
focus on input generation for chatbots, as follows:

MR1: Replace keywords with synonyms: In order to infer If from Is,
they keywords are replaced by synonyms. Although, for every follow-up test case,
keywords are changed in only one action. The obtained Os serves as a reference
that is compared to the obtained Of . When applying synonyms, we expect the
same behavior from the chatbot, thus Os = Of must be valid.

MR2: Change numerical values: This relation instructs to change numer-
ical values for individual actions. The outputs of Os and Of should be equal,
with the exception of the numerals from the final reservation.

MR3: Omit words: This relation demands that keywords are omitted, thus
providing insufficient information. The chatbot should recognize the difference,

6 J. Bozic and F. Wotawa

thus resulting in different responses. MR3 is valid in case that Os 6= Of for every
If .

MR4: Replace keywords with unrelated terms: This relation is similar
to MR1 but instead of synonyms, keywords are exchanged with unrelated terms.
Therefore, the corresponding outputs must never resemble each other. Therefore,
the expected outputs equal Os 6= Of .

MR5: Change order of actions: The order of actions in Is is changed
in the follow-up test case If . Since the tester does not know about the SUT’s
behavior, the obtained outputs are expected to differ, thus Os 6= Of . (Although,
a valid reservation might still be accomplished accidentally by a valid random
combination.)

For every MR, a grammar is constructed that provides the building blocks for
test generation. For example, the grammar for MR1 is defined in the standard
Backus-Naur form (BNF).

<sentence >::= I want to <book > a <room > in <place >

<book >::= book | order | take | prefer

<room >::= room | place | hotel | hostel | apartment

<place >::= Vienna | Prague | Madrid

<accomodation >::= hotel | hostel | apartment

<venue >::= Sacher | Fairmont | Elmhurst

<days >::= in two days | yesterday | tomorrow | today

<adults >::= <number > <guests >

<guests >::= guests | people | humans | adults

<youngling >::= <number > <children >

<children >::= children | kids

<nights >::= <number > <sleep >

<sleep >::= nights | days

<rating >::= <number > <points >

<points >::= stars | ratings

<number >::= 1 | 2 | 3 | 4 | 5

Formal grammars are defined by finite sets of terminal and nonterminal sym-
bols. In the above example, nonterminal symbols resemble keywords in our ap-
proach, whereas terminals represent concrete values. The expression, i.e. a se-
quence of symbols, guides the generation of an action by assigning concrete
values according to MR. Some terminals in the grammar are set manually by
checking the supported library from Dialogflow. In order to generate meaningful
inputs, we use a modified version of Grammar Solver [3]. The implementation
applies MRs and traverses through the BNF structure, thereby constructing new
user inputs. In fact, this process can be subtracted as a mutation process. MRs
proscribe unique mutations to individual actions, thus generating modified, i.e.
follow-up, test cases. So, the final shape of a follow-up test cases is determined
by the mutation operation and the source test case.

For example, the follow-up test case If in Table 2 depicts the case where
MR4 is applied to Is from Table 1. In fact, every inferred test case will differ

Testing Chatbots using Metamorphic Relations 7

Table 2. Follow-up test case for MR4

Action

0: I want to book a room in nowhere

1: book a hotel

2: Fairmont

3: I want to check-in today.

4: 1 adults

5: 2 children

6: 1 night

7: i want 5 stars

from its original by adding one change. In such way, we want to check how
minimal changes affect the overall testing result. We obtain a diverse test case
by applying mutations to just one initial test. By doing so, our intention is to
obtain tests that are able to lead to states during execution that are not covered
by the implementation or the specification. After the mutations from all MRs
have been applied to the source test case, we initiate the execution process.

2.2 Metamorphic Test Execution

After the individual MRs have been specified, the test generation process can
begin. The algorithm, BotMorph, as shown in Algorithm 1, implements our
entire test generation and execution approach. The process starts with the initial
source test case, Is, from Table 1. Its individual actions are manually defined
and represent a sequence that ultimately leads to a specific reservation. Is is
executed and the chatbot’s source output, Os, is recorded. This represents an
important step that substitutes the test oracle: The comparison of Os to the
result from the follow-up test case, Of , will determine the test verdict.

