
Combining Model Refinement and Test
Generation for Conformance Testing of the IEEE

PHD Protocol using Abstract State Machines

Andrea Bombarda1, Silvia Bonfanti1, Angelo Gargantini1, Marco Radavelli1,
Feng Duan2, and Yu Lei2

1 Department of Management, Information and Production Engineering,
University of Bergamo, Bergamo, IT

{andrea.bombarda,silvia.bonfanti,angelo.gargantini,marco.radavelli}@unibg.it
2 Department of Computer Science and Engineering,

University of Texas at Arlington, Arlington, TX
feng.duan@mavs.uta.edu, ylei@cse.uta.edu

Abstract. In this paper we propose a new approach to conformance
testing based on Abstract State Machine (ASM) model refinement. It
consists in generating test sequences from ASM models and checking
the conformance between code and models in multiple iterations. This
process is applied at different models, starting from the more abstract
model to the one that is very close to the code. The process consists
of the following steps: (1) model the system as an Abstract State Ma-
chine, (2) generate test sequences based on the ASM model, (3) compute
the code coverage using generated tests, (4) if the coverage is low refine
the Abstract State Machine and return to step 2. We have applied the
proposed approach to Antidote, an open-source implementation of IEEE
11073-20601 Personal Health Device (PHD) protocol which allows per-
sonal healthcare devices to exchange data with other devices such as
small computers and smartphones.

1 Introduction

The model-based testing (MBT) process consists in reuse the specification for
testing purposes. It is one of the main applications of formal methods and it offers
several advantages over classical testing procedures. Test cases are derived from
models and subsequently used to test the code. In the classical MBT approach,
the model is abstract, still it should contain enough details in order to test
all the desired aspects of the SUT (system under test). The designer should
spend a good amount of time to validate the model before it can be used for
test generation and conformance testing [5, 11, 17, 20]. In case a conformance
fault is found, the system (or sometimes the model) should be modified. If no
error is found, the designer has the confidence that the SUT conforms to its
specification. MBT does not suffer from the weaknesses of code testing based on
coverage criteria, like inability to detect missing logic [24]. On the other hand,
this classical MBT approach has several drawbacks we try to address in this



paper: (a) Before starting the testing, a considerable effort should be spent in
order to have a correct and complete model. So testing can start only later in
the SUT life cycle. (b) Focusing only on the specification level may leave some
critical implementation parts uncovered; for instance, if the specification misses
some critical cases which instead are considered in the code, with MBT they
will not be tested. (c) In case no fault is found, it may not be clear if the testing
activity has been sufficient or not. In general, if one still has some resources to
spend on testing, there is no guidance in which directions these resources should
be spent.

In this paper we propose an iterative approach which is based on the use
of Abstract State Machines (ASM) and combines conformance testing [15, 26,
29, 31] with the refinement methodology [8] guided by code coverage. Initially
the designer models the system at a high level with a first ASM. This model
must be validated in a classical way (by simulation and property verification, for
example). Starting from this ASM model, tests are generated and executed on the
real system. A coverage report is provided with information about which parts
of code are not covered by the model. Based on this information, the developer
refines the initial ASM model by adding details about the not covered parts of
the real system code. The process is iteratively executed until good coverage is
reached. This process tries to mix a black box approach where tests are generated
from the specifications and a white box approach where code is instrumented and
coverage information collected in order to understand where the models must be
refined. We emphasize that models are not modified arbitrarily, but they must
be refined as defined by the ASM refinement [8].

The approach we propose in this paper makes use of Abstract State Machines,
but it can be applied to any formal method that supports refinement and test-
case generation.

The paper is structured as follows. In Sect. 2 we introduce the Abstract
State Machines, its supporting tool Asmeta, the refinement of ASMs and the
IEEE 11073-20601 protocol used in our case study. Our approach of combining
testing and model refinement is explained in Sect. 3 and its application to the
case study is presented in Sect. 4. The evaluation of the results and a comparison
with other techniques (mainly combinatorial testing) are presented in Sect. 5.

