

PhD-FSTM-2020-58
The Faculty of Science, Technology and Medicine

DISSERTATION

Defence held on 03/11/2020 in Esch-sur-Alzette

to obtain the degree of

DOCTEUR DE L’UNIVERSITÉ DU LUXEMBOURG

EN INFORMATIQUE

by

Cui SU
Born on 29 January 1991 in Hebei (China)

SCALABLE CONTROL OF

ASYNCHRONOUS BOOLEAN NETWORKS

Dissertation defence committee
Dr. Jun Pang, dissertation supervisor
Senior Researcher, Université du Luxembourg

Dr. Sjouke Mauw, Chairman
Professor, Université du Luxembourg

Dr. Thomas Sauter, Vice Chairman
Professor, Université du Luxembourg

Dr. Jaco van de Pol
Professor, Aarhus University

Dr. Loïc Paulevé
Université de Bordeaux

ii

“As was predicted at the beginning of the Human Genome Project, getting the sequence will
be the easy part as only technical issues are involved. The hard part will be finding out what
it means, because this poses intellectual problems of how to understand the participation of
the genes in the functions of living cells.”

Sydney Brenner

iii

Abstract
Scalable Control of Asynchronous Boolean Networks

by Cui Su

Direct cell reprogramming has been garnering attention for its therapeutic poten-
tial for treating the most devastating diseases characterised by defective cells or a
deficiency of certain cells. It is capable of reprogramming any kind of abundant
cells in the body into the desired cells to restore functions of the diseased organ.
It has shown promising benefits for clinical applications, such as cell and tissue
engineering, regenerative medicine and drug discovery.

A major obstacle in the application of direct cell reprogramming lies in the iden-
tification of effective reprogramming factors. Experimental approaches are usually
laborious, time-consuming and enormously expensive. Mathematical modelling of
biological systems paves the way to study mechanisms of biological processes and
identify therapeutic targets with computational reasoning and tools. Among sev-
eral modelling frameworks, Boolean networks have apparent advantages. They pro-
vide a qualitative description of biological systems and thus evade the parametri-
sation problem, which often occurs in quantitative models.

In this thesis, we focus on the identification of reprogramming factors based on
asynchronous Boolean networks. This problem is equivalent to the control of asyn-
chronous Boolean networks: finding a subset of nodes, whose perturbations can
drive the dynamics of the network from the source state (the initial cell type) to the
target attractor (the desired cell type). Before diving into the control problems, we
first develop a near-optimal decomposition method and use this method to improve
the scalability of the decomposition-based method for attractor detection. The new
decomposition-based attractor detection method can identify all the exact attractors
of the network efficiently, such that we can select the proper attractors correspond-
ing to the initial cell type and the desired cell type as the source and target attractors
and predict the key nodes for the conversion. Depending on whether the source
state is given or not, we can have two control problems: source-target control and
target control. We develop several methods to solve the two problems using differ-
ent control strategies. All the methods are implemented in our software CABEAN.
Given a control problem, CABEAN can provide a rich set of realistic solutions that
manipulate the dynamics in different ways, such that biologists can select suitable
ones to validate with biological experiments. We believe our works can contribute
to a better understanding of the regulatory mechanisms of biological processes and
greatly facilitate the development of direct cell reprogramming.

v

Acknowledgements
Upon completion of my Ph.D. study, I would like to express my gratitude to

those who have helped me during the past four years.

I would like to express my sincere appreciation to my supervisor Jun. Through-
out these years, he provided me with persistent help and guided me to be profes-
sional.

Thanks to Sjouke for his encouragement and advice. Thanks to Andrzej and
Paul who helped to cosupervise me at different periods of my study. Thanks to
Qixia who worked closely with me in my first year. I have learned a lot from them.

Thanks to Dr. Hugues Mandon, Dr. Loïc Paulevé and Prof. Stefan Haar. We
collaborated on two interesting papers about the sequential control of Boolean net-
works. One of the papers has received the best paper award at CMSB 2019.

Thanks to all the members of SaToSS group. Their kind help and support made
my study and life a wonderful time in Luxembourg. Thanks in particular to Zach
who helped me to proofread my papers, and to Ninghan and Zhiqiang.

Lastly, I would like to thank my family. Without their understanding and sup-
port, it would be impossible for me to complete my study.

vii

Contents

1 Introduction 1

1.1 Cell reprogramming . 1
1.2 Mathematical modelling of biological systems 2
1.3 Research questions . 5
1.4 Related work . 7
1.5 Contributions . 9
1.6 Layout . 11

2 Preliminaries 15

2.1 Boolean networks . 15
2.1.1 Boolean networks . 15
2.1.2 Dynamics of Boolean networks 16
2.1.3 Attractors and basins . 17

2.2 Decomposition of Boolean networks . 19
2.2.1 SCC decomposition . 19
2.2.2 Blocks . 19
2.2.3 Projection of states and the cross operation 20
2.2.4 Transition system of the blocks 21

2.3 Acyclic partitioning of directed acyclic graphs 22
2.4 Real-life biological networks . 23

3 Near-optimal Decomposition of Boolean Networks 27

3.1 Introduction . 27
3.2 Problem definition . 29
3.3 Acyclic partitioning of SCC graphs . 30

3.3.1 Initial partitioning . 31
3.3.2 Topological refinement . 33
3.3.3 Iteration . 34

3.4 Integration with the SCC decomposition 35
3.5 Evaluation . 36
3.6 Conclusion . 39

4 Computation of the Basin of Attraction 41

4.1 Introduction . 41
4.2 A global method . 42

viii

4.3 A decomposition-based method . 45
4.4 Evaluation . 50

5 Source-target Control 53

5.1 Introduction . 53
5.2 The source-target control problems . 55

5.2.1 Boolean networks under control 55
5.2.2 The control problems . 56

5.3 One-step instantaneous control . 59
5.4 One-step temporary control . 60
5.5 One-step permanent control . 63
5.6 Attractor-based sequential instantaneous control 67
5.7 Attractor-based sequential temporary control 70
5.8 Attractor-based sequential permanent control 70
5.9 Evaluation . 72

5.9.1 Control of the cardiac gene regulatory network 73
5.9.2 Control of the myeloid differentiation network 74
5.9.3 Control of the tumour network 79
5.9.4 Control of other biological networks 81

5.10 Conclusion . 83

6 Target Control 85

6.1 Introduction . 85
6.2 The target control problems . 86
6.3 Instantaneous target control . 88
6.4 Temporary target control . 89
6.5 Permanent target control . 92
6.6 Evaluation . 93

6.6.1 Control of the cardiac gene regulatory network 94
6.6.2 Control of the myeloid differentiation network 96
6.6.3 Control of the tumour network 96
6.6.4 Control of other biological networks 97

6.7 Conclusion . 100

7 CABEAN: a Software for the Control of Asynchronous Boolean Networks101

7.1 Introduction . 101
7.2 General features . 102
7.3 Case study . 104

8 Conclusions and Future Work 111

8.1 Limitations of existing biological networks 111
8.2 Conclusions . 112
8.3 Future work . 113

ix

Bibliography 115

Curriculum Vitae 124

xi

List of Figures

2.1 A toy example . 16
2.2 Different types of attractors . 17
2.3 Transition systems of blocks . 22

3.1 SCC graph of the PC12 cell network . 31
3.2 Partition of the SCC graph of the PC12 cell network 35

4.1 Transition system of Example 6 . 44

5.1 Two source-target control strategies . 53
5.2 The original transition system and the transition system under con-

trol of Example 7 . 56
5.3 Minimal OT and OP control of Example 10 66
5.4 Sequential control of Example 11 . 72
5.5 Structure of the myeloid differentiation network 75
5.6 Source-target control of the myeloid differentiation network 75
5.7 AST control of the myeloid differentiation network 77
5.8 AST control of the myeloid differentiation network with constraints . 78

6.1 Source-target control and target control 85
6.2 Target control of Example 13 . 93
6.3 Comparison of TTC and SMC on the number of solutions 99

xiii

List of Tables

2.1 An overview of the biological networks 24

3.1 Partition of the SCC graph of the PC12 cell network 35
3.2 Attractor detection based on the SCC decomposition 37
3.3 Attractor detection for the HIV1 and pathway networks 38
3.4 Attractor detection based on the new decomposition 39

4.1 Computation of the strong basin . 50

5.1 Attractors of the cardiac network . 73
5.2 One-step control of the cardiac network 73
5.3 Computational time for one-step control of the cardiac network. . . . 74
5.4 Attractors of the myeloid differentiation network 75
5.5 One-step control of the myeloid differentiation network 76
5.6 Strong basin of granulocytes . 76
5.7 Attractors of the tumour network . 79
5.8 One-step control of the tumour network 80
5.9 Sequential control of the tumour network 80
5.10 Sequential control of the tumour network with constraints 80
5.11 Source-target control of the biological networks 82
5.12 Computational time for source-target control of the biological networks 82

6.1 Target control of the cardiac network 94
6.2 The number of perturbations required by the target control of the

myeloid differentiation network . 95
6.3 Target control of granulocytes and monocytes 95
6.4 Target control of megakaryocytes and erythrocytes 95
6.5 Target control of the tumour network 97
6.6 Target control of the biological networks 97
6.7 Computational time for target control of the biological networks . . . 99

7.1 Control methods integrated in CABEAN 102

xv

Layout Notes

Where relevant, boxes such as this one give some context about the research
papers written over the course of preparing this thesis.
This information may be useful to reviewers of the thesis, but may not be
important for other readers.

Key Statements

At certain locations in this document, key definitions, statements or results
will be emphasised in boxes such as this one.

Code Snippets

Important code examples are provided in code boxes.

1

Chapter 1

Introduction

1.1 Cell reprogramming

Cell differentiation is the process in which an immature cell becomes a more spe-
cialised cell. Previously, researchers think that this process is one-way and could
not be reversed. However, this paradigm has been overturned by the discovery of
cell reprogramming.

In 1962, John Gurgeon proposed the concept of cell reprogramming with his exper-
iment, in which he reprogrammed somatic cells to stem cells [Gur62]. Since then,
researchers have been actively working on this field for the last six decades. In their
seminal work, Yamanaka et al. [Yam07, TTO+07] showed that human somatic cells
can be converted to induced pluripotent stem cells (iPSCs) by a cocktail of defined
factors: Oct3/4, Sox2, Klf4, and c-Myc. The generated iPSCs have the ability to fur-
ther propagate and differentiate into many cell types and thus they have great po-
tential for tissue engineering and regenerative medicine. However, the application
of iPSC reprogramming is hampered by the following concerns: (1) the generated
iPSCs have a risk of tumourigenesis and teratoma formation [Gol19, GD19]; (2) the
iPSC reprogramming and the differentiation process usually require lengthy time
commitment to generate a sufficient number of desired cells for clinical application,
which also results in significant experimental costs [GD19]; and (3) the generated
iPSCs often encounter cell cycle arrest after differentiation, which makes it difficult
to expand the number of cells for therapeutic transplantation [Gol19].

Limitations of iPSC reprogramming reinforce the need of direct reprogramming, also
called transdifferentiation. Direct reprogramming harnesses the power of somatic
cells to regenerate defective or deficient cells by reprogramming abundant somatic
cells directly into the desired cells bypassing the pluripotent state. In this way,
direct reprogramming can not only reduce the risk of tumourigenesis and teratoma
formation, but also shorten the period of time and reduce the experimental costs
for generating sufficient desired cells for therapeutic application [GD19].

A key factor in the application of direct reprogramming techniques is to identify
effective reprogramming factors, including transcription factors, growth factors,
small molecules, RNAs and DNAs [GSPP19]. Experimental approaches usually

2 Chapter 1. Introduction

select promising combinations of targets, perturb them and monitor if the perturba-
tion triggers desired changes. Such “trial and error” approaches can be very expen-
sive and require long-time commitment, which render them inefficient [GSPP19].

Gene regulatory networks (GRNs) are comprehensive networks that encode molecular
species (nodes) and their regulation relations (edges) [KS08]. They play a critical
role in numerous cellular processes, such as cell differentiation, metabolism and
so on. Advances in sequencing techniques and the availability of wealthy data on
gene expression profiles promote the shift from experimental approaches to the
computational predictions based on mathematical modelling of GRNs. Mathemat-
ical models allow us to discover different combinations of targets by providing a
broad view on the whole GRNs. In this way, we are able to make predictions in a
systematic manner and speed up the development of cell reprogramming, as such
predictions are much faster and cheaper than experimental approaches. Moreover,
it has great promise to discover novel intervention targets for reprogramming.

1.2 Mathematical modelling of biological systems

“All models are wrong, but some are useful.”

George E.P. Box

Mathematical modelling paves the way for the analysis of biological systems and
the study of underlying mechanisms. Several modelling frameworks have been de-
veloped to model biological systems and each framework has its advantages and
limitations. We roughly categorise them into two classes: logical models and con-
tinuous models. In this section, we will give a brief and concise review on the
popular methodologies. In particular, we will discuss the logical models, includ-
ing Boolean networks, probabilistic Boolean networks, and Bayesian networks, and the
continuous model, networks of ordinary differential equations (ODEs).

Boolean network

Boolean networks, first introduced by Kauffman [Kau69], are a well-established
modelling framework for GRNs and their associated signalling pathways. In Boolean
networks, molecular species, such as genes and transcription factors, are described
as Boolean variables. Each variable is assigned with a Boolean function, which
determines the evolution of the variable. Boolean functions characterise activation
or inhibition regulations between the molecular species. The states of a Boolean
network are binary strings, where every bit of the string represents the state of a
molecular species – 0 for inactive (or absent) and 1 for active (or present). The
dynamics of a Boolean network is assumed to evolve in discrete time steps, mov-
ing from one state to the next, under one of the updating schemes, such as the
synchronous or asynchronous updating scheme. Under the synchronous scheme, all
the variables update their values simultaneously at each time step, while under the
asynchronous scheme, only one variable is randomly selected to update its value

1.2. Mathematical modelling of biological systems 3

at each time step. The asynchronous updating scheme is considered more realis-
tic than the synchronous one, since it can capture the phenomenon that biologi-
cal processes occur at different classes of time scales [ZYL+13]. Besides the above
mentioned general asynchronous updating scheme, several other non-deterministic
updating schemes are also proposed: at each time step, a random selection of m
nodes can be updated either synchronously or asynchronously with m being fixed
or random.

Boolean networks are restricted by its definition that (1) gene expressions cannot be
sufficiently captured by only two states; and (2) the dynamics of Boolean networks
cannot depict the stochasticity of biological systems [VCS13]. Still, Boolean net-
works have apparent advantages compared to other modelling frameworks. They
are highly abstract and free from kinetic parameters, thus it is relatively easy to in-
fer Boolean networks from the available data [HLT+09]. The structure of a Boolean
network is simple, yet it can capture the important dynamical properties of real-life
biological systems [Aku18].

Probabilistic Boolean network

Probabilistic Boolean networks, introduced by Shmulevich et al. [SDKZ02], are an
extension of Boolean networks to integrate stochasticity and uncertainty of real
systems. A probabilistic Boolean network is also made up of binary-valued vari-
ables and Boolean functions. Different from Boolean networks, each variable of a
probabilistic Boolean network can have several Boolean functions and each func-
tion is assigned with a probability based on its compatibility with the microarray
gene expression data [KS08, SDKZ02]. The updating of a variable is subject to the
Boolean function randomly selected based on the probabilities. Thus, the dynam-
ics of a probabilistic Boolean network is stochastic. The framework of probabilistic
Boolean networks enables the analysis of the long-run dynamics with the meth-
ods for discrete-time Markov chains (DTMCs). All the long-run characteristics, such
as the long-run relative influence and sensitivity, are expressed in terms of steady-
state probabilities [MPSY18]. Therefore, the study of probabilistic Boolean networks
mainly concentrates on the efficient computation of steady-state probabilities.

Probabilistic Boolean networks preserve appealing features of Boolean networks
such as being simple in the structure yet effective at depicting real-life biological
systems. The state space of a probabilistic Boolean network is discrete and thus
it also suffers from loss of information during the discretisation of the real-time
data [KS08]. Due to the high complexity of probabilistic Boolean networks, more
temporal data are needed to infer the network [TMP+13].

Bayesian network

Bayesian networks are graphical models that describe probabilistic relationships
between variables [SDKZ02]. A Bayesian network is a directed acyclic graph G =
(X, A), where X = {x1, x2, . . . , xn} denotes the set of genes and A represents the
set of direct edges corresponding to probabilistic dependence interactions between

4 Chapter 1. Introduction

the genes [CLL+14]. The relationships between the genes are represented as a joint
probability distribution that can be decomposed into a product of local conditional
probabilities and has the following form:

P(x1, x2, . . . , xn) =
n

’
i=1

P(xi|Pa(xi))

where Pa(xi) denotes the values of the parent nodes of xi [SDKZ02]. In another
word, a Bayesian network describes a joint probability distribution that can divide
the set of genes into conditional independent subsets that are not overlapped based
on their positions [CLL+14].

The advantage of Bayesian networks is that they can handle noise and uncertainty.
But they fail to capture temporal information of the time-series data [FLNP00]
and their acyclic nature does not not allow feedback loops. Another drawback
lies in the computational complexity of inferring the structure of a Bayesian net-
work from gene expression data, especially when a large number of genes are in-
volved [SDKZ02, VCS13].

Network of ordinary differential equations

Network of ODEs is a classic mathematical framework for the modelling and anal-
ysis of all kinds of biological networks. It encodes a function for each gene to
describe its (instantaneous) changes and therefore provides a quantitative descrip-
tion of the real system. The function is an ordinary differential equation of the
following form:

dx(t)
dt

= fi(x1(t), x2(t), . . . , xn(t), u, qi)

where xi(t), i 2 {1, 2, . . . n} are the gene expression of gene xi at time t, dx(t)
dt is the

rate of change of gene xi, u is the external perturbation signal, and qi is a set of
parameters describing the interactions of the genes [HLT+09, BBAIDB07].

As a continuous model, networks of ODEs provide more details about the dynamics
of the system, at a cost that a large amount of high-quality data are needed to find
the appropriate parameters [BBAIDB07, KS08, BGMN20].

Comparison of the models

The logical models describe combinatorial regulations of the elements of a partic-
ular biological system and provide a qualitative description of the system [SB07].
The plentiful data of microarray gene expression triggers the rapid development of
logical models [SB07]. The continuous models are constructed using real-time data
and are theoretically more accurate in describing the real systems [KS08]. How-
ever, the construction of continuous model usually requires a large amount of data
to estimate proper kinetic parameters and the models describing large biological
networks are prohibitively complicated [Bor05].

1.3. Research questions 5

A key criterion for assessing the quality of the model is the similarity of the experi-
mental data and predictions generated based on the model [KS08]. Given the same
level of similarity, the simpler model is more appealing. Lack of real-valued data
prohibits the modelling of continuous models, such as networks of ODEs [Bor05].
Logical models provide a proper “coarse-grained” level of description of biological
networks. They focus on important qualitative properties of the real system and
neglect details when it is acceptable. Considering the intrinsic diversity and com-
plexity of biological systems, modelling of large biological networks, such as the
probabilistic Boolean networks and the Bayesian networks, is usually prohibited
by the incomplete knowledge of the full circuitry, despite of the large amount of
available data [Bor05].

Therefore, in this thesis, we select Boolean networks as the representative of biolog-
ical networks, which is encouraged by its simplicity on even large-scale networks.
In particular, we focus on asynchronous Boolean networks, which are considered
more realistic than synchronous Boolean networks. Thanks to the rapid expansion
of biological databases, a number of large-scale Boolean networks have been con-
structed to model biological systems. These Boolean networks are interconnected
and stable. Thus, they are likely to better withstand the loss of a link and cope
with external environmental perturbations, which are important characteristics of
biological systems [Sto18].

1.3 Research questions

The principal objective of this thesis is to identify reprogramming factors that can
trigger desired changes in biological systems. We study this problem in the context
of asynchronous Boolean networks.

In Boolean networks, the steady-state behaviour of the dynamics is described as
attractors, to one of which the system eventually settles down. Attractors are hy-
pothesised to characterise cellular phenotypes or functional cellular states, such as
proliferation, apoptosis and so on [Hua01]. Thus, to reprogram the cells is equiv-
alent to alter the attractor that the Boolean network is in. The prerequisite to this
problem is to have a good knowledge of the attractors of a given Boolean network.

Attractor detection

Efficient identification of attractors is one of the major challenges in the analysis of
Boolean networks. Mizera et al. [MPQY19, YMPQ19] developed a decomposition-
based method for the identification of attractors in large synchronous and asyn-
chronous Boolean networks.

Their seminal work uses the simple decomposition to divide the structure of the
network into a set of strongly connected components (SCCs). Hence, the efficiency of
this SCC decomposition-based attractor detection method will be hampered when a
Boolean network has a large number of SCCs, which commonly arises in biological
networks. This motivates us to work on the following question:

6 Chapter 1. Introduction

Research Question 1

Can we optimise the decomposition of Boolean networks to improve the ef-
ficiency of attractor detection?

Our goal is to find a better decomposition of Boolean networks, which balances
the structure and the dynamics of the networks and improves the efficiency of
the decomposition-based method for attractor detection in asynchronous Boolean
networks.

Basin computation

The basin of attraction of an attractor indicates the commitment of the states to the
attractor. In asynchronous Boolean networks, each attractor has a weak basin and
a strong basin, reflecting different levels of commitment to the attractor. The weak
basin of an attractor includes the states that can reach this attractor, meanwhile, it is
possible that these states can reach some other attractors of the network. Whereas
the states in the strong basin of an attractor are fully committed – they can only
reach this attractor. An important attractor usually has large basins, which means
that this attractor can attract more states [SPRF08]. The computation of the strong
basin of an attractor is computationally difficult, which motivates us to work on the
following question:

Research Question 2

Can we develop an efficient method for the computation of the strong basin
of an attractor?

We aim to develop a decomposition-based method for the strong basin computa-
tion, which makes use of the structural and the dynamical properties of Boolean
networks.

Source-target control

Once the attractors of the given network are known, we can identify the source
and target attractors that correspond to the interested cell phenotypes based on the
gene expression profiles. Our next objective is:

Research Question 3

Can we find a set of nodes, the perturbation of which can drive the network
from the source attractor to the desired target attractor?

To identify the nodes, whose intervention can drive the network from the source
attractor (the initial cell type) to the desired target attractor (the target cell type),

1.4. Related work 7

is called source-target control of Boolean networks. In the application of cell repro-
gramming, we can reprogram a cell from the initial cell type directly to the desired
cell type or via some other cell types. Accordingly, in Boolean networks, the control
can be achieved either in one step or in a sequence of steps through other states,
called one-step source-target control and sequential source-target control, respectively.
The nodes required to be perturbed are often called driver nodes of the associated
control. The control can be carried out for different periods of time using instan-
taneous, temporary or permanent perturbations. We will combine the two categories
and explore different control strategies to solve the source-target control problem.
Moreover, practical constraints will be taken into consideration to improve the fea-
sibility of the predictions.

To reduce the experimental costs, we are interested in the minimal source-target
control. The requirement of minimality is crucial, without which the problem is
rendered trivial – simply alter the values of the nodes, that have different values in
the source and the target attractors, as the values in the target attractor. Our control
methods will be developed based on the concept of basins of attraction, including
the weak basin and the strong basin.

Target control

Cells in tissues and in culture normally exist as a population of cells, corresponding
to different states [dSB14]. There is a need of target control to compute a set of nodes
of a network, the control of which can drive the network from any initial state to
the desired target attractor. This inspires us to work on the following question:

Research Question 4

Can we find a set of nodes, the perturbation of which can drive the network
from any initial state to the desired target attractor?

We aim to develop methods to solve the target control problem with instantaneous,
temporary and permanent perturbations.

1.4 Related work

In recent years, several approaches have been developed for the control of complex
networks [LSB11, MFKS13, FMKS13, GLDB14, ZnA15, CGC+16, WSH+16, MHP16,
MHP17, ZYA17, CKM13]. Among them, the methods [LSB11, GLDB14, CGC+16,
CZD+11, NV12, PWHL17] were proposed to tackle the control of networks with lin-
ear time-invariant dynamics using either node perturbations or edge perturbations.
Specifically, Liu et al. [LSB11] developed a structural controllability framework for
the full control of complex networks. It computes the minimal set of driver nodes
that can modulate the entire dynamics of the network. Later on, Gao et al. [GLDB14]
adapted this method to solve the the target control problem. They developed a k-
walk method and a greedy method to identify a set of driver nodes that can control

8 Chapter 1. Introduction

a target set of nodes. However, Czeizler et al. [CGC+16] proved that it is NP-hard to
compute a minimal set of driver nodes for the problem of structural target control.
They also proposed several heuristics to improve the greedy algorithm [GLDB14].
Benoit et al. [CZD+11] first proposed the concept of edge perturbations. Nepusz
and Vicsek [NV12] defined a dynamical process on the edges of a network and
showed that the controllability of edge dynamics is significantly different from that
of node dynamics. Pang et al. [PWHL17] generalised the controllability of edge
dynamics to all types of complex networks, including directed or undirected net-
works, weighted or unweighted networks.

The above methods have a common distinctive advantage that they are solely based
on the structure of the network, which is exponentially smaller than the number of
states in the dynamics. Nevertheless, they are only applicable to systems with linear
time-invariant dynamics. While most real systems are nonlinear in nature, linear
dynamics cannot depict some of the crucial features of many real-world systems,
such as multistability and basins of attraction [CKM13]. Therefore, it is necessary
to study the control of nonlinear systems.

The control methods proposed in [MFKS13, FMKS13, ZnA15, WSH+16, MHP16,
MHP17, ZYA17, CKM13] are designed for networks governed by non-linear dy-
namics. Among these methods, the one based on the computation of the feedback
vertex set (FVS) [MFKS13, FMKS13, ZYA17] is a purely structure-based method.
It drives the network towards a target state by regulating the nodes in a feedback
vertex set of the network, which have been proved to be the determining nodes for
systems described by ODEs. Cornelius et al. [CKM13] proposed a simulation-based
method to predict instantaneous perturbations that can reprogram a cell from an
undesired phenotype to a desired one for systems of ODEs. Wells et al. [WKM15]
introduced the optimal least action control (OLAC) method to predict parameter
interventions on gene expressions, protein levels or interaction rates for systems
described by nonlinear differential equations. Wang et al. [WSH+16] developed an
experimentally feasible method for the control of nonlinear dynamical networks.
They construct the so-called “attractor network” of a system by incorporating all
the experimentally validated paths from one attractor to another. However, this
method fails to formulate a generic control framework for nonlinear dynamical
networks. It also fails to provide a straightforward way to find the control paths for
the conversion between two given attractors. All the methods mentioned above are
not applicable to Boolean networks.

Several methods based on semi-tensor product (STP) have been proposed to solve
different control problems for Boolean control networks (BCNs) under the syn-
chronous updating scheme [LCL17, ZLLC18, LZH+16, ZLK+19, WSZS19, CLW16,
YYCJ19, ZKF13]. For synchronous Boolean networks, Kim et al. [KPC13] developed
a method to compute a small fraction of nodes, called “control kernels”, whose
modulation can govern the dynamics of the network; and Moradi el al. [MGFA19]
developed an algorithm guided by forward dynamic programming to solve the
control problem. Lin et al. [LK12] proposed a Max-SAT based automatic test pat-
tern generate algorithm to identify faulty genes that cause undesired behaviours of
GRNs and to identify the best drug selection for cancer treatment. This algorithm

1.5. Contributions 9

considers synchronous Boolean networks under a stuck-at fault model. Murrugarra
el al. [MVCAL16] proposed a method for the identification of intervention targets
based on algebraic techniques for synchronous Boolean networks. However, all
these methods are not directly applicable to asynchronous Boolean networks.

Closely related to our work, Mandon et al. [MHP16, MHP17] proposed several
methods for the control of asynchronous Boolean networks. Particularly, they pro-
posed algorithms to identify reprogramming factors for both existential and in-
evitable reachability of the target attractor with permanent perturbations [MHP16].
Afterwards, they proposed a method to compute all the control paths between
two states with at most k temporary or permanent perturbations [MHP17]. How-
ever, these methods do not scale well for large-scale Boolean networks, since they
encode all possible control strategies into the transition system of the Boolean net-
work to identify the desired control paths [MHP17]. As a result, the size of the
resulting perturbed transition graph grows exponentially in the number of perturba-
tions, which renders these methods inefficient. Fontanals et al. [FTS20] proposed a
method based on trap space to deal with the full network control problem: leading
the system to the desired attractor or the phenotype from all possible initial states.
Indeed, this full network control problem is equivalent to the target control problem
introduced in this thesis. Their method adopts temporal controls while preserving
the desired attractors in the transition system under control. However, a tempo-
ral control does not necessarily need to preserve the desired attractor because the
control will eventually be released to retrieve the original transition system where
the desired attractor is in. In Chapter 6, we will develop a target control method
to identify a temporary control that may or may not preserve the desired attrac-
tor. With this lifted constraint, our method has the potential to identify smaller
control sets than the trap space-based method. The stable motifs-based control
method (SMC) [ZnA15] predicts a set of transient perturbations that can guide the
dynamics from any initial states to the desired target attractor. It takes into account
the functional information of the network (network dynamics) and has a substan-
tial improvement in computing the number of driver nodes. This method is very
promising, even though it does not guarantee to find the minimal set of driver
nodes. In Chapter 6, we will compare this stable motif-based method with our
methods for the target control of Boolean networks.

1.5 Contributions

The main contributions of this thesis are summarised as follows:

1. We propose a method towards the optimal decomposition of Boolean net-
works to balance the relation between the structure and dynamics of a net-
work [SPP19a]. The decomposition problem is transformed into the acyclic
partitioning of the directed acyclic graphs (DAGs), which is known to be
NP-hard. We plug the new decomposition method into the decomposition-
based method for attractor detection [MPQY19] and perform experiments on

10 Chapter 1. Introduction

a number of biological networks. The results show that the efficiency of at-
tractor detection can be significantly improved with our new decomposition
method.

2. We develop a decomposition-based method for the computation of the strong
basin of an attractor based on the computation of fixed points of set oper-
ations [PSPM18, PSPM19]. Compared to the global method that treats the
entire network in one-go, the decompose-based method, which employs the
“divide and conquer” strategy, has a great improvement in efficiency for net-
works that have modular structures, which often occurs in real-life biological
networks. The decomposition-based computation of the strong basin forms
the foundations for the control of Boolean networks.

3. We design several methods for the minimal one-step source-target control of
Boolean networks with instantaneous, temporary and permanent perturba-
tions [PSPM18, PSPM19, SPP19b]. Given a Boolean network, our methods
can identify the minimal subsets of nodes, whose instantaneous, temporary
or permanent perturbation can drive the dynamics of the network from the
source attractor to the target attractor. The minimality of the identified per-
turbations leads to lower experimental costs and also makes the experimental
validation easier to conduct. We apply these methods to a number of Boolean
networks that model real-life biological systems to show their efficacy and
efficiency.

4. We develop methods for the attractor-based sequential source-target control
with instantaneous, temporary and permanent perturbations [MSH+19, SP20c].
These methods compute all the sequential control paths from the source at-
tractor to the target attractor with at most k perturbations. Moreover, these
methods only adopt biologically observable attractors as intermediate states,
which makes them more practical than the general sequential control [MSP+19],
where any state (transient states or steady states) can play the role of inter-
mediate states. These methods provide new ways to reprogram Boolean net-
works and can potentially reduce the number of perturbations compared to
the one-step source-target control.

5. We develop methods to compute instantaneous, temporary and permanent
target control for a given target attractor of a Boolean network [SP20b]. These
methods explore the strong basin or the weak basin of the target attractor by
partitioning the basin into a set of schemata. Each schema leads to a candidate
control, which is further verified and reduced. We demonstrate that even for
target control, the control of only a small fraction of nodes is sufficient to
reprogram the dynamics of the networks.

6. We implement all the methods for the source-target control and the target
control of asynchronous Boolean networks in our software CABEAN [SP20a].
CABEAN also integrates the feature that allows users to encode practical con-
ditions on the perturbations and on the intermediate attractors (for attractor-
based sequential control) as preconditions for source-target control methods,

1.6. Layout 11

such that undesired perturbations or intermediate attractors will be avoided
during the computation.

In addition to the contributions listed above, I also contributed to the following
works, which are not included in this thesis.

1. We present ASSA-PBN, a software toolbox for modelling, simulation, and
analysis of probabilistic Boolean networks [MPSY18]. ASSA-PBN provides
efficient statistical methods with three parallel techniques to speed up the
computation of steady-state probabilities. ASSA-PBN also supports the in-
depth analysis of probabilistic Boolean networks, including the parameter es-
timation, the long-run influence and sensitivity analysis, and the computation
of one-parameter profile likelihoods.