Then, the MRs are applied in optional order to derive follow-up test cases.
The new test case is executed against the SUT and the output is recorded. From
the technical point of view, obtained values from Grammar Solver are assigned
to HTTP requests and submitted to the chatbot system on the fly. In return,
its HTTP responses are processed and handled accordingly. The MR checks are
done after the final Of of a test case is received. If no vulnerability is triggered,
i.e. if the MC fails, then the test case is added to the list of successful tests V .
Otherwise, in case that an issue has been detected, the test will be disregarded.
The process continues until all MRs have been applied and checked. Afterwards,
the same process is restarted but with new source tests from the successful ones.

In theory, the process can continue until every symbol has occurred for every
combination of values for all MRs. It remains the task of the tester to define the
termination condition.

8 J. Bozic and F. Wotawa

Algorithm 1 BotMorph – Metamorphic test generation and execution algo-
rithm for chatbots
Input: Program P , set of metamorphic relations MR = {mr1, . . . , mrn}, source test
case Is = {a1, . . . , an}, grammar G and a function Φ = (MR, Is, G) 7→ If that infers
follow-up test cases.
Output: Metamorphic test set TS = {If1, . . . , Ifi} where each Ifi = {a0, . . . , an}
and a list with source test cases V = {v1, . . . , vn}.

1: TS = ∅
2: Os = exec(Is, P)
3: V = V ∪ {(Is, Os)}
4: for v ∈ V do
5: while MR.hasNext() do
6: If = generate(Φ,mrn, G, Is) . Generate test case
7: TS = TS ∪ {If}
8: for If ∈ TS do
9: res(If) = FAIL

10: Of = exec(If , P) . Execute test case
11: if check((Is, Os), (If , Of),mrn) fails then . Execute MC
12: res(If) = PASS
13: V = V ∪ {(If , Of)} . Save successful test case
14: else
15: res(If) = FAIL
16: end if
17: end for
18: end while
19: end for

3 Evaluation

For the evaluation we generated several test sets from the initial test case. The
source test case Is serves as the starting point for all inferred If ’s. The defined
MRs serve as test guidelines as well as the basis for conducted metamorphic
checks. We execute the procedure from M1 in a descending order. Since the
individual actions from Is differ from each other, the MRs will cause different
results with regard to number and shape of test cases. For example, a0 contains
three keywords, whereas a1 comprehends just one. When applying MR1, syn-
onyms will be created for every keyword separately (with the exception of the
check-in date). For example, in case of a0, the mutation is applied only for one
keyword at the time. Thus, the number of resulting follow-up’s is multiplied by
each keyword and the grammar values. On the other hand, a1 will provide only
one follow-up test case per mutation. Also, each MR is applied individually on
just one action, so the new test case differs only in one change from its orig-
inal (the exception being MR5). In such way we want to observe the testing
behaviour by adding just small changes.

In total, we generated 104 test cases that were submitted against the booking
chatbot. Table 3 depicts all results that have been achieved.

Testing Chatbots using Metamorphic Relations 9

Table 3. Results for metamorphic test cases

MR #total #pass #fail

MR1 60 56 4

MR2 16 16 0

MR3 10 5 5

MR4 10 5 5

MR5 8 8 0

Since the SUT behaves different for each input, we will analyse the results
with regard to every MR.

MR1: We added several synonyms for keywords and encountered a few dis-
crepancies with Dialogflow. The initial booking request action was successful in
all cases. Thus, the chatbot was able to recognize the intent and finalize the
reservation even when the client reformulates the request. A failing test case
was encountered with a4−6 and a8, where synonyms like “guests” instead of
“adults”, “kids” instead of “children” and “ratings” could not be recognized by
the chatbot.

MR2: This MR is unique among the relations because it affects only actions
with numerical values. That is, only four out of eight inputs are addressed by
the mutation. It can be concluded that changing the number in an action does
not cause any failures. The chatbot succeeds with generating a reservation with
different values. Therefore, all tests have been successful.

MR3: Omitting words causes a lot of confusion in the chatbot. Initiating a
reservation with a0 is possible even without the explicit mentioning of “book” or
“room”. However, if no city name is provided, the client cannot proceed further.
We conclude that the explicit statement of a city name at the beginning of the
communication is mandatory. Also, if no accommodation type, check-in dates
and stars are provided, then the reservation fails. The chatbot keeps insisting
for the information and ignores further user requests. For actions with numerals,
we kept the numbers but omitted the words to their right. Interestingly, a valid
information is made when providing just numerals without “adults”, “children”
or “nights”. It seems that the chatbot assumes that a client always provides
information in a strict order. Thus, it assigns the information to parameters
without further clarification. However, this seems not to be the case when “stars”
is omitted.