2 Background

This work is based on the use of Abstract State Machines (ASMs) [14], which
are an extension of Finite State Machines (FSMs) in which unstructured control
states are replaced by states with arbitrarily complex data. They are presented
in this section along with the case study of the IEEE 11073-20601 protocol [1],
which is a core component in the standards family of IEEE 11073 Personal
Health Data (PHD).
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Fig. 2. The ASM development process powered by the Asmeta framework

2.1 ASM and the Asmeta framework

ASM states are mathematical structures, i.e., domains of objects with functions
and predicates defined on them, and the transition from one state si to another
state si+1 is obtained by firing transition rules (see Fig. 1). Functions are clas-
sified as static (never change during any run of the machine) or dynamic (may
change as a consequence of agent actions or updates). Dynamic functions are
distinguished between monitored (only read by the machine and modified by
the environment) and controlled (read in the current state and updated by the
machine in the next state).

The ASM method can facilitate the entire life cycle of software development,
i.e., from modeling to code generation. Fig. 2 shows the development process
based on ASMs supported by the Asmeta (ASM mETAmodeling) framework3 [9]
which provides a set of tools to help the developer in various activities:

– modeling: the system is modeled using the language AsmetaL. The user
is supported by the editor AsmEE and by AsmetaVis, the ASMs visualizer which
transforms the textual model into a graphical representation.

– validation: the process is supported by the model simulator AsmetaS,
the scenarios executor AsmetaV, and the model reviewer AsmetaMA. The simu-
lator AsmetaS allows to perform two types of simulation: interactive simulation
(the user inserts the value of monitored functions) and random simulation (the
tool randomly chooses the value of monitored functions among those available).
AsmetaS executes scenarios written using the Avalla language. Each scenario
contains the expected system behavior and the tool checks whether the ma-
chine runs correctly. The model reviewer AsmetaMA performs static analysis. It

3 http://asmeta.sourceforge.net/

http://asmeta.sourceforge.net/


determines whether a model has sufficient quality attributes (e.g., minimality -
the specification does not contain elements defined or declared in the model but
never used, completeness - requires that every behavior of the system is explicitly
modeled, and consistency - guarantees that locations are never simultaneously
updated to different values).

– verification: the properties derived from the requirements document are
verified to check whether the behavior of the model complies with the intended
behavior. The AsmetaSMV tool supports this process.

– testing: the tool ATGT generates abstract unit tests starting from the ASM
specification by exploiting the counterexample generation of a model checker
(NuSMV).

– code generation: given the final ASM specification, the Asm2C++ auto-
matically translates it into C++ code [12, 33]. Moreover, the abstract tests,
generated by the ATGT tool, are translated to C++ unit tests [13].

2.2 ASM Refinement

The modeling process of an ASM is based on model refinement. The designer
starts with a high-level description of the system and he/she proceeds through a
sequence of more detailed models each introducing, step-by-step, design decisions
and implementation details. In ASM, stuttering refinement is introduced in [8].
It consists in adding state functions and rules in a way that one step in the
ASM at higher level can be performed by several steps in the refined model.
The refinement is correct if any behavior (i.e., run or sequence of states) in the
refined model can be mapped to a run in the abstract model. In this way, the
refined ASM preserves the behaviors of the abstract machine. At the end, the
designer builds a chain of refined models ASM0, . . . ,ASMn and the AsmRefProver
tool checks whether ASMi is a correct refinement of ASMi−1. We note that an
important question in this process is when to stop the refinement. In other words,
how many details would we consider adequate in the final refined model, i.e.,
ASMn? This question is one of the motivations behind the work presented in this
paper.

2.3 IEEE 11073 PHD communication model

IEEE 11073-20601 defines a communication model that allows personal health-
care devices to exchange data with devices with more computing resources like
mobile phones, set-top boxes, and personal computers. The measured health data
exchanged between these devices can be transmitted to healthcare professionals
for remote health monitoring or health advising.

IEEE 11073 PHD defines an efficient data exchange protocol as well as the
necessary data models for communication between two types of devices, i.e.,
the agent and the manager. Agents are personal healthcare devices that are
used to obtain measured health data from the user. They are normally portable,
energy-efficient and have limited computing capacity. Examples of agent devices
include blood pressure monitors, weighing scales and blood glucose monitors.