2. We develop a general sequential control method, which establishes a set char-
acterisation of sequential reprogramming for Boolean networks [MSP+19].
This method has no restriction on the nature of the intermediate state, which
could be either a transient state, a single-state attractor, or a state in a cyclic
attractor. This method guarantees the inevitable reprogramming to the target
attractor. It has the ability to identify new targets and lower the experimental
costs with fewer interventions.

3. We design a method to predict a minimal set of nodes, whose instantaneous
perturbation can modulate the dynamics of the network from any state in the
source attractor to the target attractor [BPSP19]. We then extend this method
to solve the problems of target control and full control of large-scale Boolean
networks with instantaneous perturbations.

1.6 Layout

The thesis is structured as follows.

• In Chapter 2, we introduce preliminary notions of Boolean networks, includ-
ing the notions on the structure and dynamics of Boolean networks. A num-
ber of real-life biological networks, modelled as Boolean networks, are also in-
troduced. These networks are of different sizes and describe different real-life
biological processes, such as the myeloid differentiation process, the cardiac
development and the FHF/SHF determination. These networks will be used
throughout the thesis to evaluate the performance of the proposed methods.

• Chapter 3 introduces a multi-level method for the near-optimal decomposi-
tion of Boolean networks. The structure of a Boolean network is decomposed
into maximal SCCs to form an SCC graph, which is a directed acyclic graph.
Then the SCC graph is partitioned via three steps, viz. initial partitioning,
topological refinement and iteration, to reduce the number of partitions and
balance their weights. This method is integrated with the decomposition-
based method for attractor detection [MPQY19] to improve its efficiency.

12 Chapter 1. Introduction

• After addressing the problem of attractor detection, we shift our focus to the
scalable control of asynchronous Boolean networks. A critical foundation for
the control of Boolean networks lies in the computation of strong basin of
an attractor. To tackle the state-space explosion problem, in Chapter 4, we
develop a decomposition-based method to compute the strong basin of an
attractor.

• Chapter 5 studies the source-target control of Boolean networks. We first de-
scribe a method for the minimal one-step control with instantaneous pertur-
bations based on the decomposition-based computation of the strong basin.
Then we describe constraints for the validation of temporary and permanent
control. Based on the constraints and the computation of the strong basin,
we develop methods for the minimal one-step control with temporary and
permanent perturbations. Afterwards, we extend the three one-step control
methods to develop methods for attractor-based sequential control with in-
stantaneous, temporary and permanent perturbations.

• Chapter 6 examines the target control of Boolean networks with instanta-
neous, temporary and permanent perturbations. Instead of driving the net-
work from one initial state, the methods for target control aim to find solutions
that can drive the network from any initial state to the target attractor. In this
chapter, we define the concept of schemata which gives candidate solutions,
that can be minimised and verified based on the constraints for different kinds
of target control problems.

• Chapter 7 introduces our software, CABEAN, which integrates all the con-
trol methods proposed in this thesis. In this chapter, we present the general
features of CABEAN and illustrate its usage with an example. Detailed in-
structions on how to use CABEAN are referred to the website of the software:
https://satoss.uni.lu/software/CABEAN/.

• Finally, Chapter 8 consists of discussions, conclusions and future work. Dur-
ing the analysis of a number of biological networks, we spotted some limi-
tations of the inferred biological networks in the literature. These limitations
are summarised in Section 8.1. In the end, we draw some conclusions regard-
ing the overall thesis and discuss some thoughts and open issues that should
be considered in the future.

1.6. Layout 13

• Chapter 3 is based on the paper entitled “Towards optimal decom-
position of Boolean networks” [SPP19a], which was published in
IEEE/ACM Transactions on Computational Biology and Bioinformatics
(IEEE/ACM TCBB).

• Chapter 4 is written using the content of two publications: one
published in the proceedings of 9th ACM Conference on Bioin-
formatics, Computational Biology, and Health Informatics (ACM-
BCB 2018) [PSPM18] and the other published in IEEE/ACM
TCBB [PSPM19].

• Chapter 5 is written using the content of five publications [PSPM18,
PSPM19, SPP19b, MSH+19, SP20c]: one was published in the proceed-
ings of 9th ACM Conference on Bioinformatics, Computational Biol-
ogy, and Health Informatics (ACM-BCB 2018), one was published in
IEEE/ACM TCBB; one was published in the proceedings of 23rd Inter-
national Symposium on Formal Methods (FM 2019); one was published
in the proceedings of 17th International Conference on Computational
Methods in Systems Biology (CMSB 2019); and the last one was pub-
lished in the proceedings of 18th International Conference on Compu-
tational Methods in Systems Biology (CMSB 2020).

• Chapter 6 is based on the paper entitled “A dynamics-based approach
for the target control of Boolean networks” [SP20b], which was pub-
lished in the proceedings of 11th ACM Conference on Bioinformatics,
Computational Biology, and Health Informatics (ACM-BCB 2020).

• Chapter 7 is based on the paper entitled “CABEAN: a software for
the control of asynchronous Boolean networks” [SP20a], accepted by
Bioinformatics.

15

Chapter 2

Preliminaries

2.1 Boolean networks

In this section, we give preliminary notions of Boolean networks.

2.1.1 Boolean networks

A Boolean network (BN) describes elements of a dynamical system with binary-
valued nodes and interactions between elements with Boolean functions. It is for-
mally defined as:

Definition 1 (Boolean networks). A Boolean network is a tuple BN = (X, F) where
X = {x1, x2, . . . , xn}, such that xi 2 X is a Boolean variable and F = { f1, f2, . . . , fn} is a
set of Boolean functions over X.

The structure of a Boolean network BN = (X, F) can be viewed as a directed graph
G(V, E), called the dependency graph of BN, where V = {v1, v2 . . . , vn} is the set of
nodes. Node vi 2 V corresponds to variable xi 2 X. For every i, j 2 {1, 2, . . . , n},
there is a directed edge from vj to vi, denoted as e(vj, vi), if and only if fi depends on
xj. A strongly connected component (SCC) of a directed graph is a maximal strongly
connected subgraph. An SCC with no outgoing edges is called a bottom SCC (BSCC).

For the rest of the exposition, we assume an arbitrary but fixed network BN =
(X, F) of n variables is given to us. For all occurrences of xi and fi, we assume xi
and fi are elements of X and F, respectively. A state s of BN is an element in {0, 1}

n.
Let S be the set of states of BN. For any state s = (s[1], s[2], . . . , s[n]), and for every
i 2 {1, 2, . . . , n}, the value of s[i], represents the value that xi takes when the net-
work is in state s. For some i 2 {1, 2, . . . , n}, suppose fi depends on xi1 , xi2 , . . . , xik .
Then fi(s) will denote the value fi(s[i1], s[i2], . . . , s[ik]) and xi1 , xi2 , . . . , xik are called
parent nodes of xi, denoted as par(xi). For two states s, s0

2 S, the Hamming dis-
tance between s and s0 will be denoted as hd(s, s0) and arg(hd(s, s0)) ✓ {1, 2, . . . , n}

will denote the set of indices in which s and s0 differ. For two subsets S0, S00
✓

S, the Hamming distance between S0 and S00 is defined as the minimum of the
Hamming distances between all the states in S0 and all the states in S00. That is,
hd(S0, S00) = mins02S0,s002S00 hd(s0, s00). We let arg(hd(S0, S00)) denote the set of subsets
of {1, 2, . . . , n} such that I 2 arg(hd(S0, S00)) if and only if I is a set of indices of the
variables that realise this Hamming distance.

16 Chapter 2. Preliminaries

f1 = x2
f2 = x1
f3 = x2 ^ x3

(a)

v1 v2 v3

(b)

011

101

001 010

111 100

000

110

A1

A2A3

SB

(c)

Figure 2.1: (a) Boolean functions, (b) the dependency graph, and (c) the transition system
TS of Example 1. In (c), we omit selfloops for all the states except for state (101).

2.1.2 Dynamics of Boolean networks

We assume that a Boolean network BN = (X, F) evolves in discrete time steps. It
starts from an initial state s0 and its state changes in every time step based on the
Boolean functions F and the updating schemes. Different updating schemes lead to
different dynamics of the network [MPSY18, ZH14]. In this work, we are interested
in the asynchronous updating scheme as it allows biological processes to happen at
different classes of time scales and thus is more realistic. We define asynchronous
dynamics of Boolean networks as follows.

Definition 2 (Asynchronous dynamics of Boolean networks). Suppose s0 2 S is an
initial state of BN. The asynchronous evolution of BN is a function xBN : N ! }(S) such
that xBN(0) = {s0} and for every j � 0, if s 2 xBN(j) then s0

2 xBN(j + 1) is a possible
next state of s iff either hd(s, s0) = 1 and there exists i such that s0[i] = fi(s) = 1 � s[i],
or hd(s, s0) = 0 and there exists i such that s0[i] = fi(s) = s[i].

It is worth noting that the asynchronous dynamics is non-deterministic. At each
time step, only one node is randomly selected to update its value based on its
Boolean function. A different choice may lead to a different next state s0

2 x(j +
1). Henceforth, when we talk about the dynamics of a Boolean network, we shall
explicitly mean the asynchronous dynamics. We describe the dynamics of a Boolean
network as a transition system (TS), defined as follows.

Definition 3 (Transition system of Boolean networks). The transition system of a
Boolean network BN, denoted as TS, is a tuple (S, !BN), where the vertices are the set
of states S and for any two states s and s0 there is a directed edge from s to s0, denoted
s ! s0, iff s0 is a possible next state of s according to the asynchronous evolution function
x of BN.

Example 1. Consider a Boolean network BN = (X, F), where X = {x1, x2, x3}, F =
{ f1, f2, f3}, and f1 = x2, f2 = x1 and f3 = x2 ^ x3. The dependency graph of the network
BN and its associated transition system TS are given in Figure 2.1 (b) and (c). Because the
updating of the nodes is non-deterministic, a state can have more than one out-going edge
as shown in Figure 2.1 (c).

2.1. Boolean networks 17

000

(a)

000 001

(b)

000

010

001 101

011 111

(c)

Figure 2.2: Different types of attractors of an asynchronous Boolean network: (a) a singleton
attractor, (b) a simple loop, and (c) a complex loop. We omit selfloops for all the states.

2.1.3 Attractors and basins

A path r from a state s to a state s0 is a (possibly empty) sequence of transitions
from s to s0 in TS. Thus, r = s0 ! s1 ! . . . ! sk, where s0 = s and sk = s0. A path
from a state s to a subset S0 of S is a path from s to any state s0

2 S0. An infinite
path r from s is an infinite sequence of transitions from s. Let r = s0 ! s1 ! . . . be
an infinite path from s0. A state s 2 S appears infinitely often in r if for every i � 0
there exits j � i such that sj = s; s appears finitely often in r otherwise.

Definition 4 (Fairness). Let s0 2 S. An infinite path r = s0 ! s1 ! . . . is said to be
unfair if for every state s that occurs infinitely often in r, there exists a possible next state
s0 of s which occurs only finitely often in r. r is said to be fair otherwise.

Henceforth, we shall assume that the evolution of BN is always fair, and hence
consider only fair paths. We therefore, let P•(s) denote the set of all infinite fair
paths from a state s 2 S.

For any state s 2 S, let preTS(s) = {s0
2 S | s0

! s} and let postTS(s) = {s0
2

S | s ! s0
}, where s0

! s 2!BN and s ! s0
2!BN. preTS(s) consists of all

the states that can reach s by one transition in TS and postTS(s) consists of all the
states that can be reached from s by one transition in TS. preTS(s) and postTS(s)
are often called the set of predecessors and successors of s. Note that, by definition,
hd(s, preTS(s))  1 and hd(s, postTS(s))  1. Operations preTS and postTS can be lifted
to a subset S0 of S as: preTS(S0) =

S
s2S0 preTS(s) and postTS(S0) =

S
s2S0 postTS(s).

We define prei+1
TS (S0) = preTS(prei

TS(S0)) and posti+1
TS (S0) = postTS(posti

TS(S0)) where
pre0

TS(S0) = post0
TS(S0) = S0. For a state s 2 S, reachTS(s) denotes the set of states s0

such that there is a path from s to s0 in TS and can be defined as the fixed point of the
successor operation which is often denoted as post⇤TS. Thus, reachTS(s) = post⇤TS(s).

Definition 5 (Attractor). An attractor A of TS is a minimal non-empty subset of states of
S such that for every s 2 A, reachTS(s) = A.

Attractors are hypothesised to characterise steady-state behaviours of the network.
Any state, which is not in an attractor, is a transient state. An attractor A of TS is
said to be reachable from a state s if reach(s) \ A 6= ∆. The network starting from
any initial state s0 2 S will eventually end up in one of the attractors of TS and
remain there forever unless perturbed externally. Thus, it is easy to observe that

18 Chapter 2. Preliminaries

Observation 1. Any attractor of TS is a BSCC of TS.

Under the asynchronous updating scheme, there are singleton attractors and cyclic
attractors. A singleton attractor contains only one state and a cyclic attractor con-
tains more than one state. Cyclic attractors can be further classified into: (1) a
simple loop, in which all the states form a loop and every state appears only once
per traversal through the loop; and (2) a complex loop, which has intricate topology
and includes several loops. Figure 2.2 (a), (b) and (c) show a singleton attractor, a
simple loop and a complex loop, respectively.

Let S0 be a subset of states of S. We define the weak basin and strong basin of S0,
denoted basW

TS(S0) and basS
TS(S0), as follows.

Definition 6 (Basin). Let S0
✓ S.

• Weak basin: The weak basin of S0 with respect to TS is defined as basW
TS(S0) = {s 2

S | reachTS(s) \ S0
6= ∆}, which equals the fixed point of the predecessor operation on

S0 and is often denoted as pre⇤

TS(S0). Thus, basW
TS(S0) = pre⇤

TS(S0). In other words,

basW
TS(S0) = {s 2 S | 9r = s0 ! s1 ! . . . 2 P•(s), 9j � 0, sj 2 S0

}

• Strong basin: Since all paths in P•(s) are fair, the strong basin of S0 with respect
to TS is defined as

basS
TS(S0) = {s 2 S | 8r = s0 ! s1 ! . . . 2 P•(s), 9j � 0, sj 2 S0

}

We say that a path r = s0 ! s1 ! . . . eventually reaches S0 if there exists a j � 0
such that sj 2 S0. Intuitively, the weak basin of S0 consists of all states from which
there is at least one path to S0, whereas the strong basin of S0 consists of all states
from which all paths eventually reach S0. Clearly thus, basS

TS(S0) ✓ basW
TS(S0).

If S0 is an attractor A (say), basW
TS(A) and basS

TS(A) will also be referred to as the weak
basin and strong basin of attraction with respect to A, which imply the commitment
of states to A. Thus, the weak basin of A includes the states s from which there
exists a path to A. It is possible that there also exist paths from s to some other
attractor A0

6= A of TS. However, the notion of the strong basin of an attractor does
not allow this. Any path from a state s in the strong basin of A will eventually
reach A and cannot reach any other distinct attractor A0

6= A of TS. Thus, it is easy
to observe that,

Observation 2. If s 2 basS
TS(A) then s /2 basW

TS(A0) for any other distinct attractor A0

of TS. Therefore, basS
TS(A) = basW

TS(A) \ (
S

A0 basW
TS(A0)), where the union is over all

attractors A0
6= A of TS.

It is worth noting that when S0 is an attractor A, if r eventually reaches A, the
network will get stuck in A for all the following time steps. That is, for every i � 0,
si 2 A implies sj 2 A for all j > i. This follows directly from Definition 5.

Example 2. The network given in Example 1 has three attractors A1 = {000}, A2 =
{110} and A3 = {111}, indicated as grey nodes in Figure 2.1(c). Taking attractor A1 as

2.2. Decomposition of Boolean networks 19

an example, its strong basin, basS
TS(A1) = {000, 001}, is shown as the highlighted region;

its weak basin, basW
TS(A1) = {000, 001, 101, 011, 100, 010}, consists of six states.

2.2 Decomposition of Boolean networks

In this section, we introduce several notions on the decomposition of Boolean net-
works.

2.2.1 SCC decomposition

The dependency graph of a Boolean network G(V, E) can be decomposed into a
set of maximal SCCs, denoted as H = {H1, H2, . . . , Hm}, where m is the number
of maximal SCCs. We assume that a single node (with or without a self-loop) is
always an SCC, although it may not be maximal. The set of maximal SCCs, H, is
disjoint and the union of H equals the whole set of nodes V, namely H \ H0 = ∆
for any H 6= H0 in H, and

S
H = V.

The set of SCCs can form a weighted directed graph G(H, E), which we call the SCC
graph of a given Boolean network G(V, E). Every vertex H 2 H of G corresponds to
a maximal SCC in the Boolean network. For any pair of SCCs H, H0

2 H, H 6= H0,
there is a directed edge from H to H0 if and only if there exists a directed edge
from a node in SCC H to a node in SCC H0 in the dependency graph G(V, E) of
BN, denoted {e(v, v0) 2 E|v 2 H, v0

2 H0
}. Then, we say SCC H is a parent SCC of

H0 and we let par(H0) denote the set of parent SCCs of H0. The control nodes of H0

is defined as ctr(H0) = (
S

v2H0 par(v)) \ H0.

We assign vertex weight d and edge weight h, to the SCC graph G(H, E) as follows.
The vertex weight d of a vertex H 2 H is a function d : H ! N, such that for
every vertex H 2 H, d(H) = |H|, representing the number of nodes contained in
the SCC. The edge weight h of e 2 E is a function h : E ! 2V such that for every
edge e(H, H0) 2 E , h(e) is given as h(e) = ctr(H0) \ H. That is, the weight of an
edge e(H, H0) corresponds to the set of control nodes of SCC H0 from SCC H.

2.2.2 Blocks

Let H be an SCC of BN and ctr(H) be the control nodes of H.

Definition 7 (Basic Block). A basic block B is a subset of the nodes of V such that B =
H [ctr(H) for some H 2 H.

Let B be the set of basic blocks of BN. Since every node of BN belongs to an SCC,
we have

S
B = V. The union of two or more basic blocks of B is also called a block.

For any block B 2 B, let |B| denote the number of nodes contained in B.

The set of basic blocks B can form a directed graph GB = (B, EB), called the block
graph of BN. In the block graph, the basic blocks are vertices and for any pair of
basic blocks B0, B 2 B, B0

6= B, there is a directed edge from B0 to B if and only

20 Chapter 2. Preliminaries

if B0
\ B 6= ∆ and for every v 2 (B0

\ B), par(v) \ B = ∆. In such case, block B0

is called a parent block of block B and the node v is called a control node of B. Let
par(B) and ctr(B) denote the set of parent blocks and the set of control nodes of B,
respectively.

A block B (basic or non-basic) is called elementary if ctr(B) ✓ B. B is called non-
elementary otherwise. Each block has a topological credit, defined as follows.

Definition 8 (Topological Credit). Given a BN, an elementary block Bi has a credit of 0,
denoted as j(Bi) = 0. Let Bj be a non-elementary block and let par(B) = {Bj1, Bj2, . . . , Bjk}

be the set of parent blocks of Bj. The credit of Bj is j(Bj) = maxBz2par(B)(j(Bz)) + 1.

Let us assume that BN has m basic blocks and these blocks are topologically sorted
based on the topological credits as {B1, B2, . . . , Bm}. Note that for every j, 1  j  m,
(
Sj

`=1 B`) is an elementary block, denoted Bj. For two basic blocks B and B0, where
B is non-elementary, B0 is said to be an ancestor of B if there is a path from B0 to B
in the block graph GB . The ancestor-closure of a basic block B (elementary or non-
elementary), denoted ac(B) is defined as the union of B with all its ancestors. Note
that ac(B) is an elementary block and so is {ac(B0) | B0

2 par(B)}, which we denote
as ac(B)�.

2.2.3 Projection of states and the cross operation

We assume the nodes {v1, v2, . . . , vn} of the dependency graph G inherit the order-
ing of the variables X of BN. Let B be a block of BN. Since B is a subset of V, its
state space is {0, 1}

|B| and is denoted as SB.

Next, we define the projection of a state s 2 S to a subset B of {1, 2, . . . , n}, which
represents the indices of a subset of nodes X0

✓ X as follows.

Definition 9 (Projection). For any state s 2 S, where s = (s[1], s[2], . . . , s[n]), the
projection of s to B, denoted s|B, is the tuple obtained from s by suppressing the values of
the variables not in B. Thus, if B = {vi1 , vi2 , . . . , vik} then s|B = (s[i1], s[i2], . . . , s[ik]).
Clearly s|B 2 SB. For a subset S0 of S, S0

|B is defined as {s|B | s 2 S0
}.

Definition 10 (Cross Operation). Let B1 and B2 be two blocks of BN and let s1 and s2 be
states of B1 and B2, respectively. s1 ⌦ s2 is defined (called crossable) if there exists a state
s 2 SB1[B2 such that s|B1 = s1 and s|B2 = s2. s1 ⌦ s2 is then defined to be this unique state
s. For any subsets S1 and S2 of SB1 and SB2 , respectively, S1 ⌦ S2 is a subset of SB1[B2 and
is defined as:

S1 ⌦ S2 = {s1 ⌦ s2 | s1 2 S1, s2 2 S2 and s1 and s2 are crossable}

Note that S1 ⌦ S2 can be the empty set. The cross operation is easily seen to be as-
sociative. Hence for more than two states s1, s2, . . . , sk, s1 ⌦ s2 ⌦ . . . sk can be defined
as (((s1 ⌦ s2) ⌦ . . .) ⌦ sk). We have a similar definition for the cross operation on
more than two sets of states.

2.2. Decomposition of Boolean networks 21

2.2.4 Transition system of the blocks

We define the ‘local’ transition system of a block inductively, starting from the ele-
mentary blocks and moving to the non-elementary blocks further down the topo-
logical order. The transition system TSB of an elementary block B, being either
basic or non-basic, is defined exactly as the transition system of a Boolean network
(see Definition 3) with the nodes being SB. This is well-defined since by the def-
inition of an elementary block, the Boolean functions of the nodes of block B do
not depend on the values of the nodes outside B. Whereas, the transition system of
a non-elementary block B is defined based on the transition systems of its parent
blocks because the transition system of B depends on the transition systems of its
parent blocks (or its control nodes in its parent blocks).

Let B be a non-elementary basic block of a BN. Let A be an attractor of the transition
system of the elementary block ac(B)� and let basS

TSac(B)�
(A) be its (strong) basin of

attraction in TSac(B)� . Then, the transition system of a non-elementary block is
defined as follows.

Definition 11 (TS of non-elementary blocks). The transition system of B generated by
basS

TSac(B)�
(A) is defined as a tuple TSB = (S, !) where the set of states S of TSB is a

subset of Sac(B) such that s 2 S if and only if s|ac(B)� 2 basS
TSac(B)�

(A) and for any two
states s, s0

2 Sac(B) there is a transition s ! s0 if and only if either hd(s, s0) = 1 and
s0[i] = fi(s) = 1 � s[i] where i = arg(hd(s, s0)) or hd(s, s0) = 0 and there exists an i such
that s0[i] = fi(s) = s[i].

Note that the construction of the transition system of the non-elementary blocks
is different from that introduced in [MPQY19]. There, given a non-elementary
block B, the set of states of its ‘local’ transition system TSB is a subset of the state
space SB and the transition relations for the control nodes of B were derived by
projecting the transitions in the attractor of the parent block of B to these control
nodes. In other words, in [MPQY19], the transition system of a non-elementary
block B is constructed based on the behaviour of the attractor of the parent blocks
of B, whereas here we need the full behaviour of the basin of the attractor of the
ancestors of B to generate the transition system of B.

Example 3. Consider a Boolean network BN = (X, F), where X = {x1, x2, x3, x4, x5},
F = { f1, f2, f3, f4, f5}, and f1 = x2, f2 = x1, f3 = x2 ^ x3, f4 = (¬x1) _ x4 _ x5, f5 =
x1 _ x4. The Boolean functions and the dependency graph of the network are given in
Figure 2.3 (a) and (b). This network has three maximal SCCs {v1, v2}, {v3} and {v4, v5},
which give rise to three blocks: B1 = {v1, v2}, B2 = {v2, v3}, and B3 = {v1, v4, v5}. Block
B1 is an elementary block. Its ‘local’ transition system TSB1 is given in Figure 2.3 (c). In
TSB1 , there are two single-state attractors {00} and {11}. The strong basin of attractor
{00} in TSB1 is shown as the highlighted region. Block B3 is a non-elementary block with
block B1 as its parent block and node v1 2 B1 as the corresponding control node. The
transition system of B3 based on the strong basin of attractor {00} in TSB1 is given in
Figure 2.3 (d). Although block B3 consists of three nodes, the state space SB3 of TSB3 is a
subset of ac(B3). Hence, a state in SB3 is made up of the values of x1, x2, x4 and x5.

22 Chapter 2. Preliminaries

f1 = x2
f2 = x1
f3 = x2 ^ x3
f4 = (¬x1) _ x4 _ x5
f5 = x1 _ x4

(a)

v1 v2 v3

v4 v5

SCC1 SCC2

SCC3

(b)

01

10

00

11

(c)

0001

0010

0011

0000

(d)

Figure 2.3: (a) Boolean functions, (b) the decomposition of the dependency graph, (c) the
transition system of block B1 and (d) the transition system of block B3 based on the strong
basin of attractor {00} of TSB1 .

2.3 Acyclic partitioning of directed acyclic graphs

Let G(V, E) be a directed graph and let n = |V| and m = |E| represent the num-
ber of vertices and edges contained in G, respectively. A directed graph is called
a directed acyclic graph (DAG) if it does not contain any directed cycles. Every
DAG has a topological ordering, i.e. an ordering of the vertices V that for ev-
ery edge e(u, v), u, v 2 V, vertex u comes before vertex v in the ordering. Similar
to Definition 8, a vertex u with no parent has a topological credit of 0, denoted
as j(u) = 0. A vertex v with a set of parents par(v) has a topological credit of
j(v) = maxv02par(v)(j(v0)) + 1.

A DAG is said to be weighted if it has associated vertex weight and edge weight. The
vertex and edge weights of G are defined as functions d : V ! N and h : E ! N.
It is easy to observe that

Observation 3. The SCC graph GH and the block graph GB are DAGs.

In the SCC graph GH and the block graph GB , the directed edges are all from the
parent SCCs (blocks) to the child SCCs (blocks), and there are no directed cycles.

A k-way partitioning of a weighted DAG G(V, E) divides the vertices V into k disjoint
subsets {V1, V2, . . . , Vk}. For any partition Vi, i 2 [1, k], its weight equals Âv2Vi

d(v).
A cut set is a set of edges whose endpoints are in different partitions, i.e. {e(u, v) 2

E | u 2 Vi, v 2 Vj}, where Vi, Vj ✓ V and Vi 6= Vj. The weight of a cut set G is the sum
of the weights of the edges in the set, Âe2G h(e). The formal definition of a cut set
is given below.

Definition 12 (Cut set). A cut set of a weighted DAG G(V, E) is a set of edges with the
following properties:

• the removal of all edges in the set disconnects G;

2.4. Real-life biological networks 23

• the removal of some (but not all) of the edges in the set does not disconnect G.

The partitioning of a weighted DAG that maintains the acyclic property between
different partitions, is called acyclic partitioning. In general, the maximal weight of
a partition is limited by an upper bound Lmax. Here, we give the formal definition
of the acyclic partitioning problem of a weighted DAG.

Definition 13 (Acyclic partitioning of a weighted DAG). Given a weighted DAG
G(V, E) and an upper bound Lmax, find a partitioning P = {V1, V2, . . . , Vk}, where
V1 [. . . [Vk = V and Vi \ Vj = ∆ (i 6= j), such that the maximal weight of each
partition is not greater than Lmax and the weight of the cut set is minimised. Moreover, the
relation between V1, V2, . . . , Vk is acyclic.

2.4 Real-life biological networks

In this section, we introduce several real-life biological networks that model dif-
ferent biological systems/processes. In Chapters 3, 4, 5 and 6, we use these net-
works to evaluate the performance of our methods for the new decomposition,
the computation of the strong basin, source-target control and target control of
Boolean networks. Moreover, we give an in-depth analysis of some of the networks
to demonstrate the consistency of the identified predictions with wet-lab observa-
tions. During the analysis of these networks, we gained a better understanding of
the properties of biological networks and observed flaws of the constructed net-
works. In Section 8.1, we will discuss these flaws. Moreover, we will propose some
suggestions for the refinement of the networks.

Now we introduce the biological systems/processes described by the networks and
give an overview of the number of nodes, the number of edges and the number
of singleton and cyclic attractors contained in each network in Table 2.1. We refer
details on the networks, such as the Boolean functions, to their original works.

• The cell cycle network of the fission yeast is constructed based on known
biochemical interactions to recap regulations of the cell cycle of the fission
yeast [DB08]. This is a small network with 10 nodes. It has 12 singleton
attractors and 1 cyclic attractor.

• The myeloid differentiation network is designed to model myeloid differen-
tiation from common myeloid progenitors to megakaryocytes, erythrocytes,
granulocytes and monocytes [KMST11]. This network has 11 nodes and 6 at-
tractors, 4 of which agree with microarray expression profiles of two different
studies.

• The cardiac gene regulatory network integrates major genes that play essential
roles in early cardiac development and FHF/SHF determination [HGZ+12]. It
has 15 nodes and 3 attractors under the initial condition defined in [HGZ+12].

• The ERBB receptor-regulated G1/S transition protein network combines ERBB
signalling with G1/S transition of the mammalian cell cycle to identify new

24 Chapter 2. Preliminaries

Network # # # singleton # cyclic
nodes edges attractors attractors

yeast 10 28 12 1
myeloid 11 30 6 0
cardiac 15 39 3 0
ERBB 20 52 3 0
HSPC-MSC 26 81 2 2
tumour 32 158 9 0
hematopoiesis 33 88 5 0
PC12 33 62 7 0
bladder 35 116 3 1
psc-bFA 36 237 4 0
co-infection 52 136 30 0
MAPK 53 105 12 0
CREB 64 159 8 0
HGF 66 103 10 0
bortezomib 67 135 5 0
T-diff 68 175 12 0
HIV1 136 327 8 0
CD4+ 188 380 6 0
pathway 321 381 3 1

Table 2.1: An overview of the biological networks.

targets for breast cancer treatment [SFL+09]. It consists of 20 nodes and 3
singleton attractors.

• The HSPC-MSC network of 26 nodes describes intercommunication pathways
between hematopoietic stem and progenitor cells (HSPCs) and mesenchymal
stromal cells (MSCs) in bone marrow (BM) [EMMP16]. It has 2 singleton
attractors and 2 cyclic attractors.

• The tumour network is built to study the role of individual mutations or their
combinations in the metastatic process [CMR+15]. This network contains 32
nodes and 9 attractors, which are consistent with [CMR+15].

• The network of hematopoietic cell specification covers major transcription fac-
tors and signalling pathways for the development of lymphoid and myeloid
[CvOO+17]. This network is made up of 33 nodes and contains 5 steady
states.

• The PC12 cell differentiation network [OKS+16] is a comprehensive model for
the clarification of the cellular decisions towards proliferation or differentia-
tion. It models the temporal sequence of protein signalling, transcriptional
responses as well as the subsequent autocrine feedbacks [OKS+16]. It has 33
nodes and 7 singleton attractors.

• The bladder cancer network of 35 nodes allows one to identify the dereg-
ulated pathways and their influence on bladder tumourigenesis [RRC+15].

2.4. Real-life biological networks 25

This network consists of 4 attractors, corresponding to growth arrest and cell
proliferation.

• The model of mouse embryonic stem cells can capture the signal-dependent
emergence of cell subpopulations under different initial conditions [YKOO+18].
It has 36 nodes and 4 singleton attractors under the bFGF+Activin (bF+A)
condition.

• The model of immune responses is constructed to study the immune re-
sponses against single and co-infections with the respiratory bacterium and
the gastrointestinal helminth [TPM+12]. This network consists of 52 nodes,
one of which is an input node. We detect 30 singleton attractors, when there
are no restrictions on the initial values of the input nodes.

• The MAPK network is constructed to study the MAPK responses to different
stimuli and their contributions to cell fates [GCBP+13]. In this paper, we use
the MPAK mutant r4, which has 53 nodes and 12 attractors.