MR4: Replacing keywords with nonrelated terms triggered strange behaviour
on side of the chatbot. For example, formulating a0 into “I want to exchange
a pod in nowhere” (three follow-up test cases, one for every keyword) resulted
in a valid registration! If we compare the behaviour to MR3, the chatbot seems
to accept every value for city name as a valid one. This is an important imple-
mentation flaw in the chatbot. Actions a2−4 are processed as expected by the
SUT. On the other hand, “alien” and “kobolds” seem to be a valid substitute
for “adults” and “children” in a5 and a6, for unknown reasons. However, a7 and
a8 have been rejected, as demanded by the relation.

10 J. Bozic and F. Wotawa

MR5: This MR is unique since it requests a reordering of actions in a test
case. This means that concrete values will not differ between Is and If . We
adapted a randomized approach that resulted in eight test cases with different
sequences of actions. As expected, every Of from SUT differs from Os. The
chatbot’s response depends on the first user inquiry. Usually the SUT keeps
asking for a certain information and remains in a specific queue. If the requested
information is received in the meanwhile, then it switches to another queue.
Also, if the chatbot encountered unexpected input (from its point of view),
then unexpected responses were sent. This included an empty text or unrelated
sentences (e.g. “Talk to you soon!”).

Since we applied MT for functional testing purposes, our intention was not
to exploit a SUT. Since a tester does not know about the inner workings of
a SUT and its available information, some guessing is needed. The tester can
assume that some keywords will be understood by the chatbot, others can be
completely avoided. In our approach, unintended behaviour indicates that 1)
an implementation flaw or oversight or 2) insufficient information on side of
the Dialogflow implementation. Actually, here both observations affirm known
advantages of MT, namely the detection of verification and validation defects,
respectively [8]. In the first case, we can assume that the chatbot did behave to
its implementation or incomplete specification. However, it failed to cover cases,
which it should be able to understand. Also, the assignment of information to
a specific parameter without clear indication can be considered a drawback as
well. Finalizing a reservation with unsuitable data (e.g. fictional city names or
substitutes) is even worse.

On the other hand, the chatbot’s permanent insistence on a specific infor-
mation at a certain point during the conversation indicates that a strict order
must be followed. As already proven in [4], the hotel booking chatbot insists
that the first and last inquiries must be of a specific type. The sequence of other
information is optional.

$location
$venue -type
$venue -title
$checkin -date
$adult
$child
$night
$star

The approach in that work demonstrated that the chatbot concluded reserva-
tions even with missing information in a nonintuitive manner. This means that
the chatbot does something it should not. The same observation was proven
when testing against MR3. On the other hand, MT detected that the SUT does
not what it should do (e.g. with MR1). Also, meaningless input is wrongly asso-
ciated with an intent with MR4. We assume that the reason why unrelated terms
are still “understood” is due to the fact that the chatbot follows its strict order
and ignores other information (“stars” being an exception). The recognition of

Testing Chatbots using Metamorphic Relations 11

terms depends upon the pre-specified entries in the chatbot’s entity database.
A different set of values and intents would likely result in different behaviour of
the system. Interestingly, some natural language input does disturb the chatbot
as well. Adding a “I want to” to mandatory information does not match the
chatbot’s intent. It seems that the SUT follows a minimalistic approach.

In general, we conclude that the use of metamorphic test cases succeeds
to trigger defects in natural language systems. In addition to that, it provides
some clarification about possible reasons with regard to diverse inputs. Also, it
uncovers clues about inner workings of the chatbot by relying on a small set of
metamorphic relations. For all these reasons, we consider the presented approach
as a good starting concept for further actions.

4 Related Work

Research that correlates with our work includes metamorphic testing and chat-
bot testing. Works that focus on the first topic are often conducted on industrial
and online applications. Also, these approaches often interact with external im-
plementations and resources. On the other hand, literature that focuses on test-
ing of chatbots, is sparse. To our knowledge, no work deals with the adaptation
of MT to chatbots.

4.1 Metamorphic Testing

MT was introduced in [7] and the idea was elaborated on several examples of
numerical problems. Comprehensive surveys about papers that deal with MT
can be found in [17] and [8].