Managers are computing devices that are used to manage and process the data
collected by agents. Managers typically have more computing resources than
agents. Examples of managers include mobile phones, set-top boxes, and personal
computers.

The messages, called APDUs, at low level are encoded in ASN.1 format, and
should support at least the MDER (Medical Device Encoding Rules) standard.
The communication must have one primary, reliable virtual channel, plus some
secondary virtual channels.

The message types are divided into the following categories:
– messages related to the association procedure: aare (Association Request),

aarq (Association Response), rlre (Association Release Response), rlrq (As-
sociation Release Request), abrt (Association Abort);

– messages related to the confirmed service mechanism: roiv-* (Remote Opera-
tion Invoke messages): roiv-cmip-confirmed-action, roiv-cmip-confirmed-event-
report, roiv-cmip-confirmed-set; and rors-* (Reception of Response messages):
rors-cmip-confirmed-action, rors-cmip-confirmed-event-report, rors-cmip-get;

– messages related to fault or abnormal conditions: roer (Reception of Error
Result), rorj (Reception of Reject Result);

– messages related to the unconfirmed service mechanism: roiv-cmip-action,
roiv-cmip-event-report, roiv-cmip-set.

IEEE 11073 State Machine Diagram There are seven states in the manager state
machine defined by the IEEE 11073 specification, as shown in the specification
diagram in Fig. 3. We use an example scenario to illustrate how the agent and
manager exchange data. In Fig. 4, a weighting scale (our agent device) sends an
association request to the manager, containing device configuration information.
If the manager recognizes such information, it sends a response of association
acceptance, and both devices enter the Operating state. Then the agent sends
a measured data to the manager with a Confirmed Event Report APDU, and
the manager responds with the acknowledgment. Finally, the agent requests to
release the association; the manager responds to this request, and both devices
now enter the Unassociated state.

3 Conformance Testing with Model Refinements

The proposal of this paper is to combine model refinement with testing in order
to perform more efficient conformance testing of a real system. The process we
propose is depicted in Fig. 5 and explained in the following.

We assume that at the beginning the user specifies the core functionalities
of the system by means of an initial ASM, ASM0 in the picture. ASM0 captures
the most critical behaviors but it leaves some details and behaviors out of the
specification. ASM0 is validated by means of the techniques like those introduced
in Sect. 2.1. Even if it is simple, ASM0 must be suitable for test generation and
test execution, i.e. it is possible to derive some tests and execute them on the
real system. During the testing activity, conformance of the system is checked



Fig. 3. State machine of the IEEE 11073 PHD Manager

Fig. 4. An example sequence of data exchange

and information about the coverage of the code is collected. Such coverage infor-
mation is then used to guide the refinement of ASM0 in order to obtain a more
detailed version ASM1. For instance, if some code statements and branches are
not covered the first time, the user has to insert such functionalities in the new
version of the abstract state machine. Some V&V activities are then performed
over the new specification. Then the process of testing starts over again: tests
are derived, executed and then the coverage information collected and used to



Fig. 5. An Overview of the Applied Framework

drive the next refinement step. Such methodology addresses the issues presented
in the introduction in several directions:
1. Conformance testing activity can start immediately after a simple first ASM

is developed. It is not required to have a complete specification and the
most critical behaviors can be tested from the beginning. V&V results on
the previous step are not lost during refinement since it preserves the original
behaviors (according to the definition given in Sect. 2.2)

2. By analyzing the code coverage, the tester can identify if the specification
misses some important areas of functionality that are correctly implemented
in the code.

3. Even when no fault has been found, code coverage can give a measure of
how much the implementation has been tested and which functionalities
and details should be added to the specification.

4. This methodology enables an interleaving approach to perform model verifi-
cation and testing. Thus, it allows closer interaction between the two activi-
ties. In particular, the alternating views of model and implementation could
help discover problems that would otherwise not be discovered.

In the following we better explain each step of the process.

Test generation from ASMs. Starting from an ASM, test sequences can be gen-
erated via different approaches present in the literature. We consider test gen-
eration based on the following coverage criteria, defined in [21]:

– Basic Rule Coverage. A test suite satisfies the basic rule coverage if for every
rule ri there exists at least one test sequence for which ri fires at least once,
and there exists at least one test sequence for which ri does not fire at least
once.