• The CREB network is a complex neuronal network, whose output node is
the transcription factor adenosine 3’, 5’-monophosphate (cAMP) response el-
ement–binding protein (CREB) [ATE08]. It is composed of 64 nodes and 8
singleton attractors.

• The model for HGF-induced keratinocyte migration captures the onset and
maintenance of hepatocyte growth factor-induced migration of primary hu-
man keratinocytes [SNK+12]. It has 66 nodes and 10 attractors.

• The model of bortezomib responses can predict responses to the lower borte-
zomib exposure and the dose-response curve for bortezomib [COAM15]. It
has 67 nodes and 5 singleton attractors.

• The Th-cell differentiation network models regulatory elements and signalling
pathways controlling Th-cell differentiation [NCCT10]. It consists of 68 nodes
and 12 attractors.

• The HIV-1 network models dynamic interactions between human immunod-
eficiency virus type 1 (HIV-1) proteins and human signal-transduction path-
ways that are essential for activation of CD4+ T lymphocytes [ODRS14]. This
network contains 136 nodes and 8 attractors.

• The CD4+ T-cell network allows us to study downstream effects of CAV1+/+,
CAV1+/� and CAV1�/� on cell signalling and intracellular networks [CHS+14].
This network is comprised of 188 nodes and 6 attractors under certain initial
conditions.

• The model of signalling pathways central to macrophage activation integrates
four crucial signalling pathways that are triggered early-on in the innate im-
mune response [RRL+08]. It consists of 321 networks and has 4 attractors
under certain initial condition.

27

Chapter 3

Near-optimal Decomposition of

Boolean Networks

3.1 Introduction

Efficient detection of attractors is one of the major challenges in the analysis of
large-scale biological networks. This problem is non-trivial because attractors of a
Boolean network are determined based on the states in the transition system, the
number of which is exponential in the size of the network. In asynchronous Boolean
networks, this problem gets even worse as the non-determinism property results in
a more complex transition system compared to synchronous Boolean networks.

It has been known for a while that to detect the attractors of a Boolean network
efficiently, an algorithm should exploit both the structure and the dynamics of
the network [GR16]. In this spirit, Mizera et al. [MPQY19] developed an SCC
decomposition-based attractor detection method for asynchronous Boolean net-
works. The main idea of this method is to decompose the dependency graph of
a given Boolean network into a set of maximal SCCs and construct an SCC graph,
which is a weighted DAG. In the SCC graph, every vertex corresponds to an SCC.
There is a directed edge between two vertices if and only if one of the SCC depends
on the nodes of the other SCC. After the SCC decomposition, blocks formed by
SCCs and their control nodes, are sorted based on the topological ordering. Then,
attractor detection is performed in every block, whose ‘local’ transition system is
constructed based on the behaviour of the control nodes in the attractors of parent
blocks. In the end, all the ‘local’ attractors are combined block-wise to derive the
attractors of the entire network. The vital principle that guarantees the correctness
of this method is that the decomposed components of the network should form a
DAG [MPQY19]. It is worth noting that the efficiency of this method is hindered
when a Boolean network has a large number of SCCs, which commonly arises
in biological networks. This motivates the need for the optimal decomposition of
Boolean networks, which balances the structure and the dynamics of the blocks and
can potentially boost the efficiency of the decomposition-based attractor detection.

In this chapter, we address the optimal decomposition of Boolean networks by
the acyclic partitioning of SCC graphs, resulting from the SCC decomposition of
Boolean networks. In this way, we can balance the sizes of different components,

28 Chapter 3. Near-optimal Decomposition of Boolean Networks

while maintaining the acyclic property between the components. There are a few
requirements when searching for the optimal partitioning of the SCC graphs. The
first is that the weight of each partition should not exceed an upper bound. This
upper bound is the core in balancing the relationship between the structural and
the dynamical properties of Boolean networks and therefore should be determined
cautiously. If the upper bound is too large, the partitioned graph might have par-
titions that are almost equal to the entire graph. It can be costly to analyse the
dynamics of such partitions in terms of computational time and memory. On the
other hand, if the upper bound is too small, there will be a large number of parti-
tions. In such case, even though the state space of each partition is small, it might
still be very time-consuming to traverse all the partitions. It is worth noting that
biological networks usually have large SCCs that cover a large portion of the nodes,
thus, we allow the upper bound to be smaller than the weights of SCCs and let the
SCC, whose weight overruns the upper bound, constitute a single partition. The
second requirement is that the number of control nodes of each partition needs to
be minimised. This is mainly due to the fact that the attractor detection is con-
ducted in blocks, which are formed by partitions together with their control nodes.
By minimising the number of control nodes, the sizes of blocks will be reduced as
well, leading to smaller ‘local’ transition systems. Last but not least, the number
of partitions should be minimised. Fewer partitions lead to fewer blocks. As a
consequence, we analyse fewer local transition systems of reasonable size.

The problem of acyclic partitioning of SCC graphs is similar to that of acyclic parti-
tioning of DAGs. It partitions a weighted DAG into disjoint subsets and minimises
the weight of the cut set and the number of partitions. Acyclic partitioning of
DAGs is known to be NP-hard [GJ79]. Hence, efficient algorithms for general cases
are highly unlikely. Extensive works have been done in the literature to address
the acyclic partitioning of special classes of graphs and to find efficient but non-
optimal solutions [Ker71, CLB94, FER+13, MPS17]. The most relevant work is a
multi-level graph partitioning method [HKU+17]. This method consists of three
phases: coarsening, initial partitioning and refinement. It has been demonstrated
that this method can compute partitions of higher quality than similar tools and
algorithms in the literature [HKU+17]. However, this method is not applicable to
the acyclic partitioning of SCC graphs of Boolean networks. In an SCC graph, the
weight of an edge is represented as a set of nodes rather than an integer, such that
the weight of a cut set is the union of the weights of the edges in the set without
duplicate elements. Furthermore, different from the work in [HKU+17], where the
number of partitions is given as a predefined value, we aim to compute a minimal
number of partitions, the size of which is within a threshold determined by the
Boolean network at hand.

In this chapter, we introduce our method towards the optimal decomposition of
Boolean networks. The rest of this chapter is organised as follows:

• In Section 3.2, we give the formal definition of acyclic partitioning of an SCC
graph.

3.2. Problem definition 29

• In Section 3.3, we introduce our multi-level partitioning of SCC graphs, which
includes three steps: initial partitioning, topological refinement and iteration.

• In Section 3.4, we combine the new decomposition method with the SCC
decomposition-based attractor detection.

• In Section 3.5, we compare the efficiency of the attractor detection integrated
with the new decomposition and the SCC decomposition on several biological
networks introduced in Section 2.4.

3.2 Problem definition

As discussed in Section 2.2.1, the SCC decomposition of a Boolean network results
in a set of maximal SCCs, which form a weighted DAG G(H, E) called the SCC
graph. In the SCC graph, every vertex corresponds to an SCC. The weight of a
vertex H 2 H is an integer representing the number of nodes contained in the SCC.
The weight of an edge e(H, H0) 2 E represents the set of control nodes of the child
SCC H0 from its parent SCC H.

The acyclic partitioning of an SCC graph is an instance of the acyclic partitioning
of a weighted DAG (Definition 13). Given a Boolean network G(V, E), the SCC
decomposition results in an SCC graph G(H, E). The acyclic partitioning of G(H, E)
divides the vertices H into a set of disjoint subsets {V1, V2, . . . , Vk}. These subsets
form a directed graph G(P, EP), where P = {V1, V2, . . . , Vk} is the set of nodes and
EP is the set of edges. For every {1, 2, . . . , k}, there is a directed edge from Vi to Vj if
and only if there is a directed edge from H 2 Vi to H0

2 Vj in G(H, E). The weight
of a vertex Vi 2 P equals the number of nodes contained in Vi, denoted d(Vi). The
weight of an edge e from Vi to Vj, denoted h(e), is a set {u | e(u, v) 2 E, u 2 Vi, v 2

Vj}, where E is the set of edges in G(V, E).

Similar to other DAG partitioning problems, the partitioning of an SCC graph sets
an upper bound Lmax on the partition weight. The upper bound is the key to bal-
ancing the structure and dynamics of the partitions. However, biological networks
often contain large SCCs that cannot be split any further [AB02]. Thus, we allow
the upper bound Lmax to be smaller than the vertex weight. In this way, each SCC,
whose weight is equal or greater than the upper bound, forms a single partition
and the remaining SCCs, whose weights are smaller than the upper bound, are
split into a minimal set of partitions without exceeding the upper bound of the
partition weight. This is motivated by the fact that after the decomposition of the
Boolean network, we perform analysis on the local transition systems of the blocks,
which can be very time-consuming if there exist too many blocks. Besides that, the
size of the cut set weight, i.e. the number of control nodes, should be minimised.
Since a block is formed by a partition and its control nodes, fewer control nodes
lead to smaller blocks with smaller ‘local’ transition systems. The above constraints
naturally lead to the formal definition of the acyclic partitioning of an SCC graph.

Definition 14 (Acyclic partitioning of an SCC graph). Given an upper bound Lmax and
an SCC graph G(H, E), which is a weighted DAG with vertex weights d and edge weights

30 Chapter 3. Near-optimal Decomposition of Boolean Networks

h, find a partitioning P = {V1, V2, . . . , Vk}, where V1 [. . . [Vk = H and Vi \ Vj =
∆(i 6= j), satisfying the following constraints.

1. The SCC Hi 2 H, whose vertex weight d(Hi) � Lmax, forms a partition. The other
SCCs are divided into partitions, such that the weight of each partition is equal or
smaller than Lmax.

2. The weight of the cut set h(G) is minimised.

3. The number of partitions k is minimised.

4. The directed graph formed by P = {V1, V2, . . . , Vk} is still a DAG.

The acyclic partitioning of an SCC graph differs from the acyclic partitioning of a
DAG mainly in two aspects.

1. The weight of a cut set G is different. In the SCC graph partitioning, the
weight of an edge is a set of nodes. There may exist duplicate nodes in the
weights of different edges. The weight of a cut set G is the union of the weights
of edges in G. In the DAG partitioning, the weight of an edge is an integer,
hence, the weight of a cut set G is the sum of the weights of the edges in G, i.e.
h(G) = Âe2G h(e).

2. The number of partitions k is not predefined in the SCC graph partitioning.
With the constraint on the partition weight, we want to get as few partitions
as possible.

In this chapter, we propose a new decomposition method consisting of two steps:
the SCC decomposition of a given network and the acyclic partitioning of the result-
ing SCC graph. The problem of SCC decomposition has been solved in [MPQY19].
Thus, the course of this chapter is to develop a method for the acyclic partitioning
of an SCC graph.

Example 4. The PC12 cell differentiation network consists of 33 nodes and 7 singleton
attractors [OKS+16]. We refer to the original work [OKS+16] for the structure of the net-
work derived from the Boolean functions. The SCC decomposition decomposes the structure
of the network into 19 maximal SCCs. These SCCs form an SCC graph given in Figure 3.1,
where each vertex represents an SCC. 16 out of the 19 SCCs are single-node SCCs, thus,
their vertex weights equal 1. The rest of the SCCs, including SCCs 3, 15 and 16, contain 3,
2 and 12 nodes, respectively. Thus, the weights of vertices 3, 15 and 16 in the SCC graph
are 3, 2 and 12, respectively. According to the definition of the edge weight of an SCC
graph (see Section 2.2.1), the weight of an edge from H to H0 equals the set of control nodes,
ctr(H0) \ H . We can see that in order to analyse this 33-node network, we need to loop
through 19 blocks, which hampers the efficiency of the SCC decomposition-based methods.

3.3 Acyclic partitioning of SCC graphs

We propose a method for the acyclic SCC graph partitioning based on the method
in [HKU+17]. Our method contains three phases: initial partitioning, topological

3.3. Acyclic partitioning of SCC graphs 31

18

17

16
6

7 8 9 10 11 12

13

1415

3 4 5 2

1

0

Figure 3.1: The SCC graph of the PC12 cell network. Each vertex represents an SCC.

refinement and iteration. The initial partitioning performs a preliminary partition-
ing of the vertices based on the topological ordering. In the topological refinement
phase, we refine the preliminary solution by adjusting the boundary vertices as well
as the partitions at the same topological level. Furthermore, we iterate the initial
partitioning and the topological refinement until there is no more improvement in
the partitioning results.

3.3.1 Initial partitioning

We adapt the greedy algorithm in [HKU+17] to perform the initial partitioning of an
SCC graph. In this phase, we compute an initial solution based on the topological
ordering of SCCs.

The inputs of our algorithm include an SCC graph G(H, E) and an upper bound
of the partition weight Lmax. The upper bound Lmax is an important parameter
of the algorithm. The SCC graph is a weighted DAG, constructed from the SCC
decomposition of a given Boolean network (see Section 2.2.1). The vertices H are
sorted according to their topological credits, denoted j(u), u 2 H. Each vertex u in
H is assigned with two properties: part and free, representing the partition that u
belongs to and the mobility of u, respectively. The mobility of a vertex u reflects if
u is movable or not. We consider a vertex is movable if it has no predecessors or the
mobility free of its direct predecessors are false as in [HKU+17].

The gain of moving a vertex u to a partition j is computed based on the status of all
its predecessors and successors after the move, as described in [HKU+17]. Among
a number of movable vertices, the best vertex to be moved is the one with the
lowest topological credit and the highest gain. It is worth noting that, to maintain
the acyclic dependency of the graph, a vertex u should not be moved to a partition
j, j 2 [1, k], if j(u) � maxv2Vj(j(v)) > 1 or minv2Vj(j(v)) � j(u) > 1.

32 Chapter 3. Near-optimal Decomposition of Boolean Networks

To perform the initial partitioning, we first initialise the number of partitions k = 0
and set all the vertices to movable. Then, we repeat the following steps as long as
there exist movable vertices.

1. Save movable vertices to a set set.

2. For every vertex u 2 set, compute the gain of assigning u to partition k and
insert a tuple (u, j(u), gain) to a queue queue.

3. Sort the tuples in queue with respect to the topological credits in ascending
order first and then again, in each credit level, according to gain in descending
order. Note that when we sort queue based on gain, the sorted topological
ordering is preserved since the sorting is done separately for each credit level.

4. If the total weight of partition k is less than the upper bound Lmax, we tra-
verse the tuples in queue based on the sorted order and perform the following
actions.

(a) Release the first item (u, j(u), gain) in queue.

(b) If partition k is empty, we assign vertex u to partition k and set the maxi-
mum and the minimum topological credits of partition k as j(u). Other-
wise, vertex u can be assigned to partition k if (1) the weight of partition
k will not overrun the upper bound Lmax after the assignment; and (2)
j(u) � maxv2Vk(j(v))  1 and minv2Vk(j(v)) � j(u)  1.

(c) If vertex u is assigned to partition k, we set f ree(u) as false and check if its
direct successors are movable or not. If a direct successor of u, denoted
v, is movable, we compute the gain of assigning v to partition k, insert
(v, j(v), gain) to queue and sort queue as Step 3.

5. If queue is empty, we are done. Otherwise, we increase k by one and go to
step 1.

After the initial partitioning, the value of k is the number of partitions we computed
so far. The results might be improved in the phases of topological refinement and
iteration.

Remark. The differences of our initial partitioning with the one in [HKU+17]
mainly lie in three aspects.

1. The computation of the gain to assign a vertex u to a partition j is different. In
the SCC graph, we extend an edge weight from an integer to a set of nodes.
The cut set weight is the union of the weights of the edges in the set without
duplicate elements. We consider the initial size of the cut set weight as the
number of all the control nodes in the Boolean network. The gain indicates
the decrease in the size of the cut set weight. Since the weights of two edges
may have duplicate nodes, to compute the cut set weight, a simple sum of
the edge weights as [HKU+17] is not applicable. Let M denote the set of
predecessors of u that belongs to partition j, and Q denote the set of successors
of u. The gain of assigning the vertex u to a partition j is |

S
v2M h(e(v, u))| �

3.3. Acyclic partitioning of SCC graphs 33

|
S

p2Q h(e(u, p))|. A larger gain indicates a larger decrease in the size of the
cut set weight.

2. We take both the topological credit and the gain into account to decide the
assignment. The vertices are traversed according to the ascending order of
their topological credits. When a vertex is assigned to some partition, the
mobility of its child vertices may become movable. More importantly, merely
considering the gain may violate the acyclic property. Given two vertices
u, v 2 H, j(u) < j(v), it may happen that v is assigned to a partition i and u is
assigned to a partition j that has a higher credit. This may induce loops in the
partitioned graph. Hence, we propose the heuristic that the topological credit
has a higher priority than the gain. All the movable vertices are processed first
according to their topological credits. With the same credits, the assignment
of the vertex with the highest gain will be handled first.

3. We only assign a vertex u to a partition j, if j(u) � maxv2Vj(j(v))  1 and
minv2Vj(j(v)) � j(u)  1. This condition is adapted to guarantee the acyclic
property of the partitioning.

3.3.2 Topological refinement

The objective of the topological refinement is to refine the preliminary solution
based on the topological information. The refinement is achieved in two steps: the
refinement of the boundary vertices and the refinement of the partitions with the
same topological credits.

Refinement of the boundary vertices. Boundary vertices include incoming boundary
vertices and outgoing boundary vertices. A vertex is an incoming boundary vertex if it
has no predecessors or all its predecessors are in other partitions. Similarly, a vertex
is an outgoing boundary vertex if it has no successors or all its successors are in
other partitions. Note that after the initial partitioning, only the boundary vertices
can be moved without violating the acyclic dependency. An incoming boundary
u can be moved to a partition j, j 2 [1, k] if (1) partition j contains at least one
predecessor of vertex u; and (2) partition j has the maximum topological credit
among the partitions that meet the first constraint. In a similar way, an outgoing
boundary v can be moved to a partition j if (1) partition j contains at least one
successor of v; and (2) partition j has the minimum topological credit among the
partitions satisfying the previous constraint. It is worth noting that the violation of
either constraint may lead to cycles in the partitioned graph. For the cases, where
multiple partitions satisfy the constraints, the one with the largest gain will be
considered.

We adapt the Fiduccia-Mattheyses (FM)-like, move-based direct k-way refinement
algorithm in [HKU+17] to refine the initial partitioning. We propose two modifica-
tions.

34 Chapter 3. Near-optimal Decomposition of Boolean Networks

1. Motivated by the same reason explained in Section 3.3.1, we modify the
computation of the gain when moving a vertex u from the current parti-
tion part(u) to another partition j in this phase. The gain denotes the in-
crease/decrease in the size of the cut set weight h(G) after the movement.
Let M denote the set of predecessors/successors of u that are in partition
j, Q denote the set of predecessors/successors of u that are not in partition
j. If part(u) > j, the gain is |

S
v2M h(v, u)| � |

S
p2Q h(u, p)|. Otherwise, the

gain is |
S

v2M h(u, v)| � |
S

p2Q h(p, u)|. We drop the movements that cause
an overrun on the total weight of a partition j.

2. The refinement may cause empty partitions, thus, the property part of vertices
and the number of parts k will be updated after all possible movements.

Refinement of the partitions with the same topological credits. Suppose the SCCs
are divided into k partitions. All the partitions are topologically sorted and the
maximal credit is jmax. If k > jmax + 11, we perform refinement of the partitions
with the same topological credits to minimise the number of partitions. This step
is straightforward yet effective. We group the partitions with the same topological
credits, if the weight of the new partition is not greater than the upper bound Lmax.
In this way, every partition is considered as a whole and the partitioning is refined
at the topological level.

3.3.3 Iteration

Despite the effectiveness of the initial partitioning and the topological refinement,
there is still room for further improvement. In the initial partitioning and the re-
finement of the boundary vertices, we compute solutions at the level of vertices.
For large graphs with complex structures, to compute a near-optimal partitioning,
it is insufficient to traverse the vertices only once. The refinement of the partitions
with the same topological credits can only improve the partitioning at the same
topological level.

In order to achieve a near-optimal partitioning, we iteratively apply the initial parti-
tioning and the topological refinement to the partitioned graph. Suppose we have a
solution P = {V1, V2, . . . , Vk} after the initial partitioning and the refinement. Con-
sidering each partition Vi 2 P as a vertex, we can form a DAG G(P, EP) as described
in Section 3.2. We perform the initial partitioning and the topological refinement
to the partitioned graph G(P, EP), convert the new solution to a DAG and repeat
this process, until the number of partitions k stays the same. During the iteration,
every partition is considered as a vertex. We utilise the initial partitioning and the
topological refinement to group these partitions. In this way, we can improve the
partitioning crossing different topological levels.

Example 5. For the purpose of illustration, we describe the partitioning results of the PC12
cell differentiation network in Figure 3.2 and Table 3.1. The upper bound of a partition
weight is 12, which is the maximal size of the SCCs of the PC12 cell network. In Table 3.1,

1The topological credit j(v) counts from zero.

3.4. Integration with the SCC decomposition 35

(a) (b) (c)

I1

I4

I2

I3

I5

I6

I7

I8

T1

T3 T2

T4

T5

V1

V2

V3

V4

Figure 3.2: Partition of the SCC graph of the PC12 cell network. (a), (b) and (c) show the
results of initial partitioning, topological refinement and iteration, respectively.

Initial partitioning Topological refinement Iteration
Partitions SCCs Partitions SCCs Partitions SCCs

I1 [18] T1 [17, 18] V1 [17, 18, 2, 6]
I2 [6, 17] T2 [2, 6] V2 [16]
I3 [2] T3 [16] V3 [1, 3 � 5, 7 � 12]
I4 [16] T4 [1, 3 � 5, 7 � 12] V4 [0, 13, 14, 15]
I5 [1, 3 � 5, 7 � 12] T5 [0, 13, 14, 15]
I6 [14, 15]
I7 [13]
I8 [0]

Table 3.1: Partition of the SCC graph of the PC12 cell network.

the indices of SCCs are consistent with Figure 3.1. Figure 3.2 (a) shows the results of the
initial partitioning phase: 19 SCCs are partitioned into 8 partitions. Figure 3.2 (b) gives
the results of the topological refinement. In this phase, by adjusting the boundary vertices,
the number of partitions is reduced to 5. Among the five partitions, partitions T2 and T3

are at the same topological level. However, they cannot be merged into one group because
the total weight of these two partitions exceeds the upper bound. The two phases (the initial
partitioning and the refinement) are iterated three times to improve the partitioning. In
the second iteration, the two partitions T1 and T2 in Figure 3.2 (b) are merged. The third
iteration shows that the results cannot be improved any further. In the end, the dependency
graph of the PC12 cell network is decomposed into 4 partitions as shown in Figure 3.2 (c).

3.4 Integration with the SCC decomposition

As discussed in Section 3.1, the SCC decomposition of a Boolean network often
leads to a large number of SCCs as illustrated by the PC12 cell network given in

36 Chapter 3. Near-optimal Decomposition of Boolean Networks

Example 4. To analyse the SCCs one by one can be time-consuming, which slows
down the efficiency of the SCC decomposition-based attractor detection. In Sec-
tion 3.3, we introduced our method for the acyclic partitioning of SCC graphs.
Here, we integrate it with the SCC decomposition to form a near-optimal decom-
position of Boolean networks, formulated as the function “FORM_BLOCK(G)”. The
overall procedures of the new decomposition are described below.

1. Decompose the structure of a given Boolean network into a set of maximal
SCCs and construct the associated SCC graph G(H, E) as described in Sec-
tion 2.2.1.

2. Apply the acyclic partitioning of the SCC graph to optimise the decomposition
as described in Section 3.3.

3. Form blocks by combing partitions with their control nodes.

4. Sort the blocks in ascending order according to their topological credits.

We replace the SCC decomposition with our near-optimal decomposition for the
decomposition-based attractor detection method [MPQY19] to improve its efficiency.

3.5 Evaluation

To demonstrate the efficiency of our new decomposition method, we apply attractor
detection with the SCC decomposition and the new decomposition on several real-
life biological networks introduced in Section 2.4. The SCC decomposition-based
attractor detection decomposes the structure of the network into maximal SCCs,
form blocks based on the maximal SCCs, compute local attractors in each block
and then merge all the local attractors to obtain the attractors of the entire network.
The attractor detection based on the new decomposition follows similar procedures
except that it optimises the decomposition by partitioning the SCC graph and by
forming blocks based on the optimised decomposition. The new decomposition
reduces the number of components and balances the weights of the components.
Note that both methods identify the exact attractors of Boolean networks, hence,
the comparison focuses on the computational efficiency.

The decomposition-based attractor detection is implemented in our software tool
ASSA-PBN [MPY15, MPSY18], based on the model checker MCMAS [LQR17] to
encode Boolean networks into the efficient data structure - binary decision dia-
grams (BDDs). The SCC graph partitioning is implemented in Python based on the
Python module graph-tool [Pei14]. All the experiments are performed on a high-
performance computing (HPC) platform, which contains CPUs of Intel Xeon Gold
6132 @2.6 GHz.

We first describe the results of SCC decomposition-based attractor detection in Ta-
ble 3.2. The second and the third columns describe the number of nodes and the

3.5. Evaluation 37

Network # # # # singleton # cyclic Time
nodes edges SCCs attractors attractors (seconds)

yeast 10 28 3 12 1 0.011
myeloid 11 30 2 6 0 0.001
cardiac 15 39 13 3 0 0.004
ERBB 20 52 14 3 0 0.004
tumour 32 158 13 9 0 0.509
hematopoiesis 33 88 11 5 0 0.664
PC12 33 62 19 7 0 0.012
bladder 35 116 10 3 1 0.909
psc-bFA 36 237 10 4 0 16.780
co-infection 52 136 7 30 0 100.329
MAPK 53 105 18 12 0 2.911
CREB 64 159 39 8 0 1.302
HGF 66 103 26 10 0 1.803
bortezomib 67 135 28 5 0 7.256
T-diff 68 175 34 12 0 5.305
HIV1 136 327 62 8 0 67.177
CD4+ 188 380 86 6 0 188.537
pathway 321 381 302 3 1 258.461

Table 3.2: Results of the SCC decomposition-based attractor detection.

number of edges contained in each network. The fourth column describes the num-
ber of maximal SCCs derived from the SCC decomposition. The fifth and the sixth
columns describe the number of singleton attractors and cyclic attractors of each
network. The last column gives the computational time for the SCC decomposition-
based attractor detection. We can see that even for the largest network with 321
nodes, the computation finishes within few minutes.

For the new decomposition, the upper bound Lmax of the partition weight is an
important parameter for balancing the compositions. To analyse its influence on
the efficiency of the new decomposition-based attractor detection, we perform the
SCC graph partitioning with a list of upper bounds, computed with the formula
Lmax = max(|H|) ⇤ scale, where max(|H|) is the maximal size of SCCs and the
variable scale takes values from 0.1 to 1 with an increment of 0.1. The attractors
identified by the new decomposition-based attractor detection with different upper
bounds are the same with the attractors computed by the SCC decomposition-based
attractor detection, since both methods decompose the networks into DAGs.

Table 3.3 shows the results of the new decomposition-based attractor detection on
the HIV1 network [ODRS14] and the network of signalling pathways central to
macrophage activation (pathway for short) [RRL+08]. The second column gives a
list of scales, the third column gives the maximal size of the SCCs, and the fourth
columns gives the number of partitions returned by the new decomposition. The
last two columns describe the computational time of the new decomposition-based
attractor detection and its speedups computed with the formula speedup = T/Tnew,
where T and Tnew represent the time for attractor detection with the SCC decom-
position and the new decomposition, respectively. Different scales (different upper

38 Chapter 3. Near-optimal Decomposition of Boolean Networks

Network Scale max(|H|) # partitions Time (seconds) Speedups

HIV1

0.1 35 12 36.359 1.8
0.2 35 6 24.245 2.8
0.3 35 5 31.626 2.1
0.4 35 4 40.115 1.7
0.5 35 3 49.077 1.4
0.6 35 3 49.286 1.4
0.7 35 3 49.508 1.4
0.8 35 3 48.477 1.4
0.9 35 3 47.406 1.4
1.0 35 3 47.876 1.4

pathway

0.1 15 302 16.759 15.4
0.2 15 110 7.803 33.1
0.3 15 88 6.388 40.5
0.4 15 63 4.932 52.4
0.5 15 55 4.799 53.9
0.6 15 43 4.877 53.0
0.7 15 40 4.93 52.4
0.8 15 31 4.844 53.4
0.9 15 32 151.912 1.7
1.0 15 27 3.025 85.4

Table 3.3: Results of the new decomposition-based attractor detection for the HIV1 and
pathway networks.

bounds Lmax) result in different number of partitions. In general, a larger upper
bound leads to fewer partitions.

According to Table 3.2, the HIV1 network has in total 62 maximal SCCs. Among
the SCCs, there is one huge SCC with 75 nodes and the remaining 61 SCCs are all
single-node SCCs. The new decomposition greatly reduces the number of partitions
as shown in Table 3.3. Even when the scale is 0.1 (Lmax = 7.5), the new decompo-
sition method reduces the number of components from 62 to 12. When scale is 0.2
(Lmax = 15), the new decomposition obtains the highest speedup 2.8. The pathway
network has 321 nodes and its structure is decomposed into 302 maximal SCCs.
This network does not contain any huge SCCs. The largest SCC is made up of 15
nodes. Hence, its upper bounds are much smaller than those of the HIV1 network.
When the scale equals 1.0, the new decomposition gains the highest speedup on the
attractor detection. This network also shows that a larger upper bound somehow
does not guarantee fewer partitions. This is mainly due to that SCCs with lower
topological credits have a higher priority to be assigned to a partition, which might
influence the partitioning. For these two networks, with the new decomposition
method, the efficiency of the attractor detection is greatly improved.

It is obvious that the scale or the upper bound has an influence on the speedups:
the trend of the speedups fluctuates with the increase of the scale. For the other
networks in Table 3.2, we noticed that the new decomposition method usually
gains higher speedups, when the scale is around 0.6. Table 3.4 summaries the
results of the new decomposition-based attractor detection on these networks with

3.6. Conclusion 39

Network Scale max(|H|) # partitions Time (seconds) Speedups

yeast 0.6 8 2 0.009 1.2
myeloid 0.6 8 2 0.001 1.0
cardiac 0.6 3 13 0.002 2.0
ERBB 0.6 4 10 0.003 1.3
tumour 0.6 21 3 0.737 0.7
hematopoiesis 0.6 23 3 0.566 1.2
PC12 0.6 12 5 0.008 1.5
bladder 0.6 22 3 0.396 2.3
psc-bFA 0.6 27 3 11.405 1.3
co-infection 0.6 47 3 104.64 1.0
MAPK 0.6 37 3 1.75 1.7
CREB 0.6 26 4 0.097 13.4
HGF 0.6 41 3 1.86 1.0
bortezomib 0.6 38 3 3.486 2.1
T-diff 0.6 35 4 4.63 1.1
HIV1 0.6 75 3 49.286 1.4
CD4+ 0.6 103 4 78.363 2.4
pathway 0.6 15 43 4.877 53.0

Table 3.4: Results of the new decomposition-based attractor detection for the biological
networks.

scale = 0.6. We can see that when the scale equals 0.6, the new decomposition can
obtain efficiency gains for most of the networks, except for the tumour network.
The tumour network has 8 components with the SCC decomposition. When the
scale is 0.2, the number of components is reduced to 5 and the new decomposition
obtains the highest speedups of 1.1. When the scale is equal to or greater than
0.5, the number of components stabilises at 3 and the new decomposition method
underperforms the SCC decomposition. This example shows that a higher scale
does not always lead to a better performance. We do not give the detailed results
regarding to the number of iterations to obtain the final decomposition, while the
experiments indicate that the iteration improves the partitioning in terms of the
number of partitions. To compute the final results, the initial partitioning and the
topological refinement are usually iterated for two to three times.

3.6 Conclusion

In this chapter, we proposed a new decomposition of Boolean networks to improve
the efficiency of the decomposition-based attractor detection. The new decomposi-
tion consists of two steps: the SCC decomposition and the acyclic partitioning of the
SCC graphs. The partitioning of the SCC graphs is considered as the acyclic DAG
partitioning while minimising (1) the size of the weight of the cut set and (2) the
number of partitions without exceeding (3) the upper bound of the partition weight
if the partition consists of more than one SCC. We developed a multi-level method
to partition the SCC graphs in three phases: initial partitioning, refinement and

40 Chapter 3. Near-optimal Decomposition of Boolean Networks

iteration. We showed that with the new decomposition of Boolean networks, the
number of components is reduced and the efficiency of the decomposition-based
attractor detection is much improved.