The preliminary work that addressed oracle-free programs is discussed in [25].
Here the notion of pseudo-oracles is used, i.e. external programs that substitute a
real test oracle. Additional programs are implemented and tests are run against
both the original and the substitute program. If the results match, then the
results of the original program are considered to be valid.

In [18] and [16] the authors elaborate a MT-based approach for testing of
feature models (FM) and variability models (VM). Such models encompass the
definition of specific products by means of features or configurations, respec-
tively. MRs are defined between models and their inferred products, and a test
generator. New models are generated from previous ones by adding mandatory
features. In this way, many models and valid configurations can be generated
automatically.

[26] addresses testing of implementations that use ML classification algo-
rithms. The authors derive MRs for the individual algorithms and test a real-
world ML application framework. Individual MRs define properties that are
necessary to be valid for a classifier algorithm. Finally, they claim that their
MT-based approach can be used against any SUT that uses ML. This work is
evaluated further in [15].

12 J. Bozic and F. Wotawa

In [28] a MT-based framework is proposed for testing of autonomous driving
systems that rely on Deep Neural Networks (DNN). Another work that elabo-
rates MT for testing of autonomous systems is given in [29]. Here MT relies on
deep learning models and comes in combination with fuzzing. The authors eval-
uate their approach on the mission-critical LiDAR Obstacle Perception system,
with promising results.

Additional adaptations of MT to AI systems that include autonomous sys-
tems and DNN are elaborated in [12] and [21], respectively. Also, [10] discusses
the use of MT for debugging of ML applications.

The authors of [9] address the applicability of MT to cybersecurity. In this
approach, MRs are defined in order to test for web failures. Several real-world ob-
fuscators have been tested by using a small test suite. The conducted evaluation
indicates that several bugs were found.

Additionally, [19] applies MT to test Web Application Programming Inter-
faces (APIs).

[6] discusses an implementation of MR for testing of event sequences for busi-
ness processes. The approach, MTES, defines metamorphic relations for fault-
detection purposes. The authors conclude that more diverse inputs result in
higher detection capabilities.

Also, works exist that address MT for machine translators (e.g. [27]). A MR
applies translations to different sentences and checks for semantic (dis)similarity
between languages. Inputs are generated that are meant to be homologous in
different languages. The authors discuss the quality of translators and their
translation errors. In contrast to our work, they validate the produced inputs
from the translator and ignore the SUT that processes these inputs.

4.2 Testing of Chatbots

In contrast to the plentiful number of MT-related papers, only a few papers
address testing of chatbots.

For example, [23] introduces PARADISE, a system that deals with the eval-
uation of conversational systems. Different dialogue strategies are compared and
checked against a performance function. In this way, the correctness of an answer
is determined. However, in our work, we concentrate on the user’s side without
having an insight in expected results.

[22] that deals with testing of conversational systems with regard to function-
ality. A testing system emulates a user that interacts with the chatbot. A large
amount of pre-defined user inputs is submitted to the chatbot in an automated
manner. The tested system itself, CognIA, represents a financial advisor. During
exhaustive communication, specific metrics are used that validate the chatbot’s
responses with regard to submitted inputs.

In our previous work [4], we introduced an approach for functional testing of
a hotel booking chatbot. We applied AI planning for generation of test cases and
compared the chatbot’s output to an expected result in an automated manner.

Techniques that resemble our test case generation technique are given in [14]
and [11]. They discuss a technique for conversational input generation for chat-

Testing Chatbots using Metamorphic Relations 13

bots. The idea behind the proposed technique is to change valid user inputs by
paraphrasing them. Different techniques are used for this sake in order to retrieve
a divergent input from the original one. The changes encompass lexical substi-
tutions, as well as non-native preposition errors and native colloquial phrasing,
respectively. An external source is used for retrieving original synonyms. Finally,
the resulting framework tests the robustness of the system by checking on the in-
put variations. The evaluations, based on a chatbot and a flight booking system,
indicate that several weaknesses have been encountered. The obtained results
indicate that the SUT does not always recognize an intent when words are re-
placed with synonyms. Consequently, it might be claimed that our results from
MR1 complement the observations from their approach. However, the reasons
for these observations should be investigated in more detail. On the other hand,
the main difference represents the fact that their technique relies on known ex-
pected values. This stands in stark contrast to a MT-based approach. In our
case, the use of multiple MRs yield more insight into the inner workings of the
SUT.