– All-Rule Coverage. A test suite satisfies the all-rule coverage if it satisfies the
basic rule coverage plus the Rule Guard coverage and the MCDC coverage
described in [21].



According to these criteria, we generate the tests using the tool ATGT, which
builds abstract tests starting from the ASM specification by exploiting the coun-
terexample generation of the NuSMV model checker.

Test Execution and coverage information Once abstract tests are generated, they
must be executed over the real implementation and coverage information can be
collected. To obtain concrete tests cases from abstract ones, there are several
methodologies [28]. In our case we use the external tool ProTest [35] which will
be presented later.

Model refinement guided by the coverage information. During the testing activ-
ity, coverage information is collected. This requires access to the implementation
which must be instrumented somehow to produce some event logs or behavior
traces. Our approach is thus not a classical black box testing approach, but
rather a gray-box approach. The scope of this activity is to discover which parts
or features of the system are not exercised by the tests derived from the abstract
model. This information gives a hint to what is missing in the model (i.e., the
ASM) and suggests the user what to add. New behaviors are added to the ASM
regardless how they are implemented in the code. This must be done by preserv-
ing the behavior tested so far, and it is performed by applying the refinement
approach explained in Sect. 2.2.

4 Application to the PHD communication module

In this section we present how the proposed methodology can be applied to test
the conformance of an implementation of the IEEE 11073 PHD communication
protocol, to its specification. We present how the tests were executed, which
steps of refinements were applied, and which coverage was achieved.

4.1 Test execution and coverage information

The abstract tests generated from ASMs are sequences of abstract states that
must be translated into concrete tests that can be executed with the system
under test. For this goal, we use ProTest [35] that includes a test agent, that
interacts with the manager implementation. Each abstract state contains all the
necessary information about the transition to be triggered in that state; ProTest
builds the APDU message, sends it to the manager implementation, and checks
the conformance of the response from the manager.

At each refinement step we added new messages and ProTest took care of
the details of the concretization. In addition, the tool can be customized, as it
has a configuration file that allows to specify, for each message type, some sub-
types by defining the values for the fields in the messages to send. For further
customization out of the scope of the PHD protocol, however, it may be nec-
essary to implement the code to automate the concretization function, in our
case by extending ProTest code. Using the refinement methodology proposed in



this paper, however, it is possible to start testing with just a few implemented
concretization functions, and implement the additional ones only as needed, by
the model refinement.

We use Antidote 2.0.04 as implementation of the manager of the PHD proto-
col. Antidote source code is written in C, and composed by the following source
folders: api, asn1, communication, dim, resources, specializations, trans, and util.
We measure the coverage on the communication source folder only, as it is the
one containing the code to handle the different messages described by the pro-
tocol, and it is the most critical part of the library. The other folders contain
mainly utility functions for handling the data types, and for the encoding and
decoding of the messages. To compute the code coverage we have instrumented
Antidote with GCOV5 and LCOV6, open source tools for coverage measurement:
the former is a tool that computes the code coverage, while the latter is only
a graphical front-end for the visualization of GCOV results. This way we can
obtain coverage reports in an automated way. The code for test generation and
the ASM models7 we produced are available open source as part of the ASMETA
tool set.

Results are reported in Table 1. For each refinement of the ASM model,
and for each applied test generation technique, the table reports the number of
sequences composing the generated sequence set, the minimum, the maximum,
and the average number of steps per sequence, and the total number of steps
composing the generated set of sequences. An execution step corresponds to an
execution of the main rule of the ASM model of the system. The test execution
time is proportional to the total length (i.e. steps) of the exercised test sequences.
Given the same coverage, a test set with fewer total steps is to be preferred in
terms of execution time. We ran the process generating the tests with only the
basic rule coverage criteria, and with the criteria presented in Sect. 3 altogether.
For reference, we also report the coverage achieved with the Finite State Machine
integrated in the ProTest tool [35], using the FSM-based test generation criteria
edge coverage, and 2-way coverage.