The efficiency of the new decomposition-based attractor detection are influenced by
many factors, including the network density, the upper bound of a partition weight,
the weight of the cut set. We plan to perform intensive experiments on biological
networks to eventually find the optimal decomposition of Boolean networks that
suits well for the decomposition-based method for attractor detection.

41

Chapter 4

Computation of the Basin of

Attraction

4.1 Introduction

In Boolean networks, attractors are hypothesised to characterise cell phenotypes or
cell fates. The concept of basin of attraction implies the commitment of the states
to the attractor. A larger basin implies a large number of states converging to the
attractor. We hypothesise that the more important the attractor is, the larger the
basin gets [SKI+20].

In synchronous dynamics of a Boolean network, all the nodes update their values
simultaneously at each time step. Thus, the synchronous dynamics is determin-
istic: each state has only one successor and can only reach one of the attractors
in the transition system. This indicates that the basins of attractors are disjoint
in synchronous dynamics, which is not the case in asynchronous dynamics. In
asynchronous dynamics, at each time step, only one node is randomly selected to
update its value based on the Boolean function. The asynchronous dynamics of
a Boolean network is non-deterministic: a state can have multiple successors and
can reach one or more attractors of the network. To distinguish the level of commit-
ment to an attractor, the basin of attraction is subdivided into the weak basin and the
strong basin. The weak basin of an attractor includes the states that can reach this
attractor. It is possible that a state in the weak basin can also reach other attractors
of the network. The concept of strong basin does not allow this. The strong basin
implies the absolute commitment of the states to the attractor. A state in the strong
basin of an attractor can only reach this attractor.

Due to the non-deterministic nature, it is known that the computation of the strong
basin of an attractor in asynchronous dynamics is computationally difficult and
does not scale well to large-scale networks. In this chapter, we develop an algo-
rithm for the strong basin computation based on the fixed point computation. This
algorithm starts from the weak basin, WB, and recursively removes states that can
reach some state outside WB until WB reaches a fixed point. The remaining states
form the strong basin of the attractor. However, owing to the infamous state-space
explosion problem, a simple global method that treats the entire network in one-go
is highly inefficient. Since most real-life biological networks are large, there is a

42 Chapter 4. Computation of the Basin of Attraction

strong need for an algorithm that can address this problem efficiently. One strategy
is to exploit both the structural and dynamical properties of the network at the same
time. In this spirit, we develop a decomposition-based method for the computation
of the strong basin of an attractor. This method employs the “divide and conquer”
strategy to solve the problem in a block-wise manner. It divides the structure of
the network into a set of blocks, computes the ‘local’ strong basin of the projection
of the attractor in each block using the fixed point computation, and merges all the
‘local’ strong basins to obtain the entire strong basin of the attractor. This method
can be plugged into any analysis methods that requires the computation of strong
basins.

The rest of the chapter is organised as follows:

• In Section 4.2, we introduce the global method for the computation of the
strong basin of an attractor based on the fixed point computation.

• In Section 4.3, we introduce the decomposition-based method for the compu-
tation of the strong basin of an attractor.

• In Section 4.4, we apply the two methods to a number of biological networks
to evaluate their performance.

4.2 A global method

We first describe a procedure for computing the strong basin of an attractor based
on the computation of fixed point. This algorithm will act as a reference for com-
paring the decomposition-based algorithm which we shall later develop.

We define an operator F on the states S as follows. For any subset T of states:

F (T) = T \ (preTS(postTS(T) \ T) \ T)

It is easy to see that F is monotonically decreasing and hence its greatest fixed
point exists. We want to show that for any attractor A of TS, F

•(basW
TS(A)) =

basS
TS(A). That is, to compute the strong basin of A, one can start with its weak

basin and apply the operator F repeatedly till a fixed point is reached which gives
its strong basin. The operation has to be repeated m times where m is the index of
F

•(basW
TS(A)). To prove it, we first prove the following lemmas.

Lemma 1. For any state s 2 S, if s /2 basS
TS(A) then s /2 F

•(basW
TS(A)).

Proof. Suppose for some s 2 S, s /2 basS
TS(A). Then either (i) there is no path from

s to A or (ii) there is a path from s to another attractor A0
6= A of TS. If (i) holds

then s /2 basW
TS(A) and hence s /2 F

•(basW
TS(A)). Now suppose (ii) holds and there

is a path from s to another attractor A0
6= A. Consider the shortest such path

s0 ! s1 ! . . . ! sn, where s0 = s and sn 2 A0 and let si ! s(i+1), 0  i < n be
the first transition along this path that moves out of basW

TS(A). That is, si 2 basW
TS(A)

but s(i+1) /2 basW
TS(A). We claim that s /2 F

j(basW
TS(A)) for all j � (i + 1). That is, s

4.2. A global method 43

is removed in the (i + 1)th step in the inductive construction of F
•(basW

TS(A)). We
prove this by induction on i.

Suppose i = 0. Then there is already a transition from s out of basW
TS(A) and

hence s 2 preTS(postTS(basW
TS(A)) \ A) \ basW

TS(A). Thus s /2 F (basW
TS(A)). Next,

suppose i > 0 and the premise holds for all j : 0  j < i. Then by induction
hypothesis we have s1 /2 F

i(basW
TS(A)). Hence s 2 (preTS(postTS(F

i(basW
TS(A))) \

F
i(basW

TS(A))) \ F
i(basW

TS(A))) and s will be removed in the (i + 1)th step of the
inductive construction.

For the converse direction, first, we can easily observe from the definition of weak
and strong basins (Definition 6) that:

Lemma 2. Let A be an attractor of TS. Then

• basS
TS(A) ✓ basW

TS(A),

• for any state s 2 S, s 2 basS
TS(A) iff, for all transitions s ! s0, we have s0

2

basS
TS(A).

Thus, we have:

Lemma 3. For any state s 2 S, if s /2 F
•(basW

TS(A)) then s /2 basS
TS(A).

Proof. For some state s 2 S, if s /2 F
•(basW

TS(A)) then either s /2 basW
TS(A), in

which case s /2 basS
TS(A) by Lemma 2 or s 2 basW

TS(A) but gets removed from
F

•(basW
TS(A)) at the ith step of the inductive construction for some i � 1. We

do an induction on i to show that in that case s /2 basS
TS(A). Suppose i = 1.

Then by definition s 2 (preTS(postTS(basW
TS(A)) \ basW

TS(A)) \ basW
TS(A)) which means

there is a transition from s to some s0 /2 basW
TS(A). Thus s /2 basS

TS(A) by Lemma
2. Next suppose i > 1 and the premise holds for all j : 1  j < i. Then, s 2

(preTS(postTS(F
(i�1)(basW

TS(A))) \ F
(i�1)(basW

TS(A))) \ F
(i�1)(basW

TS(A))). There is a
state s0

2 F
(i�1)(basW

TS(A)) such that there is a transition from s to s0. But since by
induction hypothesis s0 /2 basS

TS(A) we must have s /2 basS
TS(A) by Lemma 2.

Given an attractor A, we can compute the weak basin basW
TS(A) by a simple iterative

fixed-point procedure. Indeed, basW
TS(A) is the smallest subset WB of S such that

A ✓ WB and preTS(WB) ✓ WB. We call this procedure Comp_Weak_Basin which
will take as arguments the tuple update functions F and the attractor A.

Now we introduce our algorithm called Comp_Strong_Basin, described in Algo-
rithm 1, for the computation of the strong basin of an attractor A based on the fixed
point computation. Initially WB is equal to the weak basin of A (Line 2). In each
iteration of Line 6, we take the current set WB, which is a subset of the weak basin
of A, and remove from it all the states that have transitions to any state outside the
current WB (line 8). These are the states from which there are paths to some other
attractor A0

6= A and hence they cannot be in the strong basin of A. Finally, when
SB stabilises, the remaining part is the strong basin of A. The most important step
of this algorithm is the while loop (lines 4 � 9), which is repeated till the set SB

44 Chapter 4. Computation of the Basin of Attraction

Algorithm 1 Fixed point computation of the strong basin
1: procedure Comp_Strong_Basin(F, A)
2: WB :=Comp_Weak_Basin(F, A)
3: SB := ∆
4: while SB 6= WB do

5: if SB 6= ∆ then

6: WB := SB
7: end if

8: SB := WB \ (preTS(postTS(WB) \ WB) \ WB)
9: end while

10: end procedure

settles down to a fixed point, which is the strong basin of A. Combining Lemma 1
and Lemma 3, we can prove the correctness of Algorithm 1.

Theorem 1 (Correctness of Algorithm 1). For any attractor A of TS we have

basS
TS(A) = F•(basW

TS(A))

011

101

001 010

111 100

000

110

A1

A2A3

SB

Figure 4.1: Transition system TS of Example 6. We omit selfloops for all the states except
for state (101).

Example 6. We use the Boolean network given in Example 1 to illustrate the computation
of the weak and strong basins of an attractor. The transition system of the Boolean network is
given in Figure 4.1. We use procedures Comp_Weak_Basin and Comp_Strong_Basin
to compute the weak and strong basins of A1 = {000}, denoted as basW

TS(A1) and basS
TS(A1),

respectively. Intuitively, basW
TS(A1) is obtained by applying pre⇤

TS(A1) until it reaches a
fixed point, which is basW

TS(A1) = {000, 001, 010, 011, 100, 101}. basS
TS(A1) is computed

by recursively removing all the states in the weak basin of A1, basW
TS(A1), that can reach

states outside basW
TS(A1), until it reaches a fixed point, which is basS

TS(A1) = {000, 001}.

Note that Algorithm 1 is worst-case exponential in the size of the input (the de-
scription of BN). Indeed, since the strong basin of attraction of A might well be
equal to all the states of the entire transition system TS which is exponential in the
description of BN. Now, although an efficient algorithm for this problem is highly
unlikely, it is possible that when the network has a certain well-behaved structure,
one can do better than this global method. Most of the previous attempts at provid-
ing such an algorithm for such well-behaved networks either exploited exclusively
the structure of the network or failed to provide the exact strong basin. Here we
show that, when we take both the structure and the dynamics into account, we can

4.3. A decomposition-based method 45

have an algorithm developed later, which is much more efficient than the global
method for certain networks.

4.3 A decomposition-based method

In this section, we introduce a method to compute the strong basin of an attractor
A based on the decomposition of Boolean networks. The method is based on that
of [MPQY19] for computing the attractors of asynchronous Boolean networks. The
overall idea is as follows. The network is divided into blocks based on its maximal
SCCs. The blocks are then sorted topologically resulting in a dependency graph
of the blocks which is a DAG. The transition systems of the blocks are computed
inductively in the sorted order and the attractor A is then projected to these blocks.
The local strong basins for each of these projections are computed in the transition
system of the particular block. These local strong basins are then combined to
compute the global strong basin basS

TS(A).

In the preliminaries (Section 2.2), we have introduced the SCC decomposition of a
Boolean network, including several notions on blocks. We now give the key results
of the construction of blocks, which will form the basis of the decomposition-based
method for the strong basin computation.

Let us start with the case where the given Boolean network BN has two basic blocks
B1 and B2. We shall later generalise the results to the case where BN has more than
two basic blocks by inductive arguments.

Note that either one or both of the blocks B1 and B2 are elementary. If only one
of the blocks is elementary, we shall without loss generality, assume that it is B1.
Let TS, TS1 and TS2 be the transition systems of BN, B1 and B2, respectively. If B2 is
non-elementary, we shall assume that TS2 is the transition system of B2 generated
by the strong basin of attractor A1 of TS1.

The states of a transition system will be denoted by s with appropriate subscripts
and/or superscripts. For any state s 2 TS, we shall denote s|B1 by s1 and s|B2 by s2.
Similarly, for a set of states T of TS, T1 and T2 will denote the set of projections of
the states in T to B1 and B2 respectively.

Let B�

1 = B1 \ B2 and B�

2 = B2 \ B2. We shall denote any transition s �! s0 in TS
by s B

�! s0 if the variable whose value changes in the transition is in the set B.

Lemma 4. For an elementary block Bi of BN and for every si, s0

i of TSi, if there is a path
from si to s0

i in TSi, then there is a path from s to s0 in TS such that s|Bi = si, s0
|Bi = s0

i and
s|B�

j
= s0

|B�

j
, j 6= i.

Proof. Let Bi be elementary and suppose s0
i

Bi
�! s1

i
Bi

�! . . . Bi
�! sm

i , where s0
i = si

and sm
i = s0

i, be a path from si to s0

i in TSi. Let s|B�

j
= s0

|B�

j
= s�

j . It is clear that

(s0
i ⌦ s�

j)
Bi

�! (s1
i ⌦ s�

j)
Bi

�! . . . Bi
�! (sm

i ⌦ s�

j) is a path from s to s0 in TS where
s = (s0

i ⌦ s�

j), s0 = (sm
i ⌦ s�

j) and s and s0 have the required properties. Indeed,

46 Chapter 4. Computation of the Basin of Attraction

since Bi is elementary and values of the nodes in B�

j are not modified along the
path.

Lemma 5. For every s, s0 of TS if there is a path from s to s0 in TS then there is a path from
si to s0

i in TSi for every elementary block Bi.

Proof. Suppose r = s0
! s1

! . . . sm, where s0 = s and sm = s0 be a path from s to s0

in TS. Let Bi be an elementary block of BN. We inductively construct a path ri from
si to s0

i in TSi using r. r
j
i , 0  j < m, will denote the prefix of ri constructed in the

jth step of the induction. Initially r0
i = s0

i . Suppose r
j
i has been already constructed

and consider the next transition sj
! sj+1 in r. If this transition is labeled with Bi

then we let r
j+1
i = r

j
i

Bi
�! sj+1

i . Otherwise if this transition is labeled with B�

j , j 6= i,

then we let r
j+1
i = r

j
i . Since by induction hypothesis r

j
i is a path in TSi and we

add to this a transition from r only if a node of the elementary block Bi is modified
in this transition, such a transition exists in TSi. Hence, r

j+1
i is also a path in TSi.

Continuing in this manner, we shall have a path from si to s0

i in TSi at the last step
when j + 1 = m.

Lemma 6. Suppose B1 and B2 are both elementary blocks and B1 \ B2 = ∆. Then for every
s, s0

2 TS, there is a path from s to s0 in TS if and only if there is a path from si to s0

i in
every TSi.

Proof. Follows directly from Lemma 4 and Lemma 5.

Lemma 7. Let B1 and B2 be two elementary blocks of BN, B1 \ B2 = ∆. Then we have
that A is an attractor of TS if and only if there are attractors A1 and A2 of TS1 and TS2

resp. such that A = A1 ⌦ A2.

Proof. Follows directly from Lemma 6.

Lemma 8. Let BN have two blocks B1 and B2 where B2 is non-elementary, B1 is elementary
and is the parent of B2. Then we have A is an attractor of TS if and only if A1 is an attractor
of TS1 and A is also an attractor of TS2 where TS2 is realised by basS

TS(A1).

Proof. Suppose A is an attractor of TS and for contradiction suppose A1 is not an
attractor of TS1. Then either there exist s, s0

2 A such that there is no path from
s1 to s0

1 in TS1. But that is not possible by Lemma 5. Or there exist s1 2 A1 and
s0

1 /2 A1 such that there is a transition from s1 to s0

1. But then by Lemma 4, there
is a transition from s 2 A to s0 /2 A in TS where s|B1 = s1 and s0

|B2 = s0

2. This
contradicts the assumption that A is an attractor of A. Next suppose A is not an
attractor of TS2. Then there is a transition in TS2 from s 2 A to s0 /2 A. But we have,
by the construction of TS2 (Definition 11), that this is also a transition in TS which
again contradicts the assumption that A is an attractor of TS.

For the converse direction, suppose for contradiction that A is an attractor of TS2

and A1 is an attractor of TS1 but A is not an attractor of TS. We must then have
that there is a transition in TS from s 2 A to s0 /2 A. If this transition is labelled
with B1 then we must have, by Lemma 5, that there is a transition in TS1 from s1

4.3. A decomposition-based method 47

to s0

1. But since s0

1 /2 A1 this contradicts the assumption that A1 is an attractor of
TS1. Next, suppose that this transition is labelled with B�

2 . We must then have that
s1 = s0

1 2 A1. Hence, by the construction of TS2 (Definition 11), it must be the
case that s0

2 TS2 and this transition from s to s0 is also present in TS2. But this
contradicts the assumption that A is an attractor of TS2.

Now assume BN has k blocks that are topologically sorted as {B1, B2, . . . , Bk}. For
every i such that 1  i  k, (

S
ji Bj) is an elementary block of BN and we denote

its transition system by TSi.

Theorem 2 (preservation of attractors). Suppose for every attractor A of TS and for
every i : 1  i < k, if Bi+1 is non-elementary then TSi+1 is realised by basS

TS(⌦j2I Aj), its
basin w.r.t. the TS for (

S
j2I Bj), where I is the set of indices of the basic blocks in ac(Bi+1)�.

We then have, for every i : 1  i < k, Ai+1 is an attractor of TSi+1, (⌦j2I Aj ⌦ Ai+1) is
an attractor of the TS for the elementary block (

S
j2I Bj [Bi+1), (⌦i+1

j=1Aj) is an attractor
of TSi+1 and A is an attractor of TSk.

Proof. The proof is by induction on i. The base case is when i = 2 and BN has two
blocks B1 and B2. If B1 and B2 are both elementary then the result follows from
Lemma 7. If B1 is elementary and is the parent of B2 then the result follows from
Lemma 8.

For the inductive case suppose the result holds for some i where 2  i < k. Now
both (

S
j2I Bj), where I is the set of indices of the basic blocks in ac(Bi+1)�, and

(
S

ji Bj) are elementary. Now, if Bi+1 is elementary then the result follows from
Lemma 7. If Bi+1 is non-elementary then (

S
j2I Bj) is the parent of Bi+1 and the

result follows from Lemma 8.

Next, let us come back to the case where BN has two blocks B1 and B2.

Lemma 9. Suppose B1 \ B2 = ∆ and both B1 and B2 are elementary blocks of BN. Let
A, A1 and A2 be attractors of TS, TS1 and TS2 respectively where A = A1 ⌦ A2. Then
basS

TS(A) = basS
TS(A1) ⌦ basS

TS(A2).

Proof. Follows easily from Lemma 6.

Lemma 10. Let A, A1 and A2 be the attractors of TS, TS1 and TS2 respectively where
B1 and B1 are elementary and non-elementary blocks respectively of BN with B1 being
the parent of B2 and TS2 being realised by basS

TS(A1) and A = A2. Then basS
TS(A1) ⌦

basS
TS(A2) = basS

TS(A2) = basS
TS(A).

Proof. Since TS2 is realised by basS
TS(A1), by its construction (Definition 11) we have,

for every state s 2 TS2, s1 2 basS
TS(A1). Hence basS

TS(A1) ⌦ basS
TS(A2) = basS

TS(A2).

We next show that basS
TS(A2) = basS

TS(A). Suppose s 2 basS
TS(A2). To show that

s 2 basS
TS(A), it is enough to show that:

(i) There is a path from s to some sA
2 A in TS and

(ii) There is no path from s to sA0

2 A0 for some attractor A0
6= A of TS.

48 Chapter 4. Computation of the Basin of Attraction

(i) Since s 2 basS
TS(A2), and A2 = A, there is a path r from s to sA

2 A in TS2. It is
easy to see from the construction of TS2 (Definition 11) that r is also a path in TS
from s to sA.

(ii) Suppose for contradiction that there is a path r0 in TS from s to sA0

2 A0 for
some attractor A0

6= A of TS. Since A0
6= A we must have that either (a) A1 6= A0

1
or (b) A1 = A0

1 but A2 6= A0

2.

(a) In this case, by Lemma 5, there must be a path from s1 to sA0

1 2 A0

1 which is a
contradiction to the fact that s1 2 basS

TS(A1).

(b) We have by Theorem 2 that A0

2 = A0. Once again from the construction of TS2

(Definition 11) it is easy to see that r0 is also a path in TS2 from s to sA0

2 A0. But
this contradicts the fact that s 2 basS

TS(A2).

For the converse direction suppose that s 2 basS
TS(A). To show that s 2 basS

TS(A2),
it is enough to show that:
(iii) There is a path from s to some sA2 2 A2 and
(iv) There is no path from s to sA0

2 2 A0

2 for some attractor A0

2 6= A2 of TS2.

(iii) Since s 2 basS
TS(A), there is a path r in TS from s to some sA

2 A. By the fact
that A2 = A and by the construction of TS2 (Definition 11) it is clear that r is also a
path in TS2 from s to sA

2 A2.

(iv) Suppose for contradiction that there is a path r0 in TS2 from s to sA0

2 2 A0

2 for
some attractor A0

2 6= A2 of TS2. By Theorem 2, A0

2 is equal to an attractor A0 of TS
and A0

6= A. It is then easy to see again from the construction of TS2 (Definition 11)
that r0 is also a path in TS from s to sA0

2 A0. But this contradicts the assumption
that s 2 basS

TS(A).

Let us, for the final time, come back to the case where BN has k > 2 blocks and these
blocks are topologically sorted as {B1, B2, . . . , Bk}. Let i range over {1, 2, . . . , k}.
By the theorem on attractor preservation, Theorem 2, we have that (⌦ji Aj) is an
attractor of TSi.

Lemma 11. Suppose for every attractor A of TS and for every i : 1  i < k, if Bi+1 is
non-elementary then TSi+1 is realised by basS

TS(⌦j2I Aj), its basin with respect to the TS
for (

S
j2I Bj), where I is the set of indices of the basic blocks in ac(Bi+1)� [where (⌦j2I Aj),

by Theorem 2, is an attractor of the TS for (
S

j2I Bj)]. Then for every i, (⌦jibasS
TS(Aj)) =

basS
TS(⌦ji Ai) where basS

TS(⌦ji Aj) is the basin of attraction of (⌦ji Aj) with respect to
transition system TSi of (

S
jiBj).

Proof. The proof is by induction on i. The base case is when i = 2. Then either
B1 and B2 are both elementary and disjoint in which case the proof follows from
Lemma 9. Or, B1 is elementary and B2 is non-elementary and B1 is the parent block
of B2. In this case the proof follows from Lemma 10.

For the inductive case, suppose that the conclusion of the theorem holds for some
i : 2  i < k. Now, consider (⌦j(i+1)basS

TS(Aj)). By the induction hypothesis,
we have that (⌦jibasS

TS(Aj)) = basS
TS(⌦ji Aj) where (⌦ji Aj) is an attractor of

the transition system TSi of the elementary block (
S

ji Bj) and basS
TS(⌦ji Aj) is its

4.3. A decomposition-based method 49

Algorithm 2 Decomposition-based computation of the strong basin
1: procedure Comp_Strong_Basin_Decomp(GBN,F,A)
2: B := Form_Block(GBN);
3: B := Top_Sort(B);
4: k := size of B; SB = f; SBi = ∆; // for all i
5: for i = 1 to k do

6: Ai :=Decompose(A, Bi); // decompose the target attractor into block Bi
7: end for

8: for i := 1 to k do

9: if Bi is an elementary block then

10: TSi := transition system of Bi;
11: SBi :=Comp_Strong_Basin(F|Bi

, Ai);
12: else

13: TSi := transition system of Bi based on the basin of (⌦j<i Aj) in TSi�1;
14: SBi :=Comp_Strong_Basin(F|Bi

, Ai);
15: end if

16: SB =Cross (SB, SBi);
17: end for

18: return SB
19: end procedure

basin. Now, either Bi+1 is elementary in which case we use Lemma 9 or Bi+1 is
non-elementary and (

S
j2I Bj) is its parent in which case we use Lemma 10.

In either case, we have (⌦j(i+1)basS
TS(Aj)) = basS

TS(⌦j(i+1)Aj), where basS
TS(⌦

j(i+1)Aj) is the strong basin of attraction of the attractor (⌦j(i+1)Aj) of TSi+1.

Theorem 3 (preservation of strong basins). Given the hypothesis and the notations of
Lemma 11, we have (⌦ikbasS

TS(Ai)) = basS
TS(A) where basS

TS(A) is the strong basin of
the attractor A = (A1 ⌦ A2 ⌦ . . . ⌦ Ak) of TS.

Proof. Follows directly by setting i = k in Lemma 11.

Equipped with the results in Theorems 2 and 3, we can describe our procedure
for computing the strong basin of the attractor based on the decomposition of the
network. Towards that, Theorem 3 tells us that in order to compute basS

TS(A) it
is sufficient to compute the local strong basin of the projection of A to each block
Bi (which by Theorem 2 is an attractor of Bi) and finally merge these local strong
basins using the cross operation.

Algorithm 2 implements this idea in pseudocode. It takes as inputs the dependency
graph GBN, the update functions F, and the attractor A and returns the strong basin
of A. Line 2 decomposes GBN into blocks B (resulting in k blocks) using the pro-
cedure Form_Block from [MPQY19] and line 3 topologically sorts the blocks by
constructing the block graph GB . Lines 5-7 decompose the attractor A into its pro-
jection to the blocks. Lines 8-17 then cycle through the blocks of B in topological
order and for each block Bi: if Bi is elementary then it constructs the transition sys-
tem TSi independently or, if Bi is non-elementary it constructs TSi realised by the
strong basin of (A1 ⌦ A2 ⌦ . . . ⌦ Ai�1) which by Theorem 2 is an attractor of TSi�1,

50 Chapter 4. Computation of the Basin of Attraction

Network # nodes # SCCs Time (seconds) SpeedupsGlobal Decomposition

yeast 10 3 0.003 0.002 1.5
myeloid 11 2 0.003 0.003 1.0
cardiac 15 13 0.021 0.007 3.0
ERBB 20 14 0.004 0.004 1.0
HSPC-MSC 26 5 0.009 0.006 1.5
tumour 32 13 0.128 0.059 2.2
hematopoiesis 33 11 0.480 0.168 2.9
PC12 33 19 0.018 0.008 2.3
bladder 35 10 0.056 0.031 1.8
psc-bFA 36 10 22.684 10.067 2.3
co-infection 52 7 43.899 19.435 2.3
MAPK 53 18 3.167 1.729 1.8
CREB 64 39 0.181 0.621 0.3
HGF 66 26 24.290 1.751 13.9
bortezomib 67 28 18.468 6.662 2.8
T-diff 68 34 0.349 0.251 1.4
HIV1 136 62 264.778 47.777 5.5
CD4+ 188 86 429.975 116.619 3.7
pathway 321 302 * 32.674 *

Table 4.1: Computational time of the global and decomposition-based methods for the
computation of strong basins. Symbol ‘*’ means no results were returned.

the transition system for the elementary (non-basic) block Bi�1. Thus at every iter-
ation i of the for-loop the invariant that Ai is an attractor of TSi is maintained. The
procedure Comp_Strong_Basin (lines 11,14), described in Algorithm 1, computes
the strong basin of Ai with respect to TSi. Line 16 extends the global strong basin
SB computed so far by crossing it with the local strong basin computed at each
step. At the end of the for-loop, SB will thus be equal to the global strong basin (by
Theorem 3). It then easily follows that

Proposition 1. Algorithm 2 correctly computes the strong basin of the attractor A.

4.4 Evaluation

In this chapter, we have developed the global method and the decomposition-based
method for the computation of strong basins. Both methods compute the exact
basins of a given attractor. In this section, we evaluate the efficiency of the two
methods on a number of biological networks introduced in Section 2.4. All the ex-
periments are performed on a high-performance computing (HPC) platform, which
contains CPUs of Intel Xeon Gold 6132 @2.6 GHz.

Table 4.1 gives the evaluation results of the two methods for the computation of
strong basins. The second and the third columns list the number of nodes and
the number of SCCs (or components) contained in each network. The fourth and
the fifth columns give the execution time for computing one of the basins. The last

4.4. Evaluation 51

column shows the speedups gained by the decomposition-based method, computed
with the formula speedup = Tglobal/Tdecomp.

We can see that with the fixed point computation, both methods are quite efficient
and scale well for large networks. Owing to the “divide and conquer” strategy,
for most of the networks, the decomposition-based computation of strong basins
achieves improvements in efficiency compared to the global method, which treats
the entire network in one-go.

The performance of the two methods on the myeloid differentiation network and
the ERBB receptor-regulated G1/S transition protein network are similar, proba-
bly due to that the sizes of the two networks are small. For the CREB network,
the decomposition-based method underperforms the global method in terms of
the efficiency, because 38 out of 39 SCCs of this network are single-node SCCs.
Even though the sizes of the blocks are small, to traverse the blocks one by one
can be more time-consuming than the global method. This problem can be solved
by replacing the SCC decomposition with a better decomposition method, which
reduces the number of blocks and balances the sizes of blocks. In Chapter 3,
we have proposed a near-optimal decomposition to improve the efficiency of the
decomposition-based attractor detection. However, the formation of the block dy-
namics for the methods of attractor detection and basin computation is different,
therefore, the new decomposition proposed in Chapter 3 has to be refined before
being integrated with the decomposition-based method for basin computation.

Another point worth mentioning is that for networks with more than 100 nodes,
even if the network has a large number of SCCs, the decomposition-based method
can still gain efficiency compared to the global method. For instance, for the
pathway network with 321 nodes, symbol ‘*’ in Table 4.1 indicates that the global
method failed to return any results as the computation was terminated in the attrac-
tor detection phase by segmentation fault. The reason is that the state space of the
network grows exponentially in the size of the network. With the decomposition-
based method, this network is decomposed into 302 SCCs, out of which 298 are
single-node SCCs. Even so, the decomposition-based method can finish the com-
putation very efficiently. Thus, for large-scale networks, it is inevitable to use the
decomposition-based method for the computation of the strong basins.

53

Chapter 5

Source-target Control

5.1 Introduction

Direct cell reprogramming amounts to being able to drive the dynamics of a Boolean
network (from the source state) to the ‘desirable’ target attractor by controlling or
reprogramming the nodes of the Boolean network. As discussed in Section 1.4,
the application of existing approaches is restricted due to various reasons. Their
limitations motivate us to develop new methods towards the control of Boolean
networks. In this chapter, we study the problem of source-target control of asyn-
chronous Boolean networks: to identify a subset C of nodes of a given BN, such
that by perturbing the nodes in C, the dynamics of BN can be driven from the
source state to the desired target attractor.

Due to the intrinsic diversity and complexity of biological systems, it is less likely
to find one control method that can perfectly suit all cases. Thus, it is of great im-
portance to explore different strategies to provide a number of cautiously selected
candidates for further experimental validation. Based on the number of control
steps, we can have one-step control and sequential control. As shown in Figure 5.1,
one-step control applies all the perturbations simultaneously for one time; sequen-
tial control identifies a sequence of perturbations to be applied at different time
points. Figure 5.1(b) illustrates a sequential control realised in two steps. In the
first step, a set of perturbations are applied to the source state, which drives the
network to an intermediate state. The intermediate state can be either a transient

 target

other attractors

source

control

(a) One-step control

 target

other attractors

source

control

(b) Sequential control

Figure 5.1: Two source-target control strategies. The blue and red nodes are the source and
target attractors, respectively.

54 Chapter 5. Source-target Control

state or a state in an attractor. Once the network reaches the intermediate state,
the other set of perturbations are applied to guide the network towards the target
attractor. By taking advantage of the natural dynamics of the network, sequential
control can provide alternative control paths to one-step control, requiring consid-
erably fewer perturbations [MHP17]. However, in order to apply the perturbations
at the correct time, general sequential control, where any state can be intermediate
states, requires complete observability of the network (i.e., the state of the network
is known at any discrete time), which is rarely feasible in practice. To make the
control more practical, we are particularly interested in the sequential control that
only adopts attractors as intermediates, called attractor-based sequential control. Since
the attractors can be observed experimentally, the attractor-based sequential control
only requires partial observability of the network. In practice, biologists can deter-
mine how long it takes for the network to stabilise in an intermediate attractor, i.e.
the timing to apply the next set of perturbations, based on empirical experiences.
In that way, if the intermediate attractors are singleton attractors, partial observabil-
ity is not required. But, if the intermediate attractors are cyclic attractors, partial
observability of the network might still be required.

Rapid development of biomolecular techniques enables us to perturb expressions
of nodes for different periods (instantaneously, temporarily or permanently) in
both directions: from ‘expressed’ to ‘not expressed’ and/or from ‘not expressed’
to ‘expressed’ [GTZ+18]. Thus, we can have instantaneous control, temporary control
and permanent control. Instantaneous control applies perturbations instantaneously;
temporary control applies perturbations for sufficient time and then releases them
to retrieve the original dynamics; permanent control applies perturbations for all
the following time steps. The application of control C reshapes BN to a new one,
where the Boolean functions of the nodes in C are fixed to either ‘1’ or ‘0’. Perma-
nent control leads to a permanent shift of the dynamics, thus, it should be applied
cautiously to reduce potential risks. By applying one-step control and attractor-
based sequential control with instantaneous, temporary and permanent perturba-
tions, we can have six different control strategies: one-step instantaneous, temporary
and permanent control (OI, OT and OP) and attractor-based instantaneous, temporary and
permanent control (ASI, AST and ASP).