5 Conclusion and Future Work

In this paper, we addressed an emerging issue in software testing, namely test-
ing of AI systems. The nature of such systems often impedes a straight-forward
approach. Especially systems that communicate in natural language might be-
come more important in the future. Because of that, testing of these systems
becomes an essential task to ensure correct functionality. In this paper we intro-
duced a metamorphic testing approach for testing of chatbots. Instead of models
of existing systems, it relies on metamorphic relations. Since the output of an
AI system is difficult to predict, the approach introduces metamorphic checks
instead of traditional test oracles. We presented a program that combines meta-
morphic test case generation and execution for functional testing of chatbots. In
the aftermath, the approach is successfully evaluated on a chatbot system from
the tourism industry.

The obtained results indicate that the metamorphic approach is able to detect
unexpected behaviour in a system. Although the chatbot did succeed to ensure
functionality in some cases, other test cases triggered situations, which the SUT
failed to handle correctly. Consequently, the reasons for these issues must be
addressed separately.

Finally, we claim that our approach can be used for functional testing of
chatbots. In addition to that, metamorphic testing can be used for testing of
non-functional properties as well. Precisely, MT-based approaches can be ap-
plied under circumstances where expected behaviour is difficult or impossible to
determine. In the future, we plan to extend our approach by improving the test
generation. MRs can be easily added to the existing ones. Thus, a more diverse
test suite will be obtained. Also, using the MT approach against other chat-
bot systems remains an open challenge. Eventually, it would be interesting to
compare the MT-based approach to other chatbot testing techniques and tools.

14 J. Bozic and F. Wotawa

Acknowledgement

The research presented in the paper has been funded in part by the Cooper-
ation Programme Interreg V-A Slovenia-Austria under the project AS-IT-IC
(Austrian-Slovenian Intelligent Tourist Information Center). We thank our col-
league Oliver A. Tazl, who helped us with the implementation of the SUT in
[4], which was used in this work. In addition to that, we want to thank the
anonymous reviewers for their constructive feedback, which we addressed in the
paper.

References

1. Dialogflow. https://dialogflow.com/, accessed: 2018-12-11
2. Gartner Top Strategic Predictions for 2018 and Be-

yond. https://www.gartner.com/smarterwithgartner/

gartner-top-strategic-predictions-for-2018-and-beyond/, accessed: 2018-
05-07

3. Grammar-solver. https://github.com/bd21/Grammar-Solver, accessed: 2018-07-
13

4. Bozic, J., Tazl, O.A., Wotawa, F.: Chatbot Testing Using AI Planning. In: Pro-
ceedings of the International Conference on Artificial Intelligence Testing (AITest)
(2019)

5. Brandtzæg, P.B., Følstad, A.: Why People Use Chatbots. In: Proceedings of the
4th International Conference on Internet Science (INSCI’17) (2017)

6. Chen, J., Wang, Y., Guo, Y., Jiang, M.: A metamorphic testing approach for event
sequences. In: PLoS ONE 14(2): e0212476 (2019)

7. Chen, T.Y., Cheung, S.C., Yiu, S.M.: Metamorphic Testing: A New Approach for
Generating Next Test Cases. In: Technical Report HKUST-CS98-01, Department
of Computer Science, Hong Kong University of Science and Technology, Hong Kong
(1998)

8. Chen, T.Y., Kuo, F.C., Liu, H., Poon, P.L., Towey, D., Tse, T.H., Zhou, Z.Q.:
Metamorphic Testing: A Review of Challenges and Opportunities. In: ACM Com-
puting Surveys (CSUR), Vol. 51, Issue 1 (2018)

9. Chen, T.Y., Kuo, F.C., Ma, W., Susilo, W., Towey, D., Voas, J., Zhou, Z.Q.:
Metamorphic Testing for Cybersecurity. In: Computer, Vol. 49 , Issue 6 (2016)

10. Dwarakanath, A., Ahuja, M., Sikand, S., Rao, R.M., Jagadeesh Chandra Bose,
R.P., Dubash, N., Podder, S.: Identifying Implementation Bugs in Machine Learn-
ing Based Image Classifiers using Metamorphic Testing. In: Proceedings of the
27th ACM SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA’18) (2018)

11. Guichard, J., Ruane, E., Smith, R., Bean, D., Ventresque, A.: Assessing the Ro-
bustness of Conversational Agents using Paraphrases. In: IEEE, University College
Dublin (2019)