4.2 First ASM: Ground Model

We specify in ASMETA the first model of the manager, Ground model ASM0.
This model has only three states: Disassociating, Unassociated, and Operating.
Fig. 6 reports a fragment of ASM0. The signature of ASM0 contains three func-
tions: status, transition, and message. The transition represents the type of request
to be sent to the manager, and it is defined as a monitored function, as its value
can be driven externally, e.g., by the agent. The status represents the current

4 Antidote: http://oss.signove.com/index.php/Antidote_IEEE_11073_stack_

library
5 GCOV: https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
6 LCOV: http://ltp.sourceforge.net/coverage/lcov.php
7 The models are available under: https://sourceforge.net/p/asmeta/code/HEAD/
tree/asm_examples/PHD

http://oss.signove.com/index.php/Antidote_IEEE_11073_stack_library
http://oss.signove.com/index.php/Antidote_IEEE_11073_stack_library
https://sourceforge.net/p/asmeta/code/HEAD/tree/asm_examples/PHD
https://sourceforge.net/p/asmeta/code/HEAD/tree/asm_examples/PHD


# Refinement
Description

Test generation
strategy

Test sequences Code coverage
steps

# sequences min max total avg statement function branch

ASM0 Ground model
basic 25 2 4 79 3.16 50.1% 61.0% 37.0%

all-rule 30 2 4 93 3.10 50.3% 61.0% 37.2%

ASM1
Configuration
management

basic 52 2 5 173 3.33 77.1% 72.6% 56.4%
all-rule 64 2 6 216 3.38 77.2% 72.6% 56.6%

ASM2
Error

management
basic 62 2 5 208 3.35 78.8% 75.3% 58.8%

all-rule 77 2 6 266 3.45 78.8% 75.3% 59.0%

ASM3
Protocol

error
basic 63 2 5 208 3.30 79.4% 75.3% 59.4%

all-rule 80 2 6 272 3.40 79.4% 75.3% 59.6%

FSMProTest Original from [35]
edge 30 2 9 106 3.53 77.2% 72.6% 56.6%

2-way 51 3 14 336 6.59 77.2% 72.6% 56.6%

Table 1. Results of the application of the test generation strategies to different model
refinement versions

state of the manager, and the message represents the response from the manager.
These two functions are modeled as controlled functions (defined in Sect. 2.1).
In terms of Finite State Machines, the status, transition, and message of the ASM
represent respectively the status, input, and output of the FSM.

Then, in the definitions section, we define the rules; the main rule executes
all the rules in parallel at each step. Each rule, based on the current state and
the transition, sets the expected next state and the response message. Finally,
we need to specify an initial status, defined in the default init s0 section; the
machine starts in Unassociated state.

Verification & Validation. The ASM representation allows us to formally verify
some properties. Despite the machine was simple in this version, we have specified
and verified the following temporal properties:

– the system can reach the operating state starting from UNASSOCIATED:
AG((status=UNASSOCIATED) implies EF(status=OPERATING))

– if state is UNASSOCIATED and receive a known configuration, then the
status in the next state is OPERATING: AG((status=UNASSOCIATED and
transition=RX AARQ ACCEPTABLE AND KNOWN CONFIGURATION) implies
AX(status=OPERATING))

– if state is OPERATING than the system can remain in OPERATING sta-
tus or not: AG((status=OPERATING) implies EF(status=OPERATING or sta-
tus!=OPERATING))

The proposerites above were extracted from the official PHD documentation. We
verified these properties to gain confidence of the correctness of the specification.