In this chapter, we develop efficient methods to solve the six source-target control
problems (OI, OT, OP, ASI, AST and ASP). All the methods are based on the com-
putation of weak and strong basins of attractors. Since biological experiments are
usually laborious and very expensive, to reduce the experimental costs, we aim to
compute the minimal subset of the nodes that can realise the control. With the
minimality constraint, it is known that the problem of driving the Boolean network
from a source attractor to a target attractor (the control problem) is computation-
ally difficult [MHP16, MHP17]. To cope with the state-space explosion problem, the
decomposition-based method for the computation of the strong basin of an attractor
is used as the foundation for our control methods.

A key factor to make the control realistic is to employ physically admissible and
experimentally feasible perturbations [CKM13]. We integrate our methods with
constraints on perturbations, such that undesired perturbations are avoided during

5.2. The source-target control problems 55

computation. For attractor-based sequential control, besides undesired perturba-
tions, undesired attractors, such as the attractors corresponding to diseased states,
should be avoided as intermediate states. The algorithms we will describe later
provide options to avoid user-specified perturbations and/or attractors.

The rest of this chapter is organised as follows:

• In Section 5.2, we give some notions on Boolean networks under control and
formally define the control problems of OI, OT, OP, ASI, AST and ASP.

• In Sections 5.3, 5.4 and 5.5, we introduce the methods for the minimal OI, OT
and OP control based on the computation of basins.

• In Sections 5.6, 5.7 and 5.8, we extend the one-step control methods to solve
the problems of ASI, AST and ASP control.

• We evaluate the performance of the six source-target control methods on a
number of real-life biological networks in Section 5.9.

5.2 The source-target control problems

5.2.1 Boolean networks under control

In this section, we define several notions on Boolean networks under control, de-
noted BN|C. We first give the formal definition of control C as follows.

Definition 15 (Control). A control C is a tuple (0, 1), where 0, 1 ✓ {1, 2, . . . , n} and 0
and 1 are mutually disjoint (possibly empty) sets of indices of nodes of a Boolean network
BN. The size of the control C is defined as |C| = |0| + |1|. The control C has an associated
source state s 2 S. The application of C to s, denoted as C(s), is defined as a state s0

2 S,
such that s0[i] = 0 = 1 � s[i] for i 2 0 and s0[i] = 1 = 1 � s[i] for i 2 1. State s0 is called
the intermediate state with respect to C.

Intuitively, sets 0 and 1 represent the indices of variables of BN whose values are
held fixed to 0 and 1 respectively under the control C. The union of the two sets,
0 [1, is the set of indices in which s and s0 differ, out of which 0 and 1 are the
indices of nodes which have a value of 0 and 1 in s0, respectively. Let C0 = (00, 10)
be a control of BN. We define C \ C0 = (0 \ 00, 1 \ 10).

The application of a control C to BN = (X, F) has the effect of reducing the state
space of BN to those which have the values of the variables in 0 and 1 set respec-
tively to 0 and 1 and modifying the Boolean functions accordingly. This results in
a new Boolean network derived from BN defined as follows.

Definition 16 (Boolean networks under control). Let C = (0, 1) be a control and BN =
(X, F) be a Boolean network. The Boolean network BN under control C, denoted BN|C, is
defined as a tuple BN|C = (X̂, F̂), where X̂ = {x̂1, x̂2, . . . , x̂n} and F̂ = { f̂1, f̂2, . . . , f̂n},
such that for all i 2 [n]:
(1) x̂i = 0 if i 2 0, x̂i = 1 if i 2 1, and x̂i = xi otherwise;
(2) f̂i = 0 if i 2 0, f̂i = 1 if i 2 1, and f̂i = fi otherwise.

56 Chapter 5. Source-target Control

011

101

001 010

111 100

000

110

A1

A2A3

101

001

100

000

A1

(a) (b)

Figure 5.2: (a) Transition system TS and (b) Transition system under control TS|C of Exam-
ple 7, where C = {x2 = 0}.

The state space of BN|C, denoted S|C, is derived by fixing the values of the variables
in C to their respective values and is defined as S|C = {s 2 S | s[i] = 1 if i 2

1 and s[j] = 0 if j 2 0}. It is obvious that S|C ✓ S. For any subset S0 of S, we let
S0

|C = S0
\ S|C.

The asynchronous dynamics of BN|C = (X̂, F̂) on the state space of S|C, denoted
xBN|C

, is defined similarly to the asynchronous dynamics of BN (Definition 2).

Definition 17 (Asynchronous dynamics under control). Suppose s0 2 S|C is a state
of BN|C. The asynchronous evolution of BN|C starting from s0 is a function xBN|C

: N !

}(S|C) such that xBN|C
(0) = {s0} and for every j � 0, if s 2 xBN|C

(j) then s0
2 xBN|C

(j +
1) is a possible next state of s iff either hd(s, s0) = 1 and s0[i] = f̂i(s) = 1 � s[i] where
i = arg(hd(s, s0)) or hd(s, s0) = 0 and there exists i such that s0[i] = f̂i(s) = s[i].

The dynamics of BN|C can also be defined as a transition system, which is defined
similar to Definition 3, as follows:

Definition 18 (Transition system under control). The transition system of BN|C, de-
noted TSBN|C

, is a tuple (S|C, !BN|C
) where the vertices are the set of states S|C and for

any two states s and s0 there is a directed edge from s to s0, denoted s !BN|C
s0 iff s0 is a

possible next state of s according to the asynchronous evolution function xBN|C
of BN|C.

The notions on TS, including attractors (Definition 5) and basins (Definition 6), can
be extended to TS|C.

Example 7. For the Boolean network BN defined in Example 1, given a control C = (0, 1),
where 0 = {2}, 1 = ∆ (i.e. {x2 = 0}), the application of C reshapes the transition
system TS of BN from Figure 5.2(a) to the transition system under control TS|C of BN|C

in Figure 5.2 (b). We can see that the control results in a new transition system, where
only a subset of states and transitions are preserved. Therefore, the attractors of TS and
TS|C might differ. For this example, only attractor A1 is preserved in TS|C as shown in
Figure 5.2 (b).

5.2.2 The control problems

Let BN be a given Boolean network, S be the set of states of BN and A be the set
of attractors of BN. A control C is a source-target control from a source state s 2 S

5.2. The source-target control problems 57

to a target attractor At 2 A, if after the application of C to s, BN eventually reaches
At. Source-target control can be achieved by applying the control (as defined in
the previous section) to the network for different periods of time. We have: (a)
instantaneous control – the control is applied instantaneously; (b) temporary control –
the control is applied for a finite (possibly zero) number of steps and then released;
and (c) permanent control – the control is applied for all the following time steps,
i.e., the parameters are changed for all the following steps. The process of the
application and release of control is formally defined as follows.

Definition 19 (Application and release of control). Let s 2 S be a state of BN and let
C = (0, 1) be a control. The instantaneous application of C to s results in a state s0 such that
s0[i] = 1 for all i 2 1, s0[j] = 0 for all j 2 0 and s0[k] = s[k] otherwise. We will often denote
this as s C

⇠ s0 and denote s0 as C(s). The application of C to s for t � 1 time steps results in
a sequence s0, s1, s2, . . . , st, where s0 = C(s) and for every k 2 [t], sk 2 xBN|C

(sk�1). When
t ! •, we shall call it a permanent application of C to s or a permanent control of s.

Suppose BN under control C is in state s 2 S|C and has been evolving according to xBN|C
.

The release of control at s is performed instantaneously and it restores the dynamics to xBN.

We often denote it as s C�1
⇠ s !BN . . .

Thus, suppose BN starts evolving from an initial state s0 2 S and after t1 steps
a control C is applied to it. Suppose the control lasts for t2 steps and then it is
released and then BN goes back to evolving according to its original dynamics.
This will result in a sequence that can be represented as:

s0 !BN s1 !BN . . . !BN st1| {z }
t1 steps

C
⇠ s0

0 !BN|C
s0

1 !BN|C
. . . !BN|C

s0
t2| {z }

t2 steps under control C

C�1
⇠ s00

0 !BN s00

1 !BN . . .

Intuitively, on the application of control C for t2 steps, the behaviour of BN is cap-
tured by TSBN|C

for t2 time steps. After that, when C is released, the behaviour
goes back to TSBN. The release of C does not change the value of any variable, thus
s00

0 = s0
t2

.

Given a source attractor As and a target attractor At of TS, to drive the network
from As to At in one step is called one-step source-target control, formally defined as:

Definition 20 (One-step source-target control). Compute a control C, such that the
application of C to a state s, s 2 As, drives the network from s to At.

When the control C is the instantaneous, temporary or permanent control, we call
it one-step instantaneous, temporary or permanent control (OI, OT, or OP). Based on the
definition of fairness (Definition 4), we formally define the one-step source-target
control problems as follows.

Definition 21 (One-step source-target control problems).

1. One-step instantaneous source-target control (OI): find a control C = (0, 1)
such that the dynamics of BN always eventually reaches At on the instantaneous
application of C to s, s 2 As.

58 Chapter 5. Source-target Control

2. One-step temporary source-target control (OT): find a control C = (0, 1) such
that there exists a t0 � 0 such that for all t � t0, the dynamics of BN always
eventually reaches At on the application of C to s, s 2 As for t steps.

3. One-step permanent source-target control (OP): find a control C = (0, 1) such
that the dynamics of BN always eventually reaches A on the permanent application
of C to s, s 2 As. (Here we assume implicitly that At is also an attractor of the
transition system under control TSBN|C

.)

Given a fair path r = s0 ! s1, ! . . ., we say that r eventually reaches At if there
exists a k � 0 such that sk 2 At. To minimise the experimental costs, we are
interested in the minimal solution CAs!At

min , where CAs!At
min is the minimal such subset

of {1, 2, . . . , n}. OI can be considered as a special case of OT when t ! 0. Note that
the constraint of minimality in the above definition makes the problems non-trivial.
Otherwise, one can simply choose a control C such that C(s) 2 At in each case.
We first observe that the minimal OI control problem is computationally difficult
(PSPACE-hard), the minimal temporary and permanent control problems are also
computationally difficult (at least PSPACE-hard). Thus, efficient algorithms to solve
these problems are highly unlikely. In this chapter, we shall develop algorithms to
solve these problems based on the computation of the weak and strong basins of
the target attractor At.

Besides the one-step source-target control, we can identify a sequence of perturba-
tions to drive the network from As to At in a stepwise manner. We call it sequential
control. We concentrate on the sequential control through other attractors, called
attractor-based sequential control, defined below.

Definition 22 (Attractor-based sequential control). Find a sequence of attractors of TS,
i.e. F = hA1, A2, . . . , Ami, where A1 = As, Am = At, Ai 6= Aj for any i, j 2 [1, m] and
2  m  |A|, such that after the application of a sequence of minimal one-step controls
hCA1!A2

min , CA2!A3
min , . . . , CAm�1!Am

min i, the network always eventually reaches Am, i.e. At. We
call it an attractor-based sequential control path, denoted as

W : A1
C

A1!A2
min

����! A2
C

A2!A3
min

����! A3
...
�! . . .

C
Am�1!Am
min

������! Am

(|CA1!A2
min | + |CA2!A3

min | + . . . + |CAm�1!Am
min |) is the total number of perturbations.

Similarly, when the control C
Ai!Aj
min , Ai, Aj 2 F is the instantaneous, temporary

or permanent control, we call it attractor-based sequential instantaneous, temporary or
permanent control (ASI, AST or ASP), respectively.

In the following sections, we shall develop several algorithms to solve the minimal
OI, OT and OP control problems. Based on these algorithms, we further develop
algorithms for ASI, AST and ASP control. Afterwards, we introduce how to modify
these algorithms to integrate constraints on perturbations and intermediate attrac-
tors (for attractor-based sequential control).

5.3. One-step instantaneous control 59

5.3 One-step instantaneous control

In this section, we develop the method to solve the minimal OI control described
in Definition 21. The following lemma will be crucial for the control methods we
shall develop in this and the following sections.

Lemma 12. Let s 2 S and S0
✓ S. Every path r 2 P•(s)

• possibly eventually reaches S0 if and only if s 2 basW
TS(S0),

• always eventually reaches S0 if and only if s 2 basS
TS(S0).

Indeed, if the Boolean network is in some state s 2 basS
TS(At) in some time step t,

that is if x(t) = s then by the definition of basS
TS(At) it will eventually and surely

reach a state s0
2 At. That is, there exists a time step t0 > t such that x(t0) = s0,

s0
2 At. In Section 2.1.1, we have defined arg(hd(S0, S00)) as the set of subsets of

{1, 2, . . . , n} such that I 2 arg(hd(S0, S00)) if and only if I is a set of indices of the
variables that realise this Hamming distance. Hence given a source attractor As

and a target attractor At, the union of a pair of 0 and 1 where CAs!At
min = (0, 1), can

easily be seen to be an element in arg(hd(As, basS
TS(At))). That is

Theorem 4. A control C = (0, 1) from As to At is a minimal OI control if and only if
C(s) 2 basS

TS(At) and C 2 arg(hd(As, basS
TS(A))), where s is the state in As that realises

the minimal Hamming distance from As to basS
TS(At).

Proof. If C(s) /2 basS
TS(At) then either (a) C(s) /2 basW

TS(At) or (b) C(s) 2 basW
TS(At).

If (a) holds, then there is no path from C(s) to At and if (b) holds, then there
is a path from C(s) to some other attractor A 6= At. In either case BN is not
guaranteed to reach a state in At after the control C is applied to s. And, if (0 [

1) /2 arg(hd(As, basS
TS(At))), then C cannot be minimal (by definition of Hamming

distance), and conversely. Since C 2 arg(hd(As, basS
TS(A))), the associated source

state s of C is the state in As that realises the minimal Hamming distance from As

to basS
TS(At).

Thus, solving the minimal OI control problem efficiently boils down to how effi-
ciently we can compute the strong basin of the target attractor. In Chapter 4, we
developed a global method, Comp_Strong_Basin, and a decomposition-method,
Comp_Strong_Basin_Decomp, for the computation of strong basins and proved
that the decomposition method is generally more efficient than the global method.

In this section, we shall design an algorithm, Algorithm 3, for solving the minimal
OI control problem based on the decomposition-based computation of the strong
basin of the target attractor At. It first computes the strong basin SB of the target
attractor At using procedure Comp_Strong_Basin_Decomp and then computes a
minimal OI control set Cmin using procedure Comp_Control_Set. Cmin has an
associated source state s 2 As and an intermediate state s0 = Cmin(s), s0

2 SB. The
pair of states s and s0 realises the minimal Hamming distance between As and SB.

Our method for the minimal OI control, Algorithm 3, is generic, in that, we can plug
into it any other algorithm for computing the strong basin of the target attractor and

60 Chapter 5. Source-target Control

Algorithm 3 Minimal OI control
1: procedure Min_OI_Control(F, As, At)
2: SB :=Comp_Strong_Basin_Decomp(F, At)
3: (Cmin, s, s0) :=Comp_Control_Set(As, SB) // s 2 As and s0

2 SB are the states
that realise the minimal Hamming distance.

4: return Cmin
5: end procedure

6: procedure Comp_Control_Set(As, SB)
7: C := (0, 1), where 0 := ∆ and 1 := ∆.
8: (s, s0) := Min_Hamming_Dist(As, SB) // compute the states that realise the

minimal Hamming distance between As and SB.
9: I := arg(hd(s, s0)) // compute indices of the nodes that have different values in s

and s0.
10: for i 2 I do

11: if s0[i] = 0 then

12: Add i to 0.
13: else

14: Add i to 1.
15: end if

16: end for

17: return (C, s, s0)
18: end procedure

it would still work. Its performance, however, directly depends on the performance
of the particular algorithm used to compute this basin.

Example 8. We use the Boolean network given in Example 1 to illustrate the computation
of minimal OI control with Algorithm 3. The transition system of Example 1 can be found
in Figure 5.2 (a) in Section 5.2.1. Let A3 = {111} and A1 = {000} be the source and
target attractors, respectively. To compute the minimal OI control from A3 to A1, we first
use the procedure Comp_Strong_Basin_Decomp to compute the strong basin of A1,
which is basS

TS(A1) = {000, 001}. The next step is to find the pair of states (s, s0), where
s 2 A3 and s0

2 basS
TS(A1), that realises the minimal Hamming distance between A3 and

basS
TS(A1). For this case, s = (111) and s0 = (001). By comparing the values of the

nodes in s and s0, we know that the minimal OI control Cmin = (0, 1), where 0 = {1, 2}

and 1 = ∆. That is, by instantaneously flipping the values of the nodes {x1, x2} from 1
to 0 in state s, the network is guided to the state s0, which is in basS

TS(A1) and has the
minimal Hamming distance to A3. From s0, the network will evolve spontaneously towards
the target attractor A1.

5.4 One-step temporary control

In this section, we study the problem of the minimal OT control defined in Defi-
nition 21. According to Lemma 12, given a source state s and a target attractor At

of TS of BN, if after the application of a control C to s, the resulting state C(s) lies
in the strong basin of At with respect to the transition system under control, TS|C,
then the dynamics will always eventually reach At. One needs to be careful though

5.4. One-step temporary control 61

as the attractors and their structure in TS|C might be different from TS. However,
note that the application of C to TS does not create any additional edges except for
self loops.

Lemma 13. Let C be a control. If s !BN|C
s0 is in TS|C then s 6= s0 implies s !BN s0 is in

TS.

Proof. Suppose C = (0, 1) and s !BN|C
s0. Then since s 6= s0, by the definition of

TS|C, s, s0
2 S|C and there exists i 2 [1, n] such that s0[i] 6= s[i]. Therefore i /2 (0 [1)

and s0 = fi(s). Now since s, s0
2 S, we have s !BN s0 is a valid transition in TS.

Next, we prove the following proposition with the help of Lemma 13.

Proposition 2. Let A be an attractor of TS and C be any control.

1. For any state s 2 basS
TS(A), reachTS(s) ✓ basS

TS(A).

2. For any state s 2 basS
TS(A)|C, reachTS|C

(s) ✓ basS
TS(A)|C.

Proof. Assume for any state s 2 basS
TS(A), reachTS(s) * basS

TS(A). Then there must
exist one path from s to a state s0, s0 /2 basS

TS(A), i.e. r = s ! s1 ! . . . ! s0. Since
s0 /2 basS

TS(A), there exists one path from s0 to some other attractor A0, A0
6= A, i.e.

r0 = s0
! s0

1 ! . . . ! A0. Thus, there is one path from s to another attractor A0,
which contradicts with the definition of strong basin (Definition 6). Therefore, for
any state s 2 basS

TS(A), reachTS(s) ✓ basS
TS(A).

According to Lemma 13, the application of control C does not create any additional
edges except for self loops. Thus, for any state s 2 (basS

TS(A)|C), reachTS|C
(s) ✓

(basS
TS(A) \ SC), namely reachTS|C

(s) ✓ (basS
TS(A)|C).

Using Lemma 12 and Proposition 2, we can prove the following theorem.

Theorem 5. Let s 2 S be a source state in As and let At be the target attractor of TS.
A control C is a temporary control from s to At if and only if basS

TS(At)|C 6= ∆ and
C(s) 2 basS

TS|C
(basS

TS(At)|C).

Proof. basS
TS(A)|C = ∆ implies basS

TS(A) \ S|C = ∆ and such a control C is not
well-defined. Hence, we assume that basS

TS(A)|C 6= ∆

Let s0 denote C(s). If s0 2 basS
TS|C

(basS
TS(A)|C) then, by the definition of strong basin,

for every fair path r = s0 !BN|C
s1 !BN|C

. . . there exists t such that st 2 basS
TS(A)|C.

By Proposition 2, reachTS|C
(st) ✓ basS

TS(A)|C. Hence no matter for how many more
steps t0 C is held, st0 2 basS

TS(A)|C. Thus when C is released after (t + t0) time
steps, s(t+t0) 2 basS

TS(A) and by the definition of strong basin, the dynamics always
eventually reaches A. Hence C is a temporary control.

Conversely, if s0 /2 basS
TS|C

(basS
TS(A)|C) then there is a path r in TS|C from s0 to some

s0 /2 (basS
TS(A)|C). Since basS

TS(A)|C = basS
TS(A) \ S|C, and s0

2 S|C we must have
s0 /2 basS

TS(A). Hence by the definition of strong basin, reachTS(s0) ✓ basS
TS(A) and

so the dynamics of BN may not always eventually reach A from s0. So, C cannot be
a valid temporary control.

62 Chapter 5. Source-target Control

Algorithm 4 Minimal OT control
1: procedure Min_OT_Control(F, As, At) // As: the source; At: the target
2: WB :=Comp_Weak_Basin(At, F) // the weak basin of At in TS
3: SB :=Comp_Strong_Basin_Decomp(At, F) // the strong basin of At in TS
4: Cmin :=Comp_Min_OT_Control(F, As, WB, SB)
5: return Cmin
6: end procedure

7: procedure Comp_Min_OT_Control(F, As, WB, SB)
8: isMin := false, Cmin = ∆
9: while isMin = false and WB 6= ∆ do

10: (C, s, s0) :=Comp_Control_set(As, WB) // s 2 As and s0
2 WB are the

states that realise the shortest Hamming distance.
11: isMin :=Verify_Temporary_Control(C, F, s0, SB)
12: if isMin then

13: Cmin := C
14: else

15: WB := WB \ s0

16: end if

17: end while

18: return Cmin
19: end procedure

20: procedure Verify_Temporary_Control(C, F, s0, SB)
21: if s0

2 SB then

22: isMin := true // instantaneous perturbation
23: else

24: F|C :=Comp_Fn_Control(F, C) // F in BN|C (see Algorithm 5)
25: SB|C :=Comp_State_Control(SB, C) // SB in TS|C (see Algorithm 5)
26: if SB|C 6= ∆ then

27: basS
TS|C

(SB|C) :=Comp_Strong_Basin_Decomp(SB|C, F|C)

28: if s0
2 basS

TS|C
(SB|C) then

29: isMin := true
30: end if

31: end if

32: end if

33: return isMin
34: end procedure

Theorem 5 forms the basis for our algorithm for computing the minimal OT control
C, given a source state s and a target attractor At. Intuitively, on the application
of C, we want the dynamics to move to a state C(s) which is in the strong basin
(w.r.t the restricted transition system TS|C) of the strong basin (w.r.t the original
transition system TS) of the target attractor At, restricted to states in S|C, in TS|C.
Then if we hold the control C for long enough, the dynamics will eventually reach
the strong basin of At in TS. By Proposition 2, we know that once in the strong
basin, the dynamics cannot escape it. This means that finally when the control C is
released, the dynamics is in the strong basin of At and hence will eventually reach
At which is the target.

To ensure that we indeed compute a temporary control C that is minimal, we

5.5. One-step permanent control 63

Algorithm 5 Helper functions

1: procedure Comp_Fn_Control(F, C)
// C = {0, 1}

2: F|C := F
3: for i 2 1 do

4: F|C[i] := 1
5: end for

6: for i 2 0 do

7: F|C[i] := 0
8: end for

9: return F|C

10: end procedure

11:
12:
13:
14:
15:

16: procedure Comp_State_Control(S, C)
17: S|C := S
18: for s 2 S do

19: for i 2 1 do

20: if s[i] 6= 1 then

21: S|C := S|C \ s
22: end if

23: end for

24: for j 2 0 do

25: if s[j] 6= 0 then

26: S|C := S|C \ s
27: end if

28: end for

29: end for

30: return S|C

31: end procedure

proceed as follows. We start with the state s0
2 basW

TS(At) that has the mini-
mal Hamming distance to As and s 2 As is the state that realises this Ham-
ming distance. Let CAs!s0 be the control with respect to s0. We check if s0

2

basS
TS|

CAs!s0
(basS

TS(At)|CAs!s0). If so, the control CAs!s0 is a minimal OT control and

we are done. Otherwise, we remove s0 from basW
TS(At) and select the next state s00

from (basW
TS(At) \ {s0

}) having the minimal Hamming distance to As. We repeat
the same procedure this time with the control CAs!s00 associated with s00. We it-
erate till we find a state s⇤

2 basW
TS(At) with the control CAs!s⇤ , such that s⇤

2

basS
TS|CAs!s⇤

(basS
TS(At)|CAs!s⇤). It is enough to explore only the states in basW

TS(At)
and it will eventually find the required control. Algorithm 4 describes this proce-
dure in pseudocode.

Remark. Notice that the temporary control C should be released after being ap-
plied for sufficient time. This is because in the transition system under a temporary
control TS|C, the target attractor At may be absent. Thus, it is necessary to retrieve
the original transition system TS by releasing the control C. Regarding the amount
of time for the application of control C, it has to be determined based on the specific
system and the detailed perturbations. We believe it is more practical for biologists
to determine when to release the control case by case based on experimental set-
tings, rather than interpreting a period of discrete time in real life. Moreover, as
long as the control is released in finite steps, holding it longer will not affect its
effectiveness.

5.5 One-step permanent control

We now develop an algorithm to solve the minimal OP control problem. The fol-
lowing proposition will be useful.

64 Chapter 5. Source-target Control

Proposition 3. Let C be a control and let A be an attractor of TS such that A is also an
attractor of TS|C. For any s 2 S, if s 2 basW

TS|C
(A) then s 2 basW

TS(A).

Proof. By the definition of the weak basin, if s 2 basW
TS|C

(A), there exists a path r

from s to A in TS|C. Suppose r = s0 !BN|C
s1 !BN|C

. . . !BN|C
sk where s0 = s and

sk 2 A. Further, suppose that r is a shortest such path from s to A, that is, si 6= sj
for any i 6= j, 0  i, j  k and sj /2 A for any j < k. By Lemma 13, for every si,
0  i < k, si !BN si+1 is a valid transition in TS and hence r is a path in TS. Thus
s 2 basW

TS(A).

The converse of Proposition 3 may not hold as shown by the following example.

Example 9. In Figure 5.2, state (010) is in the weak basin of attractor A1 in the original
transition system (see Figure 5.2 (a)), whereas state (010) is absent in the transition system
under control C (see Figure 5.2 (b)). That is, s 2 basW

TS(A) but s /2 basW
TS|C

(A).

The intuition for the permanent control algorithm that we shall develop in this
section is as follows. Suppose s 2 As is an initial state and At is the target attractor
of TS that we want the dynamics of BN to always eventually reach. The following
is a straightforward corollary of Theorem 4.

Corollary 1. A control C is a permanent control from s to At iff At is an attractor of TS|C

and C(s) 2 basS
TS|C

(At).

Thus, we want to find a control C such that the condition C(s) 2 basS
TS|C

(At) is
satisfied. Now, since we want the control C to be minimal, we proceed as follows.
We start with a state s0

2 basW
TS(At) that has the minimal Hamming distance with

As. Let us denote its associated control as CAs!s0 . We first check if At is an attractor
of TS|CAs!s0 since otherwise, CAs!s0 cannot be a permanent control (by definition). If
At is indeed an attractor of TS|CAs!s0 , we check if s0

2 basS
TS|

CAs!s0
(At). If so, CAs!s0 is

a minimal OP control. Otherwise, we remove s0 from basW
TS(At) and select the next

state s00 from (basW
TS(At) \ {s0

}) having the minimal Hamming distance with As. We
repeat the same procedure this time with s00. We iterate the above procedures till
we find a minimal OP control.

The procedure described above, in the worst case, explores all possible states in
basW

TS(At). By Proposition 3, we know that for any control C, basW
TS|C

(At) ✓ basW
TS(At).

Thus, it is enough to explore only the states in basW
TS(At) and it will eventually find

the control satisfying the constraints. Algorithm 6 describes this procedure in pseu-
docode.

Example 10. To continue with Example 8, we compute the minimal OT and OP control
from A3 to A1 with Algorithm 4 and Algorithm 6. Procedures described in Algorithm 4 are
used to compute the minimal OT control. It first computes the weak basin and the strong
basin of A1, WB = {000, 001, 010, 011, 100, 101} and SB = {000, 001}. In Figure 5.3(a),
states s1 = (011) and s2 = (101) in WB have the minimal Hamming distance to A3

and their corresponding control sets are C1 = (01, 11), where 01 = {1} and 11 = ∆,
and C2 = (02, 12), where 02 = {2} and 12 = ∆. Figures 5.3(a) and (b) describe the

5.5. One-step permanent control 65

Algorithm 6 Minimal OP control
1: procedure Min_OP_Control(F, As, At) // As: the source; At: the target
2: WB :=Comp_Weak_Basin(At, F) // the weak basin of At in TS
3: Cmin :=Comp_Min_OP_Control(F, As, WB, SB)
4: return Cmin
5: end procedure

6: procedure Comp_Min_OP_Control(F, As, WB, SB)
7: isMin := false, Cmin = ∆
8: while isMin = false and WB 6= ∆ do

9: (C, s, s0) :=Comp_Control_set(As, WB)
10: isMin :=Verify_Permanent_Control(C, F, s0, At)
11: if isMin then

12: Cmin := C
13: else

14: WB := WB \ s0

15: end if

16: end while

17: return Cmin
18: end procedure

19: procedure Verify_Permanent_Control(C, F, s0, At)
20: if s0

|C = At|C then // At is preserved in TS|C

21: F|C :=Comp_Fn_Control(F, C) // F in BN|C (see Algorithm 5)
22: SB|C :=Comp_Strong_Basin_Decomp(At, F|C) // the strong basin of At

in TS|C

23: if s0
2 SB|C then

24: isMin := true
25: end if

26: end if

27: return isMin
28: end procedure

application and release of C1 and C2, respectively. In both TS|C1 and TSC2 , only attractor A1

is preserved and all the states belong to the strong basin of A1 in the transition system under
control. In TS|C1 , the network will eventually and surely reach (001), a state in SB, from
which the control can be released and spontaneous evolution will guide the network towards
A1. In TS|C2 , the network will either follow the path r1 = (101) ! (001) ! (000) or
r2 = (101) ! (100) ! (000). If the network takes path r1, C2 can be released when the
network reaches state (001). If the network takes path r2, C2 can only be released when
the network settles down to (000). Applying the temporary control for longer time will not
affect the inevitable reachability of the target attractor.

Procedures described in Algorithm 6 are used to compute the minimal OP control. The
process is similar to the minimal OT control. For this case, the controls C1 and C2 are also
the minimal OP control from A3 to A1.

Constraints on perturbations

66 Chapter 5. Source-target Control

011 001 010000

A1

(b)

101

001

100

000

A1

(a)

011

101

001 010

111 100

000

110

A1

A2A3

011

101

001 010

111 100

000

110

A1

A2A3

apply C1

release C1

apply C2

release C2

TS

TS

TS|C1

TS|C2

Figure 5.3: Minimal OT and OP control of BN of Example 10. (a) and (b) describe the
control effects of C1 and C2, respectively.

To translate the predictions based on mathematical models to biological experi-
ments may encounter many difficulties. For instance, essential genes for cell sur-
vival [ZL08] should not be perturbed in biological experiments. Some genes may
be very difficult or expensive to perturb with the latest techniques. To accelerate
this translation process, we bridge the gap between theoretical computation and
biological experiments by taking practical constraints into consideration. Based on
the specific system and reprogramming tasks, we encode practical requirements as
preconditions and avoid undesired or unrealistic perturbations during the compu-
tations.

We consider three kinds of nodes:

• R0: nodes that cannot be perturbed from 0 to 1;

• R1: nodes that cannot be perturbed from 1 to 0;

• R: nodes that cannot be perturbed in either direction.

The basic idea is that we exclude the intermediate states that will involve undesired
perturbations from the search space, which is the strong basin of the target attractor
for instantaneous control and the weak basin of the target attractor for temporary
and permanent control.

Let X denote the search space, either the strong basin or the weak basin depending
on the control method we use. The values of nodes in R always stay the same as
the initial state s. The set of available intermediate states X0

✓ X can be computed
using the cross operation as X0 = X ⌦ s|R. Intuitively, if node x 2 R has a value of 0
in the source state s, we restrict the search space to the set of states, in which x has
a value of 0. Otherwise, if x is 1 in the intermediate state, the value of x needs to be

5.6. Attractor-based sequential instantaneous control 67

flipped from 0 to 1, which violates the constraint. For node x 2 R0, it is not allowed
to perturb the value of x from 0 to 1. However, it is possible that x has a value of 1
in the initial state s. The control of such nodes can happen only from 1 to 0, which
does not violate the restriction. Hence, given a set R0, we compute the subset R0

0

of R0, such that R0
0 = {x 2 R0| s|x = 0 for x 2 R0} Similarly, we update R1 to

R0
1 = {x 2 R1| s|x = 1 for x 2 R1}. Then, we restrict the remaining search space X0

using the cross operation as X00 = X0
⌦ s|R0 ⌦ s|R1 and explore X00 for solutions.