12. Lindvall, M., Porter, A., Magnusson, G., Schulze, C.: Metamorphic Model-based
Testing of Autonomous Systems. In: Proceedings of the 2nd International Work-
shop on Metamorphic Testing (MET’17) (2017)

13. Mauldin, M.L.: ChatterBots, TinyMuds and the Turing Test: Entering the Loebner
Prize Competition. In: AAAI ’94 Proceedings of the twelfth national conference
on Artificial intelligence (vol. 1). pp. 16–21 (1994)

Testing Chatbots using Metamorphic Relations 15

14. Ruane, E., Faure, T., Smith, R., Bean, D., Carson-Berndsen, J., Ventresque, A.:
BoTest: a Framework to Test the Quality of Conversational Agents Using Di-
vergent Input Examples. In: Proceedings of the 23rd International Conference on
Intelligent User Interfaces Companion (IUI’18 Companion) (2018)

15. Saha, P., Kanewala, U.: Fault Detection Effectiveness of Metamorphic Relations
Developed for Testing Supervised Classifiers. In: Proceedings of the International
Conference on Artificial Intelligence Testing (AITest) (2019)

16. Segura, S., Durán, A., Sánchez, A.B., Le Berre, D., Lonca, E., Ruiz-Cortés, A.:
Automated metamorphic testing of variability analysis tools. In: Software Testing,
Verification and Reliability, Vol. 25, Issue 2 (2015)

17. Segura, S., Fraser, G., Sánchez, A.B., Ruiz-Cortés, A.: A Survey on Metamorphic
Testing. In: IEEE Transactions on Software Engineering 42, 9 (2016)

18. Segura, S., Hierons, R.M., Benavides, D., Ruiz-Cortés, A.: Automated Test Data
Generation on the Analyses of Feature Models: A Metamorphic Testing Approach.
In: Proceedings of the 2010 Third International Conference on Software Testing,
Verification and Validation (2010)

19. Segura, S., Parejo, J.A., Troya, J., Ruiz-Cortés, A.: Metamorphic Testing of REST-
ful Web APIs. In: IEEE Transactions on Software Engineering, Vol. 44, Issue 11
(2018)

20. Shawar, B.A., Atwell, E.: Using corpora in machine-learning chatbot systems. In:
International Journal of Corpus Linguistics, vol. 10 (2005)

21. Tian, Y., Pei, K., Jana, S., Ray, B.: DeepTest: Automated Testing of Deep-Neural-
Network-driven Autonomous Cars. In: Proceedings of the 40th International Con-
ference on Software Engineering (2018)

22. Vasconcelos, M., Candello, H., Pinhanez, C., dos Santos, T.: Bottester: Testing
Conversational Systems with Simulated Users. In: Proceedings of the XVI Brazilian
Symposium on Human Factors in Computing Systems (IHC 2017) (2017)

23. Walker, M.A., Litman, D.J., Kamm, C.A., Abella, A.: PARADISE: A Framework
for Evaluating Spoken Dialogue Agents. In: Proceedings of the 35th Annual General
Meeting of the Association for Computational Linguistics, ACL/EACL’97 (1997)

24. Wallace, R.S.: The Elements of AIML Style. In: ALICE A.I. Foundation (2003)
25. Weyuker, E.: On Testing Non-Testable Programs. In: The Computer Journal, Vol.

25, No. 4 (1982)
26. Xie, X., Ho, J.W.K., Murphy, C., Kaiser, G., Xu, B., Chen, T.Y.: Testing and vali-

dating machine learning classifiers by metamorphic testing. In: Journal of Systems
and Software, Vol. 84, Issue 4 (2011)

27. Yan, B., Yecies, B., Zhou, Z.Q.: Metamorphic Relations for Data Validation: A
Case Study of Translated Text Messages. In: Proceedings of the 4th International
Workshop on Metamorphic Testing (MET’19) (2019)

28. Zhang, M., Zhang, Y., Zhang, L., Liu, C., Khurshid, S.: DeepRoad: GAN-Based
Metamorphic Testing and Input Validation Framework for Autonomous Driving
Systems. In: Proceedings of the 33rd ACM/IEEE International Conference on Au-
tomated Software Engineering (ASE 2018) (2018)

29. Zhou, Z.Q., Sun, L.: Metamorphic Testing of Driverless Cars. In: Communications
of the ACM, 62 (3) (2019)