Testing. With the application of all the test generation rules presented in Sect.
3, we have generated 30 test sequences, with a total of 93 steps. This achieved a
statement coverage of the communication folder of just 50.3%. Function coverage
and branch coverage are also really low.



asm phd master v0
import StandardLibrary
signature:
// DOMAINS
enum domain Status = {UNASSOCIATED | OPERATING | DISASSOCIATING}
enum domain Transition = {REQ ASSOC REL | REQ ASSOC ABORT |
RX AARQ ACCEPTABLE AND KNOWN CONFIGURATION | RX AARE | RX RLRQ | RX RLRE |
RX ABRT | RX AARQ | RX ROIV | RX ROER | RX RORJ | RX RORS |
RX RORS CONFIRMED ACTION | RX RORS CONFIRMED SET | RX RORS GET}

enum domain Message = {MSG NO RESPONSE | MSG RX AARE |
MSG RX ABRT | MSG RX RLRQ | MSG RX RLRE | MSG RX PRST}

// FUNCTIONS
controlled status: Status
monitored transition: Transition //row chosen by the user
controlled message: Message

definitions:
rule r 1 = if status = UNASSOCIATED and transition = REQ ASSOC REL

then par status := UNASSOCIATED message := MSG NO RESPONSE endpar endif
rule r 2 = if status = UNASSOCIATED and transition = REQ ASSOC ABORT

then par status := UNASSOCIATED message := MSG NO RESPONSE endpar endif
rule r 3 = if status = UNASSOCIATED and transition =
RX AARQ ACCEPTABLE AND KNOWN CONFIGURATION

then par status := OPERATING message := MSG RX AARE endpar endif
...

main rule r Main = par r 1[] r 2[] r 3[] ... r 26[] endpar
// INITIAL STATE
default init s0:

function status = UNASSOCIATED

Fig. 6. ASMETA specification of the ASM model V0, specifying transitions in the state
diagram

4.3 First refinement: PHD Configuration Management

The coverage of the model ASM0 was not satisfactory, and in particular the
code that manages configurations was not covered since the configuration man-
agement was completely missing in the model. In this refinement (ASM1) we
therefore added the states for exchanging the configuration: Checking Config,
and Waiting for Config, with their related transitions, messages, and rules. Fig.
7 shows a compact graphical representation of ASM1.

Testing. Test generation produced 64 sequences, with a total of 216 steps. The
code coverage of the communication package increased to 77.2%, mainly due to
more functions and statements covered in the configuration management part.

4.4 Second Refinement: Error management

From coverage analysis, we noticed that all the rors APDU messages, related
to error management, were missing, and some functions, such as communica-
tion process rors(ctx, apdu) in communication/operating.c, were never exercised.
Therefore we designed a new refined model (ASM2) in which we included the
rors message with its subtypes (rors-*). These messages trigger a relevant part



Fig. 7. A graphical view of ASM1 of the IEEE PHD manager

of the protocol between the states Disassociating and Unassociated, and within
the states Operating, Checking Config, and Waiting for Config. Furthermore, we
marked the following two particular sequences of transitions in the model, since
from the coverage report we noticed that these behaviors were not captured by
the model:

1. the behavior of rx roiv confirmed event report that brings from the state
Waiting for Config to Checking Config has to be handled differently de-
pending on whether the state Waiting for Config was entered with a tran-
sition from the state Unassociated or from the state Checking Config. In
the former case, no configuration similar to the one transmitted by the
agent is present in the manager pool of configurations and the function
ext configurations get configuration attributes is called; in the latter case, a
configuration was transmitted previously, and thus the configuration is al-
ready in memory of the Antidote manager.

2. the behavior of rx roiv confirmed event report, that causes a loop in the Check-
ing Config state, is different if executed right after another same message that
brought the manager from the state Waiting for Config into the Checking
Config state. The function configuring new measurement response tx, that
adds a new measurement from the agent, is executed when this particular
sequence occurs.

Testing. Test generation using all the rule-based criteria stated in Sect. 3, has
produced 77 sequences, with a total of 266 steps. The statement coverage of the
communication package was 78.8%, and function coverage 75.2%, both with an
increase of about 3% with respect to the previous refinement of the model.



4.5 Third Refinement: Protocol and configuration management

The coverage reached by the previous refinement was quite good, but from cover-
age analysis we noticed that two important aspects of the connection procedure
were not considered. In the first phase, an agent can try to establish a connec-
tion with a wrong protocol-id or with an unknown configuration, marked as a
specific protocol-id value (0xFFFF) and recognized by Antidote as an external
specification. Thus, we added two new variants of the rx aarq transition in the
ASM3, respectively with an invalid protocol-id and an external protocol-id.