5.6 Attractor-based sequential instantaneous control

In Sections 5.3, 5.4 and 5.5, we have developed algorithms for the minimal OI, OT
and OP control. Based on these algorithms, in this and the following two sections,
we shall develop algorithms for computing ASI, AST and ASP control paths with
at most k perturbations.

Given a Boolean network BN = (X, F), let A be the set of attractors of TS, As and
At be the source and target attractors. We let F = hA1, A2, . . . , Ami, where A1 =
As, Am = At, Ai 6= Aj for any i, j 2 [1, m] and 2  m  |A|, denote the sequence
of the identified attractors. As defined in Definition 22, a sequential control path W
is made up of a sequence of one-step control sets: hCA1!A2

min , CA2!A3
min , . . . , CAm�1!Am

min i.
Theorem 4 shows that to compute the minimal OI control for each step, let us say
from Ai to Aj, i, j 2 [1, m], we first compute the strong basin of Aj, basS

TS(Aj), and
then find the state sj 2 basS

TS(Aj) that has the minimal Hamming distance to Ai.
Suppose the state si is the state in Ai that realises this minimal Hamming distance.
By comparing the values of the nodes in si and sj, we are able to compute the

minimal OI control C
Ai!Aj
min .

Algorithm 7 describes a procedure, called ASI_Control, for computing ASI control
paths with at most k perturbations. This algorithm is based on the decomposition-
based computation of strong basins, Comp_Strong_Basin_Decomp. The proce-
dure ASI_control takes as inputs the Boolean functions F, a threshold k of the
number of perturbations, the source attractor As, the target attractor At, and the set
of attractors A of TS.

Algorithm 7 contains two parts. The first part includes lines 2-13. It computes the
strong basin SBAt of the target attractor At (line 3). For each attractor A, (A 2 A

and A 6= At), it generates a dictionary LA to save all the valid ASI control paths
from A to At. It then computes the minimal OI control from A to At, denoted
CA!At . Let #p represent the number of perturbations required by CA!At . CA!At is
considered valid and saved to LA if either (1) A is the source attractor As and the
number of perturbations #p is not greater than k; or (2) A is not As and #p is less
or equal to (k � 1). If A is an intermediate attractor, namely A 6= As, CAs!A would
require at least one perturbation. Therefore, the size of CA!At should not exceed
(k � 1). A is saved to I as an intermediate attractor if A 6= As and #p  k � 1.

The second part includes lines 14-36. It extends the control paths computed in the
previous part by recursively taking every intermediate attractor as a new target

68 Chapter 5. Source-target Control

Algorithm 7 Attractor-based sequential instantaneous control

1: procedure ASI_Control(F, k, As, At, A)
2: Initialise a list I := ∆ to store possible intermediate attractors.
3: SBAt :=Comp_Strong_Basin_Decomp(F, At) // strong basin of the target
4: Initialise a dictionary to store paths L := {LA1 , LA2 , . . . , LAm}, Ai 2 A.
5: for A 2 (A \ At) do //find attractors that have shorter paths to At
6: CA!At :=Comp_Control_Set(A, SBAt)
7: if (A = As and |CA!At |  k) or (A 6= As and |CA!At |  k � 1) then

8: FA!At .add(At)
9: WA!At .add(CA!At)

10: Add the path (FA!At , WA!At) to LA
11: Add A to I as a candidate intermediate if A 6= As.
12: end if

13: end for

14: while I 6= ∆ do

15: Initialise a new list I0 := ∆
16: for A0

t 2 I do // new target
17: SBA0

t
:=Comp_Strong_basin_Decomp(F, A0

t)
18: for A0

s 2 (A \ (A0
t [At)) do // new source

19: CA0
s!A0

t
:=Comp_Control_Set(A0

s, SBA0
t
)

20: for (FA0
t!At , WA0

t!At) 2 LA0
t

do

21: FA0
s!At := FA0

t!At ; Insert A0
t to the beginning of FA0

s!At .
22: if A0

s /2 FA0
t!At then

23: h := the total number of perturbations required by WA0
t!At .

24: h := h + |CA0
s!A0

t
|

25: if (A0
s = As and h  k) or (A0

s 6= As and h  k � 1) then

26: WA0
s!At := WA0

t!At

27: Insert CA0
s!A0

t
to the beginning of WA0

s!At .
28: Add the extended path (FA0

s!At , WA0
t!At) to LA0

s
.

29: Add A0
s to I0 as a candidate intermediate if A0

s 6= As.
30: end if

31: end if

32: end for

33: end for

34: end for

35: I := I0

36: end while

37: Return LAs

38: end procedure

and computing the minimal control from other attractors to the new target attrac-
tor. Specifically, for each new target attractor A0

t 2 I, it computes the minimal OI
control CA0

s!A0
t

from A0
s in (A \ (A0

t [At)) to A0
t (line 19). Then, for every sequential

path from A0
t to At, for instance (FA0

t!At , WA0
t!At), it verifies whether A0

s can be
appended to the beginning of FA0

t!At to form a new path from A0
s to A0

t based on
the following conditions: (1) A0

s is not an intermediate in path A0
t ! . . . ! At; and

(2) the total number of perturbations of the new path FA0
s!At should not exceed k

(or k � 1) if A0
s = As (or A0

s 6= As). When both conditions are satisfied, we save the
new path to LA0

s
(line 28) and add A0

s to I0 as a candidate intermediate if A0
s 6= As

5.6. Attractor-based sequential instantaneous control 69

Algorithm 8 Attractor-based sequential temporary control

1: procedure AST_Control(F, k, As, At, A)
2: Initialise a list I := ∆ to store possible intermediate attractors.
3: WBAt :=Comp_Weak_Basin(F, At) // weak basin of the target
4: SBAt :=Comp_Strong_Basin_Decomp(F, At) // strong basin of the target
5: Initialise a dictionary to store paths L := {LA1 , LA2 , . . . , LAm}, Ai 2 A.
6: for A 2 (A \ At) do //find attractors that have shorter paths to At
7: CA!At :=Comp_Min_OT_Control(A, WBAt , SBAt)
8: if (A = As and |CA!At |  k) or (A 6= As and |CA!At |  k � 1) then

9: FA!At .add(At)
10: WA!At .add(CA!At)
11: Add the path (FA!At , WA!At) to LA
12: Add A to I as a candidate intermediate if A 6= As.
13: end if

14: end for

15: while I 6= ∆ do

16: Initialise a new list I0 := ∆
17: for A0

t 2 I do // new target
18: WBA0

t
:=Comp_Weak_basin(F, A0

t)
19: SBA0

t
:=Comp_Strong_basin_Decomp(F, A0

t)
20: for A0

s 2 (A \ (A0
t [At)) do // new source

21: CA0
s!A0

t
:=Comp_Min_OT_Control(A, WBAt , SBAt)

22: for (FA0
t!At , WA0

t!At) 2 LA0
t

do

23: FA0
s!At := FA0

t!At ; Insert A0
t to the beginning of FA0

s!At .
24: if A0

s /2 FA0
t!At then

25: h := the total number of perturbations required by WA0
t!At .

26: h := h + |CA0
s!A0

t
|

27: if (A0
s = As and h  k) or (A0

s 6= As and h  k � 1) then

28: WA0
s!At := WA0

t!At

29: Insert CA0
s!A0

t
to the beginning of WA0

s!At .
30: Add the extended path (FA0

s!At , WA0
t!At) to LA0

s
.

31: Add A0
s to I0 as a candidate intermediate if A0

s 6= As.
32: end if

33: end if

34: end for

35: end for

36: end for

37: I := I0

38: end while

39: Return LAs

40: end procedure

(line 29). After going through all the intermediate attractors in I (lines 16-34), it
updates the set of intermediate attractors I and repeats steps at lines 14-36 until I
is empty. In the end, all the ASI control paths from As to At are saved in LAs .

70 Chapter 5. Source-target Control

5.7 Attractor-based sequential temporary control

Given a Boolean network BN = (X, F), let A be the set of attractors of TS, As

and At be the source and target attractors, respectively. Algorithm 8 describes a
procedure, called AST_Control, for computing AST control paths within k pertur-
bations. Procedure AST_Control is based on previously developed algorithms for
the computation of weak basin and strong basin, denoted as Comp_Weak_Basin
and Comp_Strong_Basin_Decomp, and the algorithm for the minimal OT control,
namely Comp_Min_OT_Control.

The overall procedures of AST_Control are very similar to ASI_Control. It also
traverses attractors in A to find possible intermediate attractors and then tries
to extend the sequential paths. Here we only highlight the differences between
AST_Control and ASI_Control as follows. Because at each step, temporary con-
trol searches the weak basin of the (intermediate) target attractor At (A0

t) rather
than the strong basin for solutions, procedure AST_Control computes the weak
basin of At (A0

t) besides the strong basin (lines 3 and 18). Given the strong basin
and the weak basin of At (A0

t), it uses the procedure Comp_Min_OT_Control in
Algorithm 4 to compute the minimal OT control from As to At (or from A0

s to A0
t).

Let F = hA1, A2, . . . , Ami, where A1 = As, Am = At, Ai 6= Aj for any i, j 2 [1, m]
and 2  m  |A|, denote the sequence of the attractors of an AST control path.
To compute the minimal OT control for each step, let us say from Ai to Aj, pro-
cedure Comp_Min_OT_Control explores the weak basin basW

TS(Aj) of Aj starting
from the state s0 that has the minimal Hamming distance to the temporal source
attractor Ai. If the corresponding control CAi!Aj results in a transition system
TS|CAi!Aj

such that s0 is in the strong basin of the remaining strong basin of Aj,

denoted basS
TS|CAi!Aj

(basS
TS(At \ S|CAi!Aj

)), CAi!Aj is a minimal OT control from Ai

to Aj. Otherwise, we move on to the next candidate. Eventually, we will find a
minimal OT control. Because the temporary control C leads to a temporary change
of the dynamics, it is possible that the temporal target attractor Aj is not preserved
in TS|CAi!Aj

. As long as some state in basS
TS(Aj) is preserved in TS|CAi!Aj

, namely

(basS
TS(Aj) \ S|CAi!Aj

) 6= ∆, and s0 is in the strong basin of the remaining strong

basin in TS|C(basS
TS(Aj)\S|CAi!Aj

), s0 will surely evolve to (basS
TS(Aj) \ S|CAi!Aj

) when

applying the control for sufficient time. Afterwards, the control can be released and
the network will eventually evolve to At spontaneously. The others steps for the
construction of sequential steps remain the same as procedure ASI_Control.

5.8 Attractor-based sequential permanent control

In this section, we shall develop an algorithm to solve the ASP control problem. We
have developed an algorithm to compute the minimal OP control [SPP19b], denoted
as OP_Control, based on Corollary 1. The basic idea is that we start from the state
s0 in the weak basin of the target attractor that have the minimal Hamming distance
to the source attractor, and verify if (1) the the corresponding control preserves the

5.8. Attractor-based sequential permanent control 71

Algorithm 9 Attractor-based sequential permanent control

1: procedure Perm_Control_Validation(CA0
s!A0

t
, A0

t, FA0
t!At , WA0

t!At)
2: A1 := F[0] // the first intermediate A1 in FA0

t!At

3: CA0
t!A1

:= W[0] // the first control set CA0
t!A1

in WA0
t!At

4: F0 := FA0
t!At .pop(), W0 := WA0

t!At .pop() //delete the first element
5: C00 := CA0

s!A0
t
\ CA0

t!A1

6: isValid := True
7: if A0

t|C00 = A1|C00 and F0
6= ∆ then

8: isValid :=Perm_Control_Validation(C00, A0
t, F0, W0)

9: else if A0
t|C00 6= A1|C00 then

10: isValid := False
11: end if

return isValid
12: end procedure

target attractor and (2) the intermediate state s0 is in the strong basin of the target
attractor in the transition system under control. If so, we are done; otherwise, we
exclude the state s0 from the weak basin of the target attractor and repeat the above
steps until we find a valid permanent control.

The algorithm for ASP control explores the same way as Algorithm 8 to con-
struct sequential paths, but it is more involved. It can be achieved by modi-
fying procedure AST_Control in Algorithm 8 as follows. First, at lines 7 and
21, we simply replace the procedure Comp_Min_OT_Control with the procedure
Comp_Min_OP_Control. Second, when extending the sequential paths, besides
the conditions at line 27, we add the procedure Perm_Control_Validation to ver-
ify whether the control CA0

s!A0
t

can be inserted to the beginning of WA0
t!At . Because

for each control step of AST, the temporary perturbations are released at one time
point to retrieve the original transition system and let the network evolve sponta-
neously to the the intermediate/target attractor. But ASP control adopts permanent
control that will be maintained for all the following time steps. Therefore, when
extending a permanent control C to the beginning of a sequential path, it has to
be verified whether the application of C will affect the reachability of the following
control steps. To avoid duplication, here we only give the explanations of the pro-
cedure Perm_Control_Validation in Algorithm 9. The purpose of this procedure
is to verify whether the control CA0

s!A0
t

can be added to the beginning of FA0
t!At to

form a new path FA0
s!At . The verification is carried out recursively. Let us assume

FA0
t!At = hA1, A2, . . . , Ati. The first intermediate attractor is A1 and the control

from A0
t to A1 is CA0

t!A1
. Since CA0

s!A0
t

and CA0
t!A1

may require to perturb the same
node in the opposite way, we compute C00 = CA0

s!A0
t
\ CA0

t!A1
. If the projections of

A0
t and A1 to C00 are the same, A1 is preserved under the permanent control C00 and

we proceed to the remaining control steps (lines 7-8); otherwise, CA0
s!A0

t
is not valid

(lines 9-10).

Example 11. For the Boolean network given in Example 1, we compute ASI, AST and
ASP control paths from A1 and A3. The thresholds of the number of perturbations for
ASI, AST and ASP are set as the number of perturbations required by the minimal OI,
OT and OP, respectively. Figure 5.4 (a) shows the ASI control paths. The minimal OI

72 Chapter 5. Source-target Control

011

101

001 010

111 100

000

110

A1

A2A3

011

101

001 010

111 100

000

110

A1

A2A3

(a) (b)

Figure 5.4: Sequential control of the Boolean network of Example 11. (a) shows the ASI
control paths and (b) shows the AST/ASP control paths.

control drives the network from (000) directly to (111) and requires three perturbations.

ASI control identifies a sequential path (000)
{x1=1,x2=1}

�������! (110)
{x3=1}

����! (111), which also
needs three perturbations in total. The results of AST and ASP are the same as shown in
Figure 5.4 (b). The minimal OT and OP control requires two perturbations by stirring the
network from (000) to the intermediate state (101) or (011). AST and ASP identify two

sequential control paths: (000)
{x1=1}

����!
{x2=1}

(110)
{x3=1}

����! (111).

Constraints on intermediate attractors for sequential control

Given a Boolean network, some of its attractors are not suitable to play the role
of intermediates for sequential control. For instance, mature red blood cells lack
a cell nucleus in order to carry maximal oxygen to the body. Such cell cannot be
reprogrammed to other cells and thus are not qualified for intermediate attractors.

Our algorithms for attractor-based sequential control can be modified to exclude
such undesired attractors as intermediate attractors. Let U denote the set of un-
desired attractors. The implementation of restrictions on intermediate attractors is
quite straightforward. The input A of algorithms for ASI, AST and ASP stores the
candidate intermediate attractors. Thus, we simply exclude attractors in U from A

and keep the other procedures unchanged. In this way, undesired attractors will be
skipped during the computation.

5.9 Evaluation

In this section, we apply the six source-target control methods, including OI, OT,
OP, ASI, AST and ASP, to a number of real-life biological networks to demonstrate
their efficiency and efficacy. All the methods are implemented in our software
CABEAN [SP20a] based on the model checker MCMAS [LQR17] to encode Boolean
networks into the efficient data structure BDDs. All the experiments are performed
on a high-performance computing (HPC) platform, which contains CPUs of Intel
Xeon Gold 6132 @2.6 GHz.

The comparison of the six control methods focuses on the number of perturbations,
the number of solutions and the computational time. We will analyse in depth the
control results of the cardiac gene regulatory network, the myeloid differentiation
network, and the tumour network, and give an overview of the results of some other

5.9. Evaluation 73

FHF SHF Attractor

BMP2 1 0 1
canWnt 0 1 0
Dkk1 0 0 0
Fgf8 0 1 0
Foxc12 0 1 0
GATAs 1 1 0
Isl1 0 1 0
Mesp1 0 0 0
Nkx25 1 1 0
Tbx1 0 1 0
Tbx5 1 0 0
exogenBMP2I 1 1 1
exogenBMP2II 1 1 1
exogenCanWntI 0 1 0
exogenCanWntII 0 1 0

Table 5.1: Attractors of the cardiac network.

FHF ! SHF SHF ! FHF

OI {exogenCanWntI=1} {BMP2=1 canWnt=0 exogenCanWntI=0
exogenCanWntII=0 }

OT {exogenCanWntI=1}
{Tbx5=1 exogenCanWntI=0}

{BMP2=1 exogenCanWntI=0}
{Mesp1=1 exogenCanWntI=0}

OP {exogenCanWntI=1}
{Tbx5=1 exogenCanWntI=0}

{BMP2=1 exogenCanWntI=0}

Table 5.2: One-step control of the cardiac network.

networks. We do not compare our methods with other methods in the literature,
because as discussed in Section 1.4, most of the methods proposed in the literature
are not dealing with the problem of source-target control of asynchronous Boolean
networks. The most relevant works by Mandon et al. [MHP16, MHP17] cannot deal
with networks with more than around 20 nodes.

5.9.1 Control of the cardiac gene regulatory network

The cardiac gene regulatory network is constructed for the early cardiac gene reg-
ulatory network of the mouse, including the core genes required for the cardiac
development and the first heart field (FHF) and the second heart field determi-
nation [HGZ+12]. This network has 15 nodes, out of which exogenBMP2I and
exogenCanWntI are input nodes. We refer the structure of the network to the orig-
inal work [HGZ+12]. Under the initial condition given in [HGZ+12], where the
input node exogenBMP2I is set to 1, this network contains three attractors listed in
Table 5.1. Two of the attractors correspond to FHF and SHF.

74 Chapter 5. Source-target Control

FHF ! SHF SHF ! FHF

OI 0.001 0.006
OT 0.003 0.067
OP 0.002 0.046

Table 5.3: Computational time for one-step control of the cardiac network. The units of
time are seconds.

We compute different control paths for the conversion between FHF and SHF. For
the conversion either from FHF to SHF or from SHF to FHF, there does not exist
any sequential control path (ASI, AST or ASP). The results of one-step control,
including OI, OT and OP, are given in Table 5.2. The results show that it is necessary
to control exogenCanWntI for the conversion between FHF and SHF. This is quite
straightforward, since exogenCanWntI is a non-initialised input node and it can
take a value of either 0 or 1. Moreover, exogenCanWntI has a value of 1 in SHF and
has a value of 0 in FHF as shown in Table 5.1. Thus, exogenCanWntI is essential
for the transformation.

To reprogram FHF to SHF, it is sufficient to control exogenCanWntI with instanta-
neous, temporary or permanent perturbations. But more perturbations are required
to reprogram SHF to FHF. The minimal OI control requires four perturbations,
while the minimal OT and OP control require only two perturbations. The minimal
OT and OP control find two common solutions, {BMP2=1 exogenCanWntI=0} and
{BMP2=1 exogenCanWntI=0}. That is, the temporary or permanent control of these
two solutions will both guide the network from SHF to FHF. For such cases, tem-
porary control is preferable to avoid unknown consequences that may be caused
by the permanent change of the dynamics. The OT control {Mesp1=1 exogenCan-
WntI=0} cannot be applied with permanent perturbations, because attractor FHF
vanishes in its resulting transition system, which makes it impossible to reach FHF.
The computational time given in Table 5.3 shows that our methods for one-step
control are all very efficient.

5.9.2 Control of the myeloid differentiation network

Hematopoiesis is the process through which mature blood cells are manufactured.
The myeloid differentiation network is constructed to model the differentiation pro-
cess of common myeloid progenitors (CMPs) into four types of mature blood cells,
including megakaryocytes, erythrocytes, granulocytes and monocytes [KMST11].
This network consists of 11 transcription factors as shown in Figure 5.5. Their
Boolean functions can be found in the original work [KMST11].

With the attractor detection method [MPQY19], we identify six singleton attractors
as shown in Table 5.4. It has been validated that expressions of four attractors cor-
respond to microarray expression profiles of megakaryocytes, erythrocytes, granu-
locytes and monocytes [KMST11]. Attractor A1 is an all-zero attractor, where all the
nodes have a value of 0. Attractor A2 with the activation of PU1, cJun and EgrNab
might be caused by pathological alterations [KMST11].

5.9. Evaluation 75

PU1

GATA2 GATA1

FOG1

Fli1

SCL

EKLF

C/EBP

Gfi1EgrNab

cJun
�

Figure 5.5: The structure of the myeloid differentiation network.

nodes A1 A2 granulocytes monocytes megakaryocytes erythrocytes

GATA2 0 0 0 0 0 0
GATA1 0 0 0 0 1 1
FOG1 0 0 0 0 1 1
EKLF 0 0 0 0 0 1
Fli1 0 0 0 0 1 0
SCL 0 0 0 0 1 1
CEBPa 0 0 1 1 0 0
PU1 0 1 1 1 0 0
cJun 0 1 0 1 0 0
EgrNab 0 1 0 1 0 0
Gfi1 0 0 1 0 0 0

Table 5.4: Attractors of the myeloid differentiation network.

EgrNab, C/EBP , PU1, cJun, GATA1

megakaryo
cytes

 monocytes

A2

PU1,
GATA1 C/EBP

(a)
(b)

C/EBP

EgrNab, C/EBP , GATA1

EgrNab, C/EBP , PU1
megakaryo

cytes
 monocytes

PU1

A2

Figure 5.6: Source-target control from megakaryocytes to monocytes.

Conversion from megakaryocytes to monocytes

We compute the control for the conversion from megakaryocytes to monocytes.
The control paths identified by OI and ASI are illustrated in Figure 5.6 (a) and the
control paths of OT, OP, AST and ASP are shown in Figure 5.6 (b). In particular,
the results of OT and OP and the results of AST and ASP are identical. We can

76 Chapter 5. Source-target Control

Control without constraints Control with constraints

OI {GATA1=0 C/EBPa=1 PU1=1 Gfi1=1} ∆{GATA1=0 Fli1=0 C/EBPa=1 Gfi1=1}

OT {C/EBPa=1 PU1=1 Gfi1=1} {C/EBPa=1 PU1=1 Gfi1=1}{GATA1=0 C/EBPa=1 Gfi1=1}

OP {C/EBPa=1 PU1=1 Gfi1=1} {C/EBPa=1 PU1=1 Gfi1=1}{GATA1=0 C/EBPa=1 Gfi1=1}

Table 5.5: One-step control from megakaryocytes to granulocytes with and without con-
straints on the perturbations.

GATA2 GATA1 FOG1 EKLF Fli1 SCL C/EBPaPU1 cJun EgrNab Gfi1

0 0 * * 0 * 1 * * 0 1
0 0 * * 1 * 1 1 * 0 1

Table 5.6: Strong basin of the attractor granulocytes. Symbol ‘*’ means the node can take a
value of both 0 and 1.

see that the minimal OI control requires the activation of EgrNab, C/EBPa, PU1,
cJun and the inhibition of GATA1, while OT or OP can achieve the goal by either
(1) the activation of EgrNab, C/EBPa and PU1; or (2) the activation of EgrNab and
C/EBPa, together with the inhibition of GATA1. All the sequential paths need two
steps, where A2 is adopted as the intermediate attractor. For the first step, ASI
activates PU1 and inhibits GATA1, while AST and ASP only need to activate PU1.
When the network converges to A2, the three methods require to activate C/EBPa.
After that, the network will evolve spontaneously to the target attractor monocytes.

We can easily observe that OT and OP require fewer perturbations than OI. Com-
pared to one-step control, sequential control has the potential to identify novel
control paths with even fewer perturbations. In particular, Figure 5.6 shows that
AST and ASP are able to identify a path with only two perturbations, while ASI
requires at least three perturbations.

The efficacy of the identified sequential temporary/permanent path is confirmed
by the predictions in [KMST11]. We spot the critical role of PU1 and C/EBPa

during the transdifferentiation from megakaryocytes to monocytes. According to
the expression profiles, both PU1 and C/EBPa are not expressed in MegE lineage
(megakaryocytes and erythrocytes), while they are expressed in GM lineage (gran-
ulocytes and monocytes). In this network, no regulator can activate C/EBPa and
PU1 is primarily activated by C/EBPa. Therefore, C/EBPa has to be altered exter-
nally to reprogram MegE lineage to GM lineage. More perturbations are necessary
to accurately reach the monocytes lineage. Sustained activation of PU1 and the
absence of C/EBPa guide the network to A2, the expression of which differs with
monocytes only in C/EBPa [KMST11].

Conversion from megakaryocytes to granulocytes

We take the conversion from megakaryocytes to granulocytes to illustrate the effects
of integrating practical constraints on the perturbations and intermediate attractors.

5.9. Evaluation 77

AST control

PATH 1 - #perturbations: 3
Sequence of the attractors: megakaryocytes -> granulocytes

STEP 1
Control set 1: C/EBPA=1 PU1=1 Gfi1=1
Control set 2: GATA1=0 C/EBPA=1 Gfi1=1

PATH 2 - #perturbations: 3
Sequence of the attractors: megakaryocytes -> A1 -> granulocytes

STEP 1
Control set 1: GATA1=0

STEP 2
Control set 1: C/EBPA=1 Gfi1=1

PATH 3 - #perturbations: 3
Sequence of the attractors: megakaryocytes -> A2 -> granulocytes

STEP 1
Control set 1: PU1=1

STEP 2
Control set 1: C/EBPA=1 Gfi1=1
Control set 2: EgrNab=0 C/EBPA=1
Control set 3: C/EBPA=1 cJun=0
Control set 4: C/EBPA=1 PU1=0

PATH 4 - #perturbations: 3
Sequence of the attractors: megakaryocytes -> A2 -> monocytes ->

granulocytes
STEP 1

Control set 1: PU1=1
STEP 2

Control set 1: C/EBPA=1
STEP 3

Control set 1: Gfi1=1
Control set 2: EgrNab=0
Control set 3: cJun=0
Control set 4: PU1=0

Figure 5.7: AST control from megakaryocytes to granulocytes.

Constraints on perturbations. Let us assume node GATA1 should not be perturbed in
either way (from 1 to 0 or from 0 to 1). Table 5.5 shows the results of one-step control
with and without constraints on the perturbations. Without any constraints, OI, OT
and OP all find solutions that require to perturb GATA1 (see the second column
of Table 5.5). By setting GATA1 as an undesired node for perturbation, OT and
OP find a minimal control satisfying the constraint. However, there does not exist
any OI control without perturbing GATA1. The major principle of OI control is
that the control should drive the network from megakaryocytes to the strong basin
of granulocytes. Table 5.4 shows that GATA1 has a value of 1 in megakaryocytes,
while GATA1 is 0 in any state in the strong basin of granulocytes as shown in
Table 5.6. Hence, it is inevitable to flip the expression of GATA1 for OI control.
When GATA1 is not allowed for intervention, OI control returns an empty set.

78 Chapter 5. Source-target Control

AST control with constraints on intermediate attractors

PATH 1 - #perturbations: 3
Sequence of the attractors: megakaryocytes -> granulocytes

STEP 1
Control set 1: Gfi1=1 C/EBPA=1 PU1=1
Control set 2: Gfi1=1 GATA1=0 C/EBPA=1

PATH 2 - #perturbations: 3
Sequence of the attractors: megakaryocytes -> A2 -> granulocytes

STEP 1
Control set 1: PU1=1

STEP 2
Control set 1: Gfi1=1 C/EBPA=1
Control set 2: EgrNab=0 C/EBPA=1
Control set 3: cJun=0 C/EBPA=1
Control set 4: C/EBPA=1 PU1=0

PATH 3 - #perturbations: 3
Sequence of the attractors: megakaryocytes -> A2 -> monocytes ->

granulocytes
STEP 1

Control set 1: PU1=1
STEP 2

Control set 1: C/EBPA=1
STEP 3

Control set 1: Gfi1=1
Control set 2: EgrNab=0
Control set 3: cJun=0
Control set 4: PU1=0

Figure 5.8: AST control from megakaryocytes to granulocytes with constraints on interme-
diate attractors.

Constraints on intermediate attractors. Note that attractor A1 does not have a biolog-
ical interpretation and mature erythrocytes in mammals do not have cell nucleus,
therefore, we set these two attractors as undesired intermediate attractors for se-
quential control. We take AST control as the representative and show the results
of AST control with and without constraints on the intermediate attractors in Fig-
ures 5.7 and 5.8. In the two figures, ‘PATH 1’ is the minimal OT control, which
determines the value of the threshold k. Without any restrictions, there exist sev-
eral AST control paths, corresponding to the following sequences of attractors: (1)
megakaryocytes ! A1 ! granulocytes; (2) megakaryocytes ! A2 ! granulocytes
and (3) megakaryocytes ! A2 ! monocytes ! granulocytes. When A1 and ery-
throcytes are set as undesired intermediates, AST control identify several paths
corresponding to the following sequences of attractors: (1) megakaryocytes ! A2
! granulocytes and (2) megakaryocytes ! A2 ! monocytes ! granulocytes.

5.9. Evaluation 79

HS Apop1 Apop2 Apop3 Apop4 EMT1 EMT2 M1 M2

Metastasis 0 0 0 0 0 0 0 1 1
Migration 0 0 0 0 0 0 0 1 1
Invasion 0 0 0 0 0 0 0 1 1
EMT 0 0 0 0 0 1 1 1 1
Apoptosis 0 1 1 1 1 0 0 0 0
CellCycleArrest 0 1 1 1 1 1 1 1 1
ECMicroenv 0 0 0 1 1 0 0 1 1
DNAdamage 0 1 1 1 1 1 0 1 0
GF 0 0 0 0 0 1 1 1 1
TGFbeta 0 0 0 1 1 0 0 1 1
p21 0 1 1 1 1 0 0 0 0
CDH1 1 1 1 1 1 0 0 0 0
CDH2 0 0 0 0 0 1 1 1 1
VIM 0 0 0 0 0 1 1 1 1
TWIST1 0 0 0 0 0 1 1 1 1
SNAI1 0 0 0 0 0 1 1 1 1
SNAI2 0 0 0 0 0 1 1 1 1
ZEB1 0 0 0 0 0 1 1 1 1
ZEB2 0 0 0 0 0 1 1 1 1
AKT1 0 0 0 0 0 0 0 0 0
DKK1 0 0 0 0 0 0 0 1 1
CTNNB1 0 0 0 0 0 0 0 0 0
NICD 0 0 0 0 0 0 0 1 1
p63 0 0 1 0 1 0 0 0 0
p53 0 1 0 1 0 0 0 0 0
p73 0 0 1 0 1 0 0 0 0
miR200 0 1 1 1 1 0 0 0 0
miR203 0 1 0 1 0 0 0 0 0
miR34 0 0 0 0 0 0 0 0 0
AKT2 0 0 0 0 0 1 1 1 1
ERK 0 0 0 0 0 1 1 1 1
SMAD 0 0 0 0 0 0 0 1 1

Table 5.7: Attractors of the tumour network.

5.9.3 Control of the tumour network

The tumour network is constructed to study the role of individual mutations or
their combinations that have influences on the development of metastasis [CMR+15].
This network has 32 nodes and 9 singleton attractors. The expressions of the at-
tractors are given in Table 5.7. Among the attractors, the homeostatic state (HS)
corresponds to the state where metastasis is inhibited by Cdh1 activity. Four of
the attractors, Apop1, Apop2, Apop3 and Apop4, where DNAdamage is on and
the growth factor (GF) is off, correspond to apoptosis states. Two of the attractors,
EMT1 and EMT2, represent the EMT phenotype (the epithelial-mesenchymal tran-
sition). The other two attractors, M1 and M2, represent metastasis in the presence
of GF.

80 Chapter 5. Source-target Control

Control Time (seconds)

OI {ECMicroenv=1 DNAdamage=1 ZEB1=1
SNAI2=1 NICD=1}

0.076

OT {ECMicroenv=1 DNAdamage=1 AKT1=1} 1.113{ECMicroenv=1 DNAdamage=1 AKT2=1}
OP {ECMicroenv=1 DNAdamage=1 AKT2=1} 1.342

Table 5.8: One-step control from HS to M1.

ASI AST/ASP
#p Sequence of attractors #p Sequence of attractors

2 HS ! M2 ! M1 2 HS ! M2 ! M1
4 HS ! M2 ! EMT2 ! M1 3 HS ! EMT2 ! M1
4 HS ! M2 ! EMT1 ! M1 3 HS ! EMT1 ! M1
4 HS ! M2 ! EMT2 ! EMT1 ! M1 3 HS ! EMT2 ! EMT1 ! M1
5 HS ! EMT2 ! M1 3 HS ! EMT2 ! M2 ! M1
5 HS ! EMT2 ! EMT1 ! M1
5 HS ! EMT2 ! M2 ! M1
5 HS ! Apop1 ! M2 ! M1
5 HS ! Apop2 ! M2 ! M1
5 HS ! Apop3 ! M2 ! M1
5 HS ! Apop4 ! M2 ! M1
5 HS ! Apop1 ! Apop3 ! M2 ! M1
5 HS ! Apop2 ! Apop4 ! M2 ! M1

Table 5.9: Sequential control from HS to M1. ‘#p’ represents the size of the control sets,
namely the number of perturbations.

ASI AST/ASP
#p Sequence of attractors #p Sequence of attractors

2 HS ! M2 ! M1 2 HS ! M2 ! M1
4 HS ! M2 ! EMT2 ! M1 3 HS ! EMT2 ! M1
4 HS ! M2 ! EMT1 ! M1 3 HS ! EMT1 ! M1
4 HS ! M2 ! EMT2 ! EMT1 ! M1 3 HS ! EMT2 ! EMT1 ! M1
5 HS ! EMT2 ! M1 3 HS ! EMT2 ! M2 ! M1
5 HS ! EMT2 ! EMT1 ! M1
5 HS ! EMT2 ! M2 ! M1

Table 5.10: Sequential control from HS to M1 with Apop1, Apop2, Apop3, and Apop4 as
undesired attractors. ‘#p’ represents the size of the control sets, namely the number of
perturbations.

We compute the key interventions required for the conversion from HS to M1 with
the six control methods. The results of one-step control, including detailed control
sets and the computational time, are given in Table 5.8. OI requires at least five
perturbations. OT and OP reduce the number of perturbations from five to three.
Even though OT and OP require the same number of perturbations, OT finds two
solutions while OP finds only one. In terms of the computational time, OT and
OP took longer time than OI, because OT and OP may take several verification
iterations before finding a valid solution.

5.9. Evaluation 81

The attractor-based sequential control methods use the minimal number of pertur-
bations required by their corresponding one-step version as the threshold k and
identify all the sequential paths within the threshold. ASI identifies 13 sequential
paths, while AST and ASP find 23 identical control paths. For simplicity, we give
the sequences of the attractors and the number of total perturbations rather than
detailed control sets of the sequential control paths in Table 5.9. Note that there
may exist different paths that return the same sequence of attractors. For instance,
there are seven AST paths that adopt EMT2 as the intermediate states (HS ! EMT2
! M1). These paths perturb different nodes to reprogram HS to EMT2.

In the results of ASI control, four attractors corresponding to apoptosis phenotypes
are chosen to be the intermediate attractors in some paths. Although some studies
showed that apoptotic cells can be rescued from the apoptosis process [GLSG01], it
is recommended to bypass such states. Thus, we set the four apoptotic attractors
(Apop1, Apop2, Apop3, and Apop4) as undesired attractors and recompute ASI,
AST and ASP control. The results are given in Table 5.10. We can see that this con-
dition does not affect the results of AST and ASP control as none of the AST/ASP
control paths employs apoptotic attractors as intermediate attractors. For ASI con-
trol, this feature eliminates many unrealistic control paths.

5.9.4 Control of other biological networks

We apply our source-target control methods (OI, OT, OP, ASI, AST and ASP) to
the other biological networks introduced in Section 2.4. The number of nodes, the
number of edges and the number of attractors of each network have been given in
Table 3.2 in Section 3.5. Since sequential control identifies the control paths with
at most k perturbations, they may find solutions with different number of pertur-
bations. For the purpose of illustration, we choose one pair of source and target
attractors for each network and only summarise the minimal number of perturba-
tions required by different control methods in Table 5.11.

Efficacy. Columns OI, OT and OP of Table 5.11 give the minimal number of pertur-
bations required by the three one-step control methods. The results show that OI
usually requires more perturbations than the other control methods. Even so, the
number of perturbations required by OI is still relatively small compared to the size
of the network. OT and OP can greatly reduce the number of perturbations com-
pared to OI by extending the period of time for control. For all the cases listed in
Table 5.11, OT and OP can achieve the goal with at most four perturbations. More-
over, OT has the potential to further reduce the number of perturbations compared
to OP. For the bortezomib network and the Th Cell differentiation network (T-diff),
OT requires three perturbations while OP needs at least four perturbations. The
reason is that temporary control will be released at some time point, which em-
powers the control that might cause the absence of the target attractor during the
control. This is not allowed for OP as the perturbations are applied for all the fol-
lowing time steps and thus the target attractor must be preserved in the transition
system under control.

82 Chapter 5. Source-target Control

Network The minimal number of perturbations
OI OT OP ASI AST ASP

yeast 4 4 4 4 2 3
ERBB 9 3 3 8 3 3
HSPC-MSC 2 2 2 2 2 2
hematopoiesis 4 3 3 4 2 2
PC12 11 2 2 2 2 2
bladder 5 1 1 4 1 1
psc-bFA 6 3 3 5 2 3
co-infection 1 1 1 1 1 1
MAPK 14 2 2 11 2 2
CREB 3 3 3 3 3 3
HGF 14 2 2 3 2 2
bortezomib 21 3 4 14 3 4
T-diff 9 3 4 8 3 3
HIV1 3 3 3 3 3 3
CD4+ 4 3 3 4 3 3
pathway 2 2 2 2 2 2

Table 5.11: The minimal number of perturbations required by the source-target control of
the biological networks.

Network Time (seconds)
OI OT OP ASI AST ASP

yeast 0.002 0.015 0.014 0.072 0.825 0.896
ERBB 0.003 0.241 0.307 0.042 0.278 0.333
HSPC-MSC 0.071 0.075 0.079 0.086 0.098 0.109
hematopoiesis 0.031 0.238 0.446 0.467 28.902 25.595
PC12 0.01 0.466 0.403 0.235 1.787 2.173
bladder 0.033 0.064 0.065 0.296 0.192 0.295
psc-bFA 14.003 58.114 18.107 58.404 533.829 38.251
co-infection 0.320 0.509 0.552 0.333 2089.050 22970.800
MAPK 1.895 3.093 4.603 11.202 13.371 66.182
CREB 4.045 4.765 4.853 11.186 13.415 49.373
HGF 1.583 16.883 11.304 115.658 49.675 60.667
bortezomib 5.111 15.721 70.39 9.628 267.802 214.171
T-diff 2.759 8.245 10.117 18.877 224.646 271.329
HIV1 170.901 207.191 200.61 511.77 585.524 2547.94
CD4+ 190.928 280.465 373.806 1079.74 1615.1 3582.46
pathway 335.129 2589.37 2590.74 394.117 2932.93 3524.83

Table 5.12: Computational time for the source-target control of the biological networks.

Columns ASI, AST and ASP of Table 5.11 give the minimal number of perturba-
tions required by the three attractor-based sequential control methods. In a step-
wise manner, sequential control can not only reduce the number of perturbations
compared to one-step control, but also enrich the ‘solution pool’. Fewer pertur-
bations generally lead to lower experimental costs and a higher success rate for
wet-lab experiments. Diverse reliable solutions provide biologists more options for

5.10. Conclusion 83

experimental validation.

It is worth noting that for the CREB network, its attractors are purely induced by
the input nodes. For such network, suppose it has m non-initialised input nodes,
the number of attractors equals 2m and the projection of the attractors to the input
nodes includes all combination of binary strings of m bits. For any pair of source
and target attractors, the input nodes that have different values in the source and
the target are the essential control nodes.

Efficiency. Table 5.12 summarises the computational time for the six methods. All
the control methods are based on the computation of the basins, thus, their effi-
ciency strongly depends on the efficiency of the method for basin computation.
The temporary and permanent controls (OT, OP, AST and ASP) have similar per-
formance in terms of efficiency. In general, they are less efficient than the instanta-
neous control (OI and ASI) as it may take several iterations to find a valid control
(see Algorithms 4 and 6). Sequential control takes longer time than one-step con-
trol as expected. Despite that, all the methods are still very efficient. For instance,
for the CD4+ T-cell network with 188 nodes, the computational time is 190.928,
280.465, 373.806, 1079.74, 1615.1 and 3582.46 seconds for OI, OT, OP, ASI, AST and
ASP, respectively.

5.10 Conclusion

In this chapter, we have developed six methods for the source-target control of
asynchronous Boolean networks, including OI, OT, OP, ASI, AST and ASP. These
methods investigate various strategies to solve the source-target control problem.
OI, OT and OP apply the control in one step, while ASI, AST and ASP drive the
network from the source state to the target attractor through intermediate attractors
(observable biological phenotypes) by applying a sequence of perturbations. Such a
sequential strategy can provide novel reprogramming paths and may require fewer
perturbations than one-step control.

Temporary control and permanent control (OT, OP, AST, ASP) alter the dynamics
of networks either for sufficient time or permanently, thus fewer perturbations are
required to achieve the goal compared to instantaneous control (OI and ASI). Per-
manent control has a permanent influence on the dynamics of the system and thus
is more invasive than instantaneous and temporary control. Hence, temporary con-
trol, like OT and AST, is more likely to serve better solutions than instantaneous
and permanent control.

85

Chapter 6

Target Control

6.1 Introduction

In Chapter 5, we proposed six different control strategies for the source-target con-
trol of Boolean networks to drive the dynamics of a Boolean network from the
source attractor to the target attractor. However, cells in tissues and in culture
normally exist as a population of cells, corresponding to different states [dSB14].
There is a need of target control to compute a subset of nodes, whose perturba-
tion can drive the network from any initial state to the desired target attractor.
Figures 6.1 (a) and (b) illustrate the processes of source-target control and target
control, respectively. The main difference lies in the source state: the source is a
given attractor for source-target control, while the source can be any state in the
state space for target control.

 target

other attractors

source

control

(a) Source-target control

 target

other attractors

control

(b) Target control

Figure 6.1: (a) Source-target control and (b) target control of Boolean networks. The red
nodes represent the target attractor.

In this chapter, we study target control of asynchronous Boolean networks with
instantaneous, temporary and permanent perturbations (ITC, TTC and PTC). We
aim to find a control C = (0, 1), such that the instantaneous, temporary or perma-
nent application of C – setting the value of a node, whose index is in 0 (or 1), to
0 (or 1) – can drive the network from any initial state s in the state space S to the
target attractor At. Since the network can take any state s 2 S as the initial state,
there exist a set of possible intermediate states with respect to C and they form a
subset S0 of S, called schema. As explained in Section 5.3, instantaneous control
should drive the system to states in the strong basin of the target attractor. Thus,

86 Chapter 6. Target Control

we partition the strong basin of the target attractor into a set of disjoint schemata.
The support variables of each schema form an instantaneous target control. For
temporary and permanent control, according to Sections 5.4 and 5.5, we know that
all the intermediate states should fall into the weak basin of the target attractor.
Therefore, we partition the weak basin of the target attractor into a set of mutually
disjoint schemata. Each schema results in a candidate temporary or permanent
target control, which will be minimised and verified.

Clinical applications are highly time-sensitive, controlling more nodes may shorten
the period of time for generating sufficient desired cells for therapeutic applica-
tion [GD19]. Hence, we integrate our method with a threshold z on the number of
perturbations. By increasing z, we can obtain solutions with at most z perturba-
tions. It is worth noting that more perturbations may cause a significant increase in
experimental costs, hence, the threshold z should be considered individually based
on specific experimental settings.

In Section 1.4, we have discussed existing works for the control of Boolean net-
works. Among these works, the stable motif-based control [ZnA15] also deals with
the temporary target control problem. We apply our target control methods on a
number of real-life biological networks and compare their performance with the
stable motif-based control.

The rest of the chapter is organised as follows:

• In Section 6.2, we give the formal definition of the problems we are going to
study in this chapter, viz. ITC, TTC and PTC.

• In Sections 6.3, 6.4 and 6.5, we introduce our methods for ITC, TTC and PTC
based on the notion of schema, respectively.

• In Section 6.6, we apply our methods to a variety of biological networks and
compare their performance with the stable motif-based control.

6.2 The target control problems

We have studied the one-step and sequential source-target control of Boolean net-
works in Chapter 5, to identify control paths that can drive the dynamics of the
network from the source attractor to the target attractor. When the source is not
given, to identify a subset of nodes, the control of which can stir the dynamics from
any state s 2 S to the target attractor At, is called target control of Boolean networks.
Because the source can be any state s 2 S rather than a given attractor, the defini-
tion of control C for target control is slightly different with the one for source-target
control defined in Definition 15. A target control C is also a tuple (0, 1), where
0, 1 ✓ {1, 2, . . . , n} and 0 and 1 are mutually disjoint (possibly empty) sets of in-
dices of nodes of a Boolean network BN. Given a state s 2 S, the application of C

to s, denoted as C(s), is defined as a state s0
2 S, such that s0[i] = 0 for i 2 0 and

s0[i] = 1 for i 2 1. The target control can be lifted to a subset of states S0
✓ S. Given

a target control C = (0, 1), C(S0) = S00, where S00 = {s00
2 S|s00 = C(s0), s0

2 S0
}. Set

6.2. The target control problems 87

S00 includes all the intermediate states with respect to C. The control C for source-
target control and target control differs in the values of the control nodes in s and
s0. For source-target control, a node x in C has different values in s and s0. That is,
the application of a source-target control C always flips the values of the nodes in
C, therefore, it is also called toggle control. Target control neglects the values of the
nodes in s, the application of a target control C overexpresses the nodes in 1 and
inhibits the nodes in 0, therefore, we also call it fixed control.

For target control, when perturbations are applied instantaneously, temporarily or
permanently, we call them instantaneous target control (ITC), temporary target control
(TTC) or permanent target control (PTC), respectively. Let BN be a given Boolean
network, S be the set of states of BN and At be the target attractor of BN. We
formally define the three target control problems as follows.

Definition 23 (Target control).

1. Instantaneous target control (ITC): find a control C = (0, 1) such that the dy-
namics of BN always eventually reaches At on the instantaneous application of C to
any initial state s, s 2 S.

2. Temporary target control (TTC): find a control C = (0, 1) such that there exists a
t0 � 0 such that for all t � t0, the dynamics of BN always eventually reaches At on
the application of C to any initial state s, s 2 S for t steps.

3. Permanent target control (PTC): find a control C = (0, 1) such that the dynamics
of BN always eventually reaches At on the permanent application of C to any initial
state s, s 2 S. (We assume implicitly that At is also an attractor of the transition
system under control TS|C).

We define the concept of schema, which is crucial for the development of the target
control methods. Given a control C = (0, 1), the possible intermediate states with
respect to C, denoted S0 = C(S), form a schema, defined as follows.

Definition 24 (Schema). A subset S0 of S is a schema if there exists a triple M = (0, 1, D),
where 0 [1 [D = {1, 2, . . . , n}, 0, 1 and D are mutually disjoint (possibly empty) sets of
indices of nodes of BN, such that S0

|0 = {0}
|0|, S0

|1 = {1}
|1| and S0

|D = {0, 1}
|D|. 0, 1

and D are called off-set, on-set and don’t-care-set of S0, respectively. The elements in 0 [1
are called indices of support variables of S0.

Intuitively, for node xi, i 2 0, it has a value of 0 in any state s 2 S0; for node xi, i 2 1,
it has a value of 1 in any state s 2 S0. The projection of S0 to the don’t-care-set D
contains all combinations of binary strings of |D| bits. Thus, any schema S0 is of size
2|D|. Since the total number of nodes n = |0| + |1| + |D| is fixed, a larger schema
implies more elements in D and fewer elements in 0 [1.

Example 12. For attractor A1 of BN given in Example 1, its strong basin, basS
TS(A1) =

{000, 001}, forms a schema. Let us denote the values of the nodes in off-set, on-set and don’t-
care-set as ‘0’, ‘1’ and ‘⇤’, respectively. basS

TS(A1) can be represented as ‘00⇤’. The weak
basin, basW

TS(A1) = {000, 001, 010, 011, 101, 100}, can be partitioned into two schemata
{000, 001, 010, 011} and {101, 100}, represented as ‘0 ⇤ ⇤’ and ‘10⇤’, respectively.

88 Chapter 6. Target Control

6.3 Instantaneous target control

According to Theorem 4, an instantaneous control C will surely guide the dynamics
of BN from an initial state s to the target attractor At if the intermediate state
s0 = C(s) is in the strong basin of At in TS. Thus, when the initial state can be
any state s 2 S, to guarantee the inevitable reachability of the target attractor At

on the instantaneous application of C to any s 2 S, all possible intermediate states
S0 = C(S) must fall in the strong basin of the target attractor At. That is

Corollary 2. A control C = (0, 1) is an instantaneous target control from any initial state
s 2 S to a target attractor At iff C(S) ✓ basS

TS(At).

Instantaneous control is only applied instantaneously, thus, its impact on the tran-
sition system is transient. If the instantaneous control does not drive the dynamics
directly to basS

TS(At) but to any state s0
2 (S \ basS

TS(At)), from s0, there exist paths
to other attractor A, A 6= At based on the definition of strong basin. This does not
ensure the inevitable reachability of the target attractor. Therefore, for an ITC C, its
intermediate states S0 = C(S) must form a subset of basS

TS(At). For any possible
intermediate state s0

2 S0, s0[i] = 0 for i 2 0 and s0[i] = 1 for i 2 1, which indicate
that S0

|0 = {0}
|0| and S0

|1 = {1}
|1|. Let D denote the indices of the nodes that are

not in 0 or 1. Then, S0
|D = {0, 1}

|D| because the values of the nodes in the initial
states S|D stay unchanged. In another word

Observation 4. If the initial state can be any state s 2 S, for any control C = (0, 1), the
set of intermediate states S0 = C(S) forms a schema.

The notion of schema sheds light on the computation of ITC. Each schema Wi of
the strong basin of the target attractor, basS

TS(At), returns a candidate target control
Ci = (0i, 1i), where 0i and 1i are the off-set and on-set of Wi. The size of control
|Ci| equals (n � log2 |Wi|), therefore, a larger schema results in a smaller control set.
Thus, we can partition the strong basin of the target attractor, basS

TS(At), into a set of
mutually disjoint schemata W = {W1, W2, . . . , Wm}, such that W1 [W2 [. . . [Wm =
basS

TS(At). Each Wi 2 W is one of the largest schemata in basS
TS(At) \ (W1 [. . . [

Wi�1) and the indices of its support variables in 0i and 1i form a candidate ITC
Ci = (0i, 1i). In Ci, the specified input nodes can be removed because input nodes
do not have any predecessors and the values of the specified input nodes are fixed.
For large networks, there may exist many valid control sets. To restrict the number
and the size of solutions, we set a threshold z on the number of perturbations, keep
z updated with the minimal size of the computed control sets, and only save the
control sets with at most z perturbations. Algorithm 10 realises the above idea in
pseudocode.

In this way, the computation of ITC turns into the computation of the strong basin
of the target attractor and the computation of schemata. The computation of strong
basins has been solved using procedure Comp_Strong_Basin_Decomp in Algo-
rithm 2. The computation of schemata is based on BDDs, a symbolic representation
of large state space. The size of a BDD is determined by both the set of states
being represented and the chosen ordering of the variables. In BDDs, a schema is

6.4. Temporary target control 89

Algorithm 10 Instantaneous target control
1: procedure Instantaneous_Target_Control(BN, At)
2: initialise L := ∆ to store computed control sets.
3: I, Is, Ins :=Comp_input_nodes(G) // compute input nodes I, specified input

nodes Is and non-specified input nodes Ins.
4: SB :=Comp_Strong_Basin_Decomp(F, At) //strong basin of At in TS
5: W :=Comp_schemata(SB), m := |W|

6: z := n an initial threshold on the number of perturbations.
7: for i = 1 : m do // traverse the set of schemata
8: Ci :=Comp_support_variables(Wi) // Ci := (0i, 1i)
9: Ci := (0i \ Is, 1i \ Is) // remove specified input nodes

10: if |Ci|  z then

11: save Ci to L

12: z := min(|Ci|, z)
13: end if

14: end for

15: return L

16: end procedure

represented as a cube and each state is the smallest cube, also called a minterm. To
compute the largest schema Si of S is equivalent to the computation of the largest
cube of S. The partitioning of the strong basin into schemata is then transformed
into a cube cover problem in BDDs. A different variable ordering may lead to a dif-
ferent partitioning. Given a fixed ordering, the partitioning remains the same. Al-
though finding the best variable ordering is NP-hard, there exist efficient heuristics
to find the optimal ordering. Here we compute a partitioning under one variable
ordering as provided by the CUDD package [Som15] and we call this procedure
Comp_Schemata.

6.4 Temporary target control

In this section, we develop a method for TTC. First, we introduce the following
corollary, which can be derived from Theorem 5.

Corollary 3. A control C = (0, 1) is a temporary target control to a target attractor At

from any initial state s 2 S iff basS
TS(At)\ S|C 6= ∆ and C(S) ✓ basS

TS|C
(basS

TS(At)\ S|C).

Here we give an intuitive explanation of Corollary 3. We know that the application
of a control C results in a new Boolean network BN|C and the state space is restricted
to S|C. To guarantee the inevitable reachability of At, by the time we release the
control, the network has to reach a state s in the strong basin of At w.r.t. the
original transition system TS, i.e. basS

TS(At), from which there only exist paths to
At. This requires the remaining strong basin in S|C, i.e. (basS

TS(At) \ S|C), is a non-
empty set; otherwise, it is not guaranteed to reach At. Furthermore, the condition
C(S) ✓ basS

TS|C
(basS

TS(At) \ S|C) ensures any possible intermediate state s0
2 C(S) is

in the strong basin of the remaining strong basin (basS
TS(At) \ S|C) in the transition

system under control TS|C, so that the network will always evolve to the remaining

90 Chapter 6. Target Control

Algorithm 11 Temporary target control
1: procedure Temporary_Target_Control(BN, At)
2: initialise L := ∆ and W := ∆ to store valid temporary control sets and the

checked control sets, respectively.
3: I, Ins :=Comp_input_nodes(G) //compute input nodes I and non-specified

input nodes Ins.
4: SB :=Comp_Strong_Basin_Decomp(F, At) //strong basin of At in TS
5: WB :=Comp_Weak_Basin(F, At) //weak basin of At in TS
6: W :=Comp_schemata(WB), m := |W|

7: generate a vector Q of length m and set all the elements to false // Q[i]
indicates if Wi can be skipped or not.

8: z := n // set an initial threshold on the number of perturbations. n is the size of the
network.

9: for i = 1 : m do // traverse the set of schemata
10: if Q[i] = true, then continue

11: Ci :=Comp_support_variables(Wi) // Ci := (0i, 1i)
12: Ce

i := (0i \ Ins, 1i \ Ins), Cr
i := (0i \ I, 1i \ I) //essential control nodes and

non-input nodes in Ci
13: k := 0, isValid := false
14: while isValid = false and k  min(z � |Ce

i |, |C
r
i |) do

15: Csub
i :=Comp_subsets(Cr

i , k) //compute subsets of Cr
i of size k.

16: for Csub
j 2 Csub

i do

17: C
j
i := Csub

j [Ce
i , F := C

j
i(S) // F represents the set of intermediate

states w.r.t. C
j
i .

18: if C
j
i /2 W then // Ci has not been checked.

19: isValid :=Verify_TTC(F, Cj
i , SB, F)

20: add C
j
i to W.

21: if isValid = true then

22: add C
j
i to L, z := min(z, |Cj

i |)
23: Q[z] := true if Wz ✓ F for z 2 [i + 1, m] // if a schema Wz is a

subset of F, it will be skipped.
24: end if

25: end if

26: end for

27: if isValid = false, then k := k + 1
28: end while

29: end for

30: return L

31: end procedure

strong basin. Once the network reaches the remaining strong basin, the control can
be released and the network will evolve spontaneously towards the target attractor
At. Based on the definition of the weak basin, it is sufficient to search the weak
basin basW

TS(At) for TTC.

A noteworthy point is that temporary control needs to be released once the network
reaches a state in (basS

TS(At) \ S|C). On one hand, although Corollary 3 guarantees
that partial of the strong basin of At in TS is preserved in TS|C, it does not guarantee

6.4. Temporary target control 91

the presence of At in TS|C. In that case, the control C has to be released at one
point to recover the original TS, which at the same time retrieves At. On the other
hand, in clinic, it is preferable to eliminate human interventions to avoid unforeseen
consequences. Concerning the timing to release the control, since it is hard to
interpret theoretical time steps in diverse biological experiments, it would be more
feasible for biologists to estimate the timing based on empirical knowledge and
specific experimental settings.

Similar to ITC, the computation of TTC is also based on the concept of schema.
Each schema Wi of the weak basin basW

TS(At) gives a candidate TTC, Ci = (0i, 1i),
for further optimisation and validation. A larger schema results in a smaller control
set. To explore the entire weak basin basW

TS(At), we partition it into a set of mutually
disjoint schemata W = {W1, W2, . . . , Wm}, W1 [W2 [. . . [Wm = basW

TS(At). Each
Wi, i 2 m is one of the largest schemata in basW

TS(At) \ (W1 [. . . [Wi�1). For Wi,
the indices of its support variables in 0i and 1i form a candidate control Ci =
(0i, 1i). Each candidate control Ci is primarily optimised based on the properties
of input nodes. Because input nodes do not have any predecessors, it is reasonable
to assume that specified input nodes Is are redundant control nodes, while non-
specified input nodes Ins are essential for control. For the remaining non-input
nodes in Ci, denoted Cr

i , we verify its subsets of size k based on Corollary 3 from
k = 0 with an increment of 1, until we find a valid solution.

Algorithm 11 implements the above idea in pseudocode. It takes as inputs the
Boolean network BN = (X, F) and the target attractor At. It first initialises two
vectors L and W to store valid controls and the checked controls, respectively. (We
use W to avoid duplicate control validations.) Then, it computes input nodes I and
the non-specified input nodes Ins, Ins

✓ I (line 3). The weak basin WB and the
strong basin SB of At of TS are computed using procedures Comp_Weak_Basin
and Comp_Strong_Basin_Decomp developed in Chapter 4 (lines 4-5). The weak
basin WB is then partitioned into m mutually disjoint schemata with procedure
Comp_schemata. Realisation of this procedure relies on the function to compute
the largest cube provided by the CUDD package [Som15]. For each schema Wi, the
indices of its support variables computed by procedure Comp_support_variables
form a candidate control Ci (line 11). The essential control nodes Ce

i of Ci consist of
the non-specified input nodes and the non-input nodes in Ci constitute a set Cr

i for
further optimisation (line 12). We search the subsets of Cr

i starting from size k = 0
with an increment of 1 and verify whether the union of a subset Csub

j of Cr
i and

the essential nodes Ce
i , namely C

j
i = Csub

j [Ce
i , is a valid temporary target control

using procedure Verify_TTC in Algorithm 12. If C
j
i is valid, save it to L. When all

the subsets are traversed or a valid control has been found, we proceed to the next
schema Wi+1. In the end, all the verified temporary target controls are returned.

The most time-consuming part of our method lies in the verification process. As
shown in Algorithm 12, for each candidate control C, we need to reconstruct the
associated transition relations F|C and compute the strong basin of the remaining
strong basin in TS|C, i.e. basS

TS|C
(SB|C) (lines 6-8 of Algorithm 12). Even though we

have developed an efficient method for the strong basin computation, the computa-
tional time of Algorithm 12 still increases when the network size grows. To improve

92 Chapter 6. Target Control

Algorithm 12 Verification of temporary target control
1: procedure Verify_TTC(F, C, SB, F)
2: isValid := false
3: if F ✓ SB then

4: isValid = true
5: else

6: SB|C :=Comp_state_control(C, SB) //compute the remaining strong basin
w.r.t. C in TS|C

7: F|C :=Comp_Fn_control(C, F)
8: basS

TS|C
(SB|C) :=Comp_Strong_Basin_Decomp(F|C, SB|C)

9: if F ✓ basS
TS|C

(SB|C) then

10: isValid = true
11: end if

12: end if

13: return isValid
14: end procedure

Algorithm 13 Verification of permanent target control
1: procedure Verify_PTC(F, C, At, F)
2: isValid := false
3: if F|C = At|C then

4: F|C :=Comp_Fn_control(C, F)
5: basS

TS|C
(At) :=Comp_Strong_Basin_Decomp(F|C, At)

6: if F ✓ basS
TS|C

(At) then

7: isValid = true
8: end if

9: end if

10: return isValid
11: end procedure

the efficiency, we propose two heuristics: (1) skip a schema Wz (line 10 and 23 of
Algorithm 11) if it is a subset of intermediate states F of a pre-validated control C

j
i

(line 23 of Algorithm 11); and (2) set a threshold z on the number of perturbations,
keep z updated with the smallest size of valid TTCs C

j
i (line 22 of Algorithm 11)

and only compute control sets with at most z perturbations.

6.5 Permanent target control

In this section, we develop a method to solve the problem of PTC. We first introduce
the following corollary derived from Theorem 4.

Corollary 4. A control C = (0, 1) is a permanent target control from any initial state
s 2 S to a target attractor At iff At is an attractor of TS|C and C(S) ✓ basS

TS|C
(At).

Different from temporary control, permanent control is applied for all the following
time steps. Thus, a permanent control should preserve the target attractor. To
guarantee the inevitable reachability of the target attractor, all possible intermediate

6.6. Evaluation 93

011

101

001 010

111 100

000

110

A1

A2A3

011 001 010000

A1

(a) (b)

TS|CTS

Figure 6.2: (a) The original transition system and (b) the transition system under control
C = {x1 = 0} .

states should fall in the strong basin of the target attractor At in the transition
system under control, TS|C.

The algorithm for PTC can be derived from Algorithm 11 by replacing proce-
dure Verify_TTC with procedure Verify_PTC in Algorithm 13. To avoid dupli-
cation, we only explain procedure Verify_PTC here. This procedure is designed
based on Corollary 4. Line 3 verifies whether the target attractor is preserved or
not. If the target is preserved, we compute the transition relations under control
F|C and compute the strong basin of At in TS|C (lines 4-5). C is a PTC if the set of
intermediate states is a subset of basS

TS|C
(At) (lines 6-7).

Example 13. In Example 12, we showed that the strong basin of A1 of BN in Example 1,
namely basS

TS(A1), can be represented as ‘00⇤’. It is easy to obtain the ITC for A1, which
is {x1 = 0, x2 = 0}. The simultaneous inhibition of x1 and x2 can drive the network from
any state to (000) or (001), such that the network will eventually reach (000).

The weak basin of A1, basW
TS(A1), can be divided into two schemata, represented as ‘0 ⇤ ⇤’

and ‘10⇤’. ‘0 ⇤ ⇤’ contains more states than ‘10⇤’, which implies that ‘0 ⇤ ⇤’ can potentially
give a smaller TTC or PTC. Algorithms for TTC and PTC verify subsets of the control
derived from ‘0 ⇤ ⇤’ and ‘10⇤’. Based on Corollary 3 and Corollary 4, {x1 = 0} is both a
TTC and a PTC for A1. By fixing x1 to 0, the transition system changes from Figure 6.2
(a) to (b). The network is driven to a state in TS|C (see Figure 6.2 (b)) and will eventually
stable in A1.