Testing. Test generation using the all-rule criteria stated in Sect. 3, produced
80 sequences, with a total of 272 steps. The statement coverage of the commu-
nication package was 79.4%, and the function coverage 75.3%, with an increase
of 0.6 % both in statement coverage and in branch coverage, with respect to the
previous model in the refinement chain, ASM2.

5 Process Evaluation

In this section, we evaluate the proposed approach and we compare it with
other approaches. In particular, we are interested in answering the following
three research questions:

RQ1 Is refinement a viable option in MBT and does it really improve the effi-
ciency of conformance testing in terms of code coverage?

RQ2 Do ASM-based coverage criteria for test generation achieve different re-
sults in terms of code coverage?

RQ3 Is our method suitable for discovering faults in the implementation?

5.1 RQ1: How does refinement influence coverage?

We have observed that refinements always increase code coverage, regardless
of the criteria used. For ASM0, each criteria achieves around 50% in statement
coverage. For ASM1, the coverage is increased to 72%. The highest coverage
is obtained by ASM3, with more than 79% of the statements covered by the
test sequences. As expected, the number of generated sequences and total steps
increase with the refinements: the sequences vary from a minimum of 16 to a
maximum of 80, and the total number of steps from 79 in ASM0 with the basic-
rule coverage to 272 in ASM3 with the all-rule coverage. A full code coverage is
never reached. However, we were able to increase the statement coverage from
50% to around 80%.

By refinements, the average and the maximum length of test sequences in-
crease. In this case, from Tab. 1 we can see that the maximum sequence length
is 6. It is a relatively high length as these ASM models are not so large, and for
larger models the length of the generated test sequences could be higher.

Analyzing the statements that are not covered, we have noticed that they are
mainly related to procedures of the agent (that was not object of testing), dead



code, or negative use cases (exceptions), often regarding internal configurations
of the manager. We believe that a further increase in code coverage could not
be achieved by adding new messages, but by including in the model different
configurations of the manager at startup (in particular to enable some remote
messages that come from the manager and actively ask the associated agent(s)
for new data). Full coverage is unachievable due to the presence of some dead
code (such as functions declared with an empty body, and never used), but we
believe that it is possible to achieve almost full coverage in the communication
package by exercising Antidote also to act as an agent, thus completing the
transition tables of the specification. Nonetheless, testing the agent was beyond
the scope of this work.

5.2 RQ2: Comparing between coverage criteria

We have noticed that, regardless of the refinement, the all rule-coverage criteria
always achieves a higher statement and branch coverage than the basic rule cov-
erage criteria. The difference between the coverage of the two criteria, however,
is minimal (just 0.2 % gap), in some cases the statement and function coverage
are the same. The all-rule coverage criteria, however, leads to a 20% more steps
in the generated test sequences, with respect to the basic rule coverage, meaning
that it requires more time for test execution. All in all, we can notice that model
refinement affects the code coverage more than the choice of coverage criteria:
even if one applies a stronger test generation criteria, the increase in code cov-
erage (around 0.2 % increase) is lower than by applying a refinement (around
1-10 % increase). Table 1 reports also the code coverage of combinatorial test-
ing obtained by ProTest [35]. Note that the coverage achieved by our method
from the second refinement on, is higher than the coverage obtained by the tests
generated with the edge and 2-way coverage of the FSM model in ProTest.

5.3 RQ3: Faults found

We have found a few mismatches in some of the test executions, namely the
actual response from the manager was different from the expected one, according
to the model. We analyzed these inconsistencies, and three of them turned out
to be real bugs in the implementation, with respect to the protocol specification:
1. The specification of the standard IEEE 11073-20601 requires rx abrt as re-

sponse for the sequence “unasocciated + req assoc abort”. The Antidote im-
plementation uses no response instead. The fault was revealed from the first
model (ASM0).

2. The length of the message rx roer was computed incorrectly, which results
in a rejection by the encoding module. The fault was revealed after the first
refinement (ASM1).

3. The sequence “checking config + rx aarq → no response” causes a transition
mismatch. A transition labeled by event rx aarq was defined for state check-
ing config. However, in the actual code, three transitions were implemented
for three sub-types of event rx aarq *, which can never be fired. This bug



Fig. 8. A test sequence execution, and coverage report, with ProTest [35]

means that the Antidote Manager only responds to three sub-types of event
rx aarq *, but does not respond to rx aarq itself. The fault was revealed after
the first refinement (ASM1).

Fig. 8 shows an example of test case execution in ProTest, ending with a confor-
mance error between the model and the implementation, denoted by a red cross
in the tool. Furthermore, we have found that the state Associating is not part of
the Antidote FSM table, since it was joined together with Unassociated state.
In order to make our process work, we had to ignore this state also in the ASMs,
but we believe that this is an implementation fault due to oversimplification
done by the Antidote team. We have reported the faults to the developers and
issued in the tracking system of the Antidote repository in GitHub.

6 Related Work

The works on conformance and interoperability testing for medical/healthcare
devices can be classified into two categories: testing health information systems
and testing medical or healthcare devices. Snelick et. al. [23], and Namli [30]
have studied conformance testing strategies for HL-7, a widely used standard
for healthcare clinical data exchange. They have compared such testing strate-
gies and proposed a test execution framework for HL7-based systems built on
top of an extensible test execution model. This model is represented by an in-
terpretable test description language, which allows dynamic test setup. These
works have mainly focused on developing a general test execution framework.
This is in contrast with our work, which focuses on test generation and model
refinement for the communication model of IEEE 11073 PHD protocol. Garguilo
et. al. [22] have developed conformance testing tools based on an XML schema
derived directly from IEEE 11073 standard, that provides syntactic and seman-
tic validation of individual medical device messages, according to IEEE 11073.
This is complementary to our work, as we focus on testing event sequences, and
their tool can be used to check the correctness of the individual APDUs. Lim et.
al. [27] have proposed a toolkit that can generate standard PHD messages using



user-defined device information, facilitating users who are not familiar with the
standards details. This is another format of representing a model of the proto-
col messages, as we do in the modeling part of the proposed approach. Yu et
al. [35] have proposed a general conformance testing framework for the IEEE
11073 PHD protocol, that streamlines the entire testing process, i.e., from test
generation to test execution and evaluation. Our work is built on top of that
framework, adding model refinement to improve test coverage, and rule-based
test generation to make test sequences more efficient. Similarly to ProTest, there
are also methods to generate test cases and to test protocol conformance directly
from Finite State Machines, such as in [2,6,19], and many of them are included
in a survey by Dorofeeva et al. [18]. Refinement is often used in combination
with formal verification of properties [16,25,36]. In this work, instead, we try to
combine refinement and testing. There are also other methodologies for protocol
testing, such as the use of extended finite state model [32] and timed automata
(TA). In timed automata, for instance, different testing techniques have been
proposed, based on different coverage criteria as, e.g., transition coverage [7,34]
and fault-based coverage [3, 4], and they can be used for protocol validation.

7 Conclusion

In this paper, we have presented an approach that combines model refinement
with model-based testing capable of improving testing effectiveness. Tests are
derived from ASM specifications, obtained using refinement iteratively applied
after testing the system under tests. In test execution, coverage info is used to
identify system features or behaviors that are not captured in the model. These
missing features or behaviors are then added into the model, in a manner that is
independent from the implementation. This process has been applied to the case
study of the IEEE 11073 PHD’s communication model. This work extends the
testing framework presented by Yu et al. [35], aiming at streamlining the entire
testing process, including test generation, test execution and test evaluation.
We have shown that refinement can improve testing results (coverage and faults
found) and that rule-based test generation strategies are a good alternative to
the t-way test generation. Model refinement is a crucial process to achieve good
results. As future work, we will apply this framework also to the Antidote agent,
and to some real medical devices to check their compliance with the IEEE 11073
PHD standards. Moreover, we plan to optimize the generated tests among the
model refinements, by not executing again in ASM(n+1) the same test sequences
in the previous model versions, up to ASM(n). The tests themselves could be
also refined between different model versions, for example by using the technique
in [10].

The goal of our project is to promote methods that help in testing the con-
formance of medical devices designed to be compliant with IEEE 11073 PHD
protocol, and in general to any other protocol specification.
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