6.6 Evaluation

As discussed in the introduction of this chapter, our methods ITC, TTC and PTC
and the stable motif-based control (SMC) [ZnA15] focus on target control of asyn-
chronous Boolean networks. In particular, both TTC and SMC employ temporary
perturbations. We apply our methods on the biological networks introduced in
Section 2.4 and compare their performance with SMC. We discuss the results of
the cardiac gene regulatory network, the myeloid differentiation network and the
tumour network in Sections 6.6.1, 6.6.2 and 6.6.3 and give an overview of the results
of the other networks in Section 6.6.4. Our target control methods, ITC, TTC and
PTC, are implemented in our software CABEAN [SP20a]. SMC1 is implemented in

1SMC is publicly available at https://github.com/jgtz/StableMotifs.

https://github.com/jgtz/StableMotifs

94 Chapter 6. Target Control

SHF FHF

ITC {exogenCanWntI=1} {canWnt=0 Foxc12=0 Tbx1=0 GATAs=0
Tbx5=1 exogenCanWntI=0

exogenCanWntII=0 }

TTC

{exogenCanWntI=1}
{GATAs=1 exogenCanWntI=0 }

{Tbx5=1 exogenCanWntI=0}
{Nkx25=1 exogenCanWntI=0}
{Mesp1=1 exogenCanWntI=0}

{Tbx1=1 exogenCanWntI=0}
{Foxc12=1 exogenCanWntI=0}

PTC {exogenCanWntI=1}
{GATAs=1 exogenCanWntI=0}
{Nkx25=1 exogenCanWntI=0}

{Tbx5=1 exogenCanWntI=0}

SMC {exogenCanWntI=1}
{GATAs=1 exogenCanWntI=0 }

{Tbx5=1 exogenCanWntI=0}
{Nkx25=1 exogenCanWntI=0}

Table 6.1: Target control of the cardiac network.

Java. All the experiments are performed on a high-performance computing (HPC)
platform, which contains CPUs of Intel Xeon Gold 6132 @2.6 GHz.

6.6.1 Control of the cardiac gene regulatory network

In Section 5.9.1, we analysed the source-target control of the cardiac gene regulatory
network. We know that this network consists of three attractors, two of which cor-
respond to FHF and SHF, when the input node, exogenBMP2I, is set to 1. Here we
apply ITC, TTC, PTC and SMC to identify interventions that can lead the network
to FHF and SHF. The results of the four control methods are given in Table 6.1.

With instantaneous, temporary or permanent perturbations, it is guaranteed to
reach SHF by the control of the non-initialised input node, exogenCanWntI. To
reach FHF, ITC requires seven perturbations, while TTC realises the goal by the
control of two nodes, including the input node exogenCanWntI together with one
of the nodes in {GATAs, Tbx5, Nkx25, Mesp1, Tbx1, Foxc12}. The results of PTC
and SMC are subsets of TTC, which demonstrates the ability of TTC in identifying
more novel solutions. With temporary and permanent perturbations, the number
of perturbations required to reach FHF is reduced from seven to two, which can
greatly reduce experimental costs and improve the operability of the experiments.

The total execution time of ITC, TTC, PTC and SMC for computing target control
for the three attractors are 0.035, 0.128, 0.148 and 4.540 seconds, respectively. For
this network, our methods are more efficient than SMC.

6.6. Evaluation 95

granulocytes monocytes megakaryocytes erythrocytes

ITC 6 7 4 4
TTC 3 3 2 2
PTC 3 3 2 2
SMC 4 4 2 2

Table 6.2: The number of perturbations required by ITC, TTC, PTC and SMC of the myeloid
differentiation network.

granulocytes monocytes

ITC {GATA2=0 GATA1=0 Fli1=0
EgrNab=0 C/EBPa=1 Gfi1=1}

{GATA2=0 GATA1=0 EgrNab=1
C/EBPa=1 PU1=1 cJun=1 Gfi1=0}

TTC
{C/EBPa=1 PU1=1 cJun=0} {EgrNab=1 C/EBPa=1 PU1=1}

{EgrNab=0 C/EBPa=1 PU1=1} {C/EBPa=1 PU1=1 Gfi1=0}
{C/EBPa=1 PU1=1 Gfi1=1}

PTC
{C/EBPa=1 PU1=1 cJun=0} {EgrNab=1 C/EBPa=1 PU1=1}

{EgrNab=0 C/EBPa=1 PU1=1} {C/EBPa=1 PU1=1 Gfi1=0}
{C/EBPa=1 PU1=1 Gfi1=1}

SMC

{GATA2=0 GATA1=0 C/EBPa=1
EgrNab=0}

{GATA2=0 GATA1=0 C/EBPa=1
EgrNab=1}

{GATA2=0 GATA1=0 C/EBPa=1
Gfi1=1}

{GATA2=0 GATA1=0 C/EBPa=1
Gfi1=0}

{GATA2=0 PU1=1 C/EBPa=1
EgrNab=0}

{GATA2=0 PU1=1 EgrNab=1
C/EBPa=1}

{GATA2=0 PU1=1 C/EBPa=1
Gfi1=1}

{GATA2=0 PU1=1 Gfi1=0
C/EBPa=1}

Table 6.3: The control sets computed by ITC, TTC, PTC and SMC for granulocytes and
monocytes of the myeloid differentiation network.

megakaryocytes erythrocytes

ITC {GATA2=0 GATA1=0 EgrNab=1
C/EBPa=1 PU1=1 cJun=1 Gfi1=0}

{GATA1=1 EKLF=1 Fli1=0 PU1=0}

TTC

{GATA2=1 EKLF=0} {GATA2=1 EKLF=1}
{GATA1=1 EKLF=0} {GATA1=1 EKLF=1}

{GATA2=1 Fli1=1} {GATA2=1 Fli1=0}
{GATA1=1 Fli1=1} {GATA1=1 Fli1=0}

{Fli1=1 PU1=0 }

PTC
{GATA1=1 EKLF=0 } {GATA1=1 EKLF=1 }

{GATA1=1 Fli1=1} {GATA1=1 Fli1=0 }
{Fli1=1 PU1=0 }

SMC {GATA1=1 EKLF=0} {GATA1=1 EKLF=1}
{GATA1=1 Fli1=1} {GATA1=1 Fli1=0}

Table 6.4: The control sets computed by ITC, TTC, PTC and SMC for megakaryocytes and
erythrocytes of the myeloid differentiation network.

96 Chapter 6. Target Control

6.6.2 Control of the myeloid differentiation network

In Section 5.9.2, we showed that four of the attractors of the myeloid differentiation
network correspond to granulocytes, monocytes, megakaryocytes and erythrocytes.
We apply ITC, TTC, PTC and SMC to identify interventions to reach the four cell
types.

Table 6.2 gives the number of perturbations required by the four methods. The
control with instantaneous perturbations (ITC) requires more perturbations than
the control with temporary perturbations (TTC and SMC) and permanent pertur-
bations (PTC) as expected. For granulocytes and monocytes, TTC and PTC find
smaller control sets than SMC. For megakaryocytes and erythrocytes, TTC, PTC
and SMC require the same number of perturbations.

Table 6.3 and Table 6.4 summarise the control sets identified by the four methods.
For each attractor, ITC only finds one control set with more perturbations than the
other methods. Although SMC finds more control sets than TTC for granulocytes
and monocytes as shown in Table 6.3, SMC requires four perturbations while TTC
and PTC need only three perturbations. Since our methods TTC and PTC only
compute the results within the threshold, they may identify more solutions if we
increase the threshold to four. For megakaryocytes and erythrocytes in Table 6.4,
TTC, PTC and SMC require the same number of perturbations, but TTC provides
more control sets than PTC and SMC. For this network, the results of PTC are either
identical to TTC or just a subset of the solutions identified by TTC. Potentially, TTC
is able to find smaller control sets than PTC, because it does not need to preserve the
target attractor during the control. We will demonstrate this point in Section 6.6.4.

The total execution time of ITC, TTC, PTC and SMC for computing target control
of this network are 0.003, 0.026, 0.03 and 8.178 seconds, respectively. We can see
that our methods outperform SMC in efficiency.

6.6.3 Control of the tumour network

In Section 5.9.3, we discussed the source-target control of the tumour network.
This network has nine singleton attractors corresponding to different cell fates. In
this section, we apply ITC, TTC, PTC and SMC to compute the target control of
this network. However, SMC was stuck in the identification of stable motifs and
failed to finish the computation within twelve hours, because the number of cycles
and/or SCCs in the expanded network of the tumour network is computationally
intractable.

Table 6.5 summarises the number of perturbations and the computational time of
ITC, TTC and PTC for each attractor. Similar to the results of the cardiac and
myeloid networks, TTC and PTC can reduce the size of control sets to a great extent
compared to ITC. With at most four perturbations, TTC and PTC can reprogram
a cell from any initial state to the desired cell phenotype. For each attractor, the
number of perturbations required by TTC and PTC is identical. The total execution
time of ITC, TTC and PTC are 0.906, 20.368 and 17.580 seconds, respectively.

6.6. Evaluation 97

Attractor The minimal number of perturbations Time (seconds)
ITC TTC PTC ITC TTC PTC

HS 11 3 3 0.043 0.741 0.883
Apop1 7 3 3 0.343 2.616 2.353
Apop2 15 4 4 0.041 2.463 2.869
Apop3 7 3 3 0.116 4.131 3.029
Apop4 15 4 4 0.053 7.831 5.008
EMT1 11 3 3 0.055 1.015 0.936
EMT2 10 3 3 0.042 0.386 0.591
M1 11 3 3 0.079 1.704 1.799
M2 2 2 2 0.1 0.12 0.11

Table 6.5: Target control of the tumour network.

Network The minimal number of perturbations
ITC TTC PTC SMC

yeast 10 5 5 5
ERBB 10 2 2 2
HSPC-MSC 2 2 2 2
hematopoiesis 5 3 3 ⇤

PC12 12 3 3 3
bladder 14 2 2 4
psc-bFA 11 1 2 ⇤

co-infection 19 5 5 7
MAPK 24 4 4 5
CREB 3 3 3 ⇤

HGF 22 4 4 ⇤

bortezomib 3 1 1 ⇤

T-diff 20 4 4 4
HIV1 3 3 3 ⇤

CD4+ 7 3 3 3
pathway 2 2 2 2

Table 6.6: The minimal number of perturbations required by ITC, TTC, PTC and SMC for
several biological networks.

6.6.4 Control of other biological networks

We apply the four target control methods, ITC, TTC, PTC and SMC, to the other
networks introduced in Section 2.4, and evaluate their performance.

Efficacy. Table 6.6 summarises the minimal number of perturbations required by
the four methods for one of the attractors of the networks. It is easy to observe that
ITC requires more perturbations than TTC, PTC and SMC due to its instantaneous
effect. ITC usually needs to control 10 to 20 nodes, whereas TTC, PTC and SMC
can achieve the inevitable reachability of the target attractor with at most 7 pertur-
bations. Moreover, it is hard to realise the simultaneous and instantaneous pertur-
bation of a number of nodes, which makes the ITC less practical in applications.
Thus, TTC, PTC and SMC, which employ temporary or permanent perturbations,

98 Chapter 6. Target Control

are preferable than ITC. For the bladder cancer network and the MAPK network,
TTC and PTC identify smaller control sets than SMC. Compared to PTC, TTC has
the ability to further reduce the number of perturbations as demonstrated by the
model of mouse embryonic stem cells (PSC-bFA) – the number of perturbations
required by TTC and PTC are 1 and 2, respectively.

Both TTC and SMC solve the target control problem with temporary perturbations.
To further compare these two methods, Figure 6.3 shows the number of solutions
identified by the two methods. The x-axis lists the names of the networks and the
y-axis denotes the number of control sets. Blue bars and grey bars represent the
control sets that only appear in the results of TTC and SMC (TTC\ (TTC \ SMC),
SMC\ (TTC \ SMC)), respectively. Green bars represent the intersections of the two
methods. Equations above the bars (|C| = k) denote the number of nodes contained
in the control set, i.e. the number of required perturbations.

Since neither of the methods guarantees the minimal control, they may find con-
trol sets of different sizes for one attractor. For comparison, we only consider the
smallest control sets. In Figure 6.3, there is no grey bar because the solutions iden-
tified by SMC are either also found by TTC and thus belong to (TTC \ SMC), or
require more perturbations than TTC. For the cell cycle network of fission yeast
(yeast), the ERBB receptor-regulated G1/S transition protein network (ERBB), the
HSPC-MSC network (HSPC-MSC) and the model of signalling pathways (path-
way), there are only green bars, which means that the results of TTC and SMC
are identical. For the bladder cancer network (bladder), the co-infection network
(co-infection) and the MAPK network (MAPK), we can only see blue bars because
TTC finds smaller control sets than SMC. SMC failed to finish the computation
for several networks within twelve hours, including the network of hematopoi-
etic cell specification (hematopoiesis), the model of mouse embryonic stem cells
(PSC-bFA), the CREB network, the model for HGF-induced keratinocyte migration
(HGF), the model of bortezomib responses (bortezomib) and the HIV-1 network
networks (HIV1). For the PC12 cell differentiation network (PC12), the Th-cell dif-
ferentiation network (T-diff) and the CD4+ T-cell network (CD4+), although TTC
and SMC require the same number of perturbations, our method TTC has the
capability to provide more unique solutions, which may give more flexibility for
practical applications.

Efficiency. Table 6.7 summarises the computational time for computing the target
control for all the attractors of the networks rather than the selected target attrac-
tor. The reason is that SMC computes the control for all the attractors in one-go by
generating the stable motif diagram, in which different sequences of stable motifs
lead to different attractors. SMC does not support the computation of target con-
trol for only one attractor. Hence, for ITC, TTC and PTC, we also take the total
computational time for all the attractors of the networks for comparison.

We can see that ITC is the most efficient one, however, it requires more pertur-
bations. TTC and PTC are more efficient than SMC for most of the cases. The
efficiency of our methods are influenced by many factors, such as the network size,
the density, the number of attractors and the number of required perturbations. For
the co-infection network and the model of bortezomib responses, TTC and PTC are

6.6. Evaluation 99

yeas
t

ERBB

HSPC-MSC

hem
atop

oiesi
s

PC12
blad

der
psc-

bFA

co-in
fecti

on
MAPK

CREB HGF

borte
zom

ib
T-di� HIV1

CD4+
path

way
0

2

4

6

8

10

12

14

16

18

20

22

24

26
nu

m
b
er

of
co

nt
ro

l
se

ts

|C|=5 |C|=2 |C|=2

|C|=3

|C|=3

|C|=2

|C|=4

|C|=5

|C|=4

|C|=3

|C|=4

|C|=1

|C|=4

|C|=3

|C|=3

|C|=2

TTC \ (TTC \ SMC)

SMC \ (TTC \ SMC)

TTC \ SMC

Figure 6.3: Comparison of TTC and SMC on the number of solutions.

Network Time (seconds)
ITC TTC PTC SMC

yeast 0.028 0.987 0.933 10.837
ERBB 0.055 0.117 0.163 6.400
HSPC-MSC 0.097 0.101 0.109 11.393
hematopoiesis 0.374 139.859 72.793 ⇤

PC12 0.149 17.653 22.189 234.513
bladder 0.302 2.426 7.997 36.277
psc-bFA 36.77 3732.78 9296.740 ⇤

co-infection 6294.29 ⇤ ⇤ 15097.511
MAPK 4.608 22.218 45.504 395.014
CREB 7.962 8.277 8.693 ⇤

HGF 19.925 1437.29 201.363 ⇤

bortezomib 15.605 ⇤ ⇤ ⇤

T-diff 21.581 29738.5 ⇤ 353.473
HIV1 302.8 323.666 379.127 ⇤

CD4+ 549.878 1982.45 21358.400 27.836
pathway 445.251 4435.59 10038.600 42.180

Table 6.7: Computational time of ITC, TTC, PTC and SMC for several biological networks.
Symbol ’*’ means that the method failed to finish the computation within twelve hours.

able to identify target control efficiently for some of the attractors, but failed for the
other attractors. One conjecture is that the target control of those attractors require
many perturbations, such that it takes considerable time to verify the subsets of the
schemata.

SMC failed to finish the computation for several networks within twelve hours, in-
cluding the hematopoiesis, PSC-bFA, CREB, HGF, bortezomib and HIV1 networks.
For the hematopoiesis network and the bortezomib network, SMC failed in the
identification of stable motifs, which has been pointed out to be the most time-
consuming part of SMC [ZnA15]. The reason could be that the number of cycles

100 Chapter 6. Target Control

and/or SCCs in its expanded network is computationally intractable. For the HGF-
induced keratinocyte migration network, SMC was blocked in the optimisation of
stable motifs due to that this network has 19 stable motifs and most of the stable
motifs contain more than 16 nodes. SMC failed to construct the expanded network
representation for the CREB, PSC-BFA and HIV-1 networks because some of their
Boolean functions depend on many parent nodes (k � 10). Detailed discussion on
the complexity of SMC can be found in [ZnA15].

6.7 Conclusion

In this chapter, we have proposed three methods for the target control of asyn-
chronous Boolean networks with instantaneous, temporary and permanent per-
turbations. We compared their performance with SMC [ZnA15] on various real-
life biological networks. The results showed that ITC requires more perturbations
than TTC, PTC and SMC as it uses instantaneous perturbations. Both TTC and
SMC solve the target control problem with temporary perturbations and potentially
they may require fewer perturbations than PTC. Moreover, compared to SMC, our
method TTC has the potential to identify more solutions with fewer perturbations.

Regarding the computational time, our methods are quite efficient and scale well
for large networks. SMC explores both structures and Boolean functions of Boolean
networks, and is potentially more scalable for large networks as demonstrated by
the CD4+ T-cell network and the pathway network in Table 6.7. In contrast, our
methods are essentially based on the dynamics of the networks, and they will suffer
the state space explosion problem for networks of several hundreds of nodes. We
believe that our methods and SMC complement each other well.

101

Chapter 7

CABEAN: a Software for the

Control of Asynchronous Boolean

Networks

7.1 Introduction

Cell reprogramming is equivalent to the control problem in the framework of
Boolean networks: finding a subset of nodes of the network, the perturbation of
which can drive the dynamics of the network (from a source state) to the desired
attractor. We have given a comprehensive discussion of the important control meth-
ods for complex networks in Section 1.4. Here we introduce several software tools
for the analysis of logical models. ActONetLib [BD18] is a Mathematica library de-
signed to compute driver nodes for Boolean control networks based on abductive
reasoning. The caspo toolbox [VSRGS17] is a python package providing a work-
flow for the study of a family of logical networks of three-valued semantics under
the synchronous updating scheme. It provides functions for learning and classi-
fication of the networks, design of experiments, and identification of intervention
targets for reprogramming. CANA [CGWR18] is a Python package to study re-
dundancy and control of synchronous Boolean networks of biochemical dynamics,
however, it is not directly applicable to asynchronous Boolean networks. Bool-
Net [MHK10] is a powerful R package, which integrates methods for reconstruc-
tion, generalisation, and attractor identification for synchronous, asynchronous,
and probabilistic Boolean networks. PyBoolNet [KSS17] is a python package for
manipulating Boolean networks, such as generation, visualisation, and attractor
detection. However, neither BoolNet nor PyBoolNet supports the identification of
intervention targets for modulating the dynamics. The algorithm Kali [PG18] is pro-
posed to predict intervention targets which can reduce the reachability of attractors
associated with pathological phenotypes for both synchronous and asynchronous
Boolean networks. It traverses the state space of a Boolean network by performing
maxs random walks of maxk steps to find all the attractors while estimating their
basins. Thus, Kali is limited to an estimation rather than an accurate computation
of the attractors and their basins.

The main course of this thesis concentrates on the scalable control of asynchronous
Boolean networks. So far, we have developed several methods for the source-target

102 Chapter 7. CABEAN: a Software for the Control of Asynchronous Boolean Networks

control (OI, OT, OP, ASI, AST, and ASP) and target control (ITC, TTC and PTC)
of Boolean networks. All these methods are based on the computation of strong
basins of attractors (Algorithm 2), which explores both the structural and dynam-
ical properties of asynchronous Boolean networks [PSPM18, PSPM19]. An instan-
taneous control drives the network dynamics from the source state to a state in the
strong basin of the target attractor, from which there only exist paths to the target
attractor. Both temporary control and permanent control will hold the control for a
different amount of time, thus they can make use of the spontaneous evolutions of
the network dynamics by moving into the weak basin of the target attractor, from
which there exist paths to the target attractor and may also exist paths to other
attractors. To guarantee the inevitable reachability of the target attractor, a tempo-
rary control drives the network dynamics to a state in the strong basin of the target
attractor at the end of control, while a permanent control stirs the network from
the source state to a state in the strong basin of the target attractor in the resulting
transition system under control.

In this chapter, we present our novel software, CABEAN1 , integrating all the con-
trol methods introduced in this thesis for the control of asynchronous Boolean net-
works, including OI, OT, OP, ASI, AST, ASP, ITC, TTC and PTC. This chapter is
organised as follows: we introduce the general features of CABEAN in Section 7.2,
and then illustrate the basic usages of CABEAN with a toy example in Section 7.3.
Detailed instructions on how to analyse a Boolean network with CABEAN can be
found at the website of the software: https://satoss.uni.lu/software/CABEAN/.

7.2 General features

Source-target Control
Target ControlMinimal Attractor-based

One-step Control Sequential Control

Instantaneous X X X
Temporary X X X
Permanent X X X

Table 7.1: Control methods integrated in CABEAN.

CABEAN is designed for the analysis of asynchronous Boolean networks. It im-
plements the decomposition-based attractor detection method [MPQY19], which
identifies all the exact attractors of a given Boolean network. After the attractor
detection, users can specify the source attractor (for source-target control) and the
target attractor to compute effective interventions for the conversion. As shown in
Table 7.1, currently CABEAN implements several control methods that can modu-
late the dynamics in different ways, including the methods for the six source-target
control strategies and three target control strategies. The minimal OI, OT, and OP

1CABEAN is freely available at https://satoss.uni.lu/software/CABEAN/.

https://satoss.uni.lu/software/CABEAN/
https://satoss.uni.lu/software/CABEAN/

7.2. General features 103

compute the exact and minimal control sets, while ASI, AST, and ASP compute all
the sequential control paths (including the shortest paths) with at most k perturba-
tions. The thresholds for ASI, AST and ASP are set as the number of perturbations
required by the minimal OI, OT and OP control methods, respectively. Although
the three target control methods (ITC, TTC and PTC) do not ensure the minimality
of the control results, the control sets they identified are quite small as demon-
strated in Section 6.6. All the methods guarantee the inevitable reachability of the
target attractor. Due to the high diversity of biological systems, there does not exist
any criteria for selecting the ‘best’ control method. It is recommended to compute
the results with all the provided control methods and select suitable candidates for
wet-lab validation based on specific experimental settings.

Practical constraints have to be taken into consideration to make the results more
feasible. Moreover, actual practicalities need to be investigated case by case. Some
genes are difficult to perturb. For instance, GATA1 and GATA2 belong to a family
of transcription factors that have different functionalities but have similar struc-
tural properties, thus, it can be difficult to distinguish these two by the ‘perturba-
tion tools’. Some genes are essential for cell survival, such as AKT1 and CTNNB1,
which have critical responsibilities in maintaining normal functionalities of cells,
thus, it should be prohibited to perturb such genes to ‘not expressed’. In terms of
perturbing a node from ‘not expressed’ to ‘expressed’, there are a number of tools
that can achieve a successful overexpression of a previously non-expressed node.
However, due to the abstraction of Boolean networks, some nodes of the network
represent the entire pathways (e.g. canWNT, EgrNab) or a family of genes (e.g.
GATAs, SMAD). For such cases, it is necessary to look into details to figure out
the specific species to perturb, instead of a set of molecular players. For attractor-
based sequential control, besides the constraints on the undesired perturbations,
we should also consider the status of the intermediate attractors. As an abstraction
of the real systems, in Boolean networks, some attractors correspond to diseased
states. It is reasonable to assume that the cell death or severe dysfunctions should
be avoided. To make the results realistic, CABEAN provides functions to encode
practical constraints on perturbations and intermediate attractors as prerequisite
conditions for source-target control methods, such that these undesired perturba-
tions or attractors are avoided during the computation.

CABEAN is implemented in C and C++ based on the efficient model checker MC-
MAS [LQR17] to encode Boolean networks into BDDs. BDDs were introduced by
Bryant [Bry85] to represent Boolean functions. Thanks to its advantage of mem-
ory efficiency, BDDs have been widely used in many model checking algorithms to
alleviate the state space explosion problem. Most of the realisation of our control
methods are based on efficient BDD operations. All the above mentioned factors
contribute to a high efficiency of CABEAN.

104 Chapter 7. CABEAN: a Software for the Control of Asynchronous Boolean Networks

7.3 Case study

In this section, we show the basic usages of CABEAN, including the syntax of
model files, the syntax of specification files for encoding constraints, as well as the
command options. We use the three-node Boolean network given in Example 1 for
illustration.

Model files

CABEAN supports the BoolNet and ISPL (Interpreted Systems Programming Lan-
guage) format of the software MCMAS [LQR17]. We recommend the BioLQM
toolkits2 for the conversion of other formats, such as SBML-qual, Petri net, GINsim,
to the BoolNet format.

ISPL file

Agent M
Vars:

x1: boolean;
x2: boolean;
x3: boolean;

end Vars
Actions = {none};
Protocol:

Other: {none};
end Protocol
Evolution:

x1=true if x2=true;
x1=false if x2=false;
x2=true if x1=true;
x2=false if x1=false;
x3=true if x2&x3=true;
x3=false if x2&x3=false;

end Evolution
end Agent
InitStates

M.x1=true or M.x1=false;
end InitStates

Bnet file

targets, factors
x1, x2
x2, x1
x3, x2&x3

The model file of the example that follows the ISPL format is given above and saved
as ‘toy.ispl’. It contains two sections: section ‘Agent M’ and section ‘InitStates’.
Section ‘Agent M’ defines the Boolean variables and the Boolean functions of the
network; section ‘InitStates’ specifies the initial state. Section ‘Agent M’ includes
four parts: ‘Vars’, ‘Actions’, ‘Protocol’, and ‘Evolution’. The ‘Vars’ part defines
the Boolean variables and the order of the variables is consistent with the order of
the nodes in each state in the output. The ‘Evolution’ part specifies the Boolean
functions for each variable. The functions are defined using parenthesis and three

2BioLQM is available at http://colomoto.org/biolqm/.

http://colomoto.org/biolqm/

7.3. Case study 105

logical operations, including logical and ‘&’, logical or ’|’, and logical not ’⇠’. The
’Actions’ and ’Protocol’ parts are defined as ‘none’.

BoolNet describes a Boolean network or probabilistic Boolean network in a stan-
dardized text file format [MHK10]. Here we only explain the syntax of BoolNet
for Boolean networks. The model file of the example under BoolNet format, saved
as ‘toy.bnet’, is also given at the previous page. The first line is a header: ‘tar-
gets, factors’. The name and the Boolean function of each node are given at each
line, separated by comma. The header implies the format: ‘targets’ is the name of
the node and ‘factors’ represents the Boolean function of the node. In the Boolean
functions, the logical operators and, or and not are represented as ‘&’, ‘|’ and ‘!’,
respectively. Users can initialise the value of an input node to either ‘1’ or ‘0’.

Specification files

CABEAN allows users to encode three kinds of undesired perturbations:

• R0: nodes that cannot be perturbed from ‘not expressed’ to ‘expressed’;

• R1: nodes that cannot be perturbed from ‘expressed’ to ‘not expressed’;

• R: nodes that cannot be perturbed in any direction.

In the specification file for defining undesired perturbations, we list the nodes of
each kind of perturbations and separate them by comma. Let us assume R0 =
{x1, x3}, R1 = ∆, and R = {x2}. The specification file is written as follows.

Specification file for undesired perturbations

R0: x1,x3
R1:
R: x2

In the specification file for undesired attractors, the indices of the attractors are
separated by comma. Given a network with six attractors sorted in lexicographic
order, suppose the third and the fourth attractors are undesired attractors, the spec-
ification file is given below.

Specification file for undesired attractors

3,4

Attractor detection

Prior to the computation of control, attractors of the example (‘toy.ispl’) are com-
puted with the following command line:

Command for attractor detection

./cabean -compositional 2 toy.ispl

106 Chapter 7. CABEAN: a Software for the Control of Asynchronous Boolean Networks

Option ’-compositional 2’ implies that the decomposition-based method [MPQY19]
is used for attractor detection. CABEAN computes all the exact attractors of the
network and prints them in lexicographic order. The output is given below.

Output of attractor detection

Command line: ./cabean -compositional 2 toy.ispl
====== find attractor #1 : 1 states ======
: 4 nodes 1 leaves 1 minterms
0-0-0- 1

====== find attractor #2 : 1 states ======
: 4 nodes 1 leaves 1 minterms
1-1-0- 1

====== find attractor #3 : 1 states ======
: 4 nodes 1 leaves 1 minterms
1-1-1- 1

number of attractors = 3
time for attractor detection=0.001 seconds

This network has three attractors. In each state, the sequence of the nodes in the
expression is consistent with the sequence of nodes listed in section ‘Vars’ in the
model file, which is ‘x1’, ‘x2’ and ‘x3’ for this case. The transition system of the
network under the asynchronous updating scheme is given in Figure 2.1(c). We can
see that attractors #1, #2 and #3 identified by our methods correspond to A1, A2

and A3 in Figure 2.1(c). From any initial state, the network will eventually settle
down to one of the attractors.

One-step source-target control

We take the minimal OT control from attractor A1 = {000} to attractor A3 = {111}

as an example to show how to compute the control with and without constraints on
perturbations. The minimal OT control without any constraints is computed with
the following command line:

Command for the minimal OT control

./cabean -compositional 2 -control OT -sin 1 -tin 3 toy.ispl

Option ’-compositional 2’ indicates that the decomposition-based methods [MPQY19,
PSPM18] are used for attractor detection and the computation of strong basins. Op-
tion ‘-control <control>’ specifies the control method to apply. Options ‘-sin <index
of the source> -tin <index of the target>’ set the indices of the source and target
attractors, which are 1 and 3, respectively. CABEAN first identifies all the exact
attractors of the network and then compute the control for the specified source and
target attractors. Once this is clear, we omit the attractors in the output and only
give the results of the control sets as shown below. CABEAN identifies two minimal

7.3. Case study 107

OT controls: {x2=1 x3=1} and {x1=1 x3=1}.

Output of the minimal OT control

====== ONE-STEP TEMPORARY SOURCE-TARGET CONTROL (DECOMP) ======
source - 1 target - 3
PATH 1 - #perturbations: 2

Control set: x2=1 x3=1
PATH 2 - #perturbations: 2

Control set: x1=1 x3=1
execution time for control = 0.001 seconds

Assume node x2 cannot be perturbed, the specification file for encoding this restric-
tion, saved as ‘undesiredPert.txt’, is given below:

Specification file for undesired perturbations

R0:
R1:
R: x2

We add option ’-rmPert <file name>’ to the command line as follows to compute
the minimal OT control from A1 to A3 without perturbing x2.

Command for the minimal OT control with constraints on perturbations

./cabean -compositional 2 -rmPert undesiredPert.txt -control OT -sin 1
-tin 3 toy.ispl

The output is given below. There exists only one minimal OT control satisfying the
constraint.

Output of the minimal OT control with constraints on perturbations

====== ONE-STEP TEMPORARY SOURCE-TARGET CONTROL (DECOMP) ======
source - 1 target - 3
PATH 1 - #perturbations: 2

Control set: x1=1 x3=1
execution time for control = 0.004 seconds

Attractor-based sequential source-target control

We take AST control from attractor A1 = {000} to attractor A3 = {111} as an ex-
ample to show how to compute sequential source-target control with and without
constraints on intermediate attractors. CABEAN takes the number of perturbations
required by the minimal OT control as the threshold q for AST control and com-
putes all the AST control paths with at most q perturbations. The AST control
without any constraints is computed with the following command line:

108 Chapter 7. CABEAN: a Software for the Control of Asynchronous Boolean Networks

Command for AST control

./cabean -compositional 2 -control AST -sin 1 -tin 3 toy.ispl

There exists two control paths. The first path is an OT path from A1 to A3 (Sequence
of the attractors: 1 ! 3), which can be realised by two control sets, denoted as
A1

x2=1,x3=1
������!
x1=1,x3=1

A3. The second path is a sequential path from A1 to A3 through the

intermediate attractor A2, denoted as A1
x2=1
��!
x1=1

A2
x3=1
��! A3. All the control paths

require two perturbations.

Output of AST control

==ATTRACTOR-BASED SEQUENTIAL TEMPORARY SOURCE-TARGET CONTROL (DECOMP)==
source - 1 target - 3
PATH 1 - #perturbations: 2
Sequence of the attractors: 1 -> 3

STEP 1
Control set 1: x2=1 x3=1
Control set 2: x1=1 x3=1

PATH 2 - #perturbations: 2
Sequence of the attractors: 1 -> 2 -> 3

STEP 1
Control set 1: x2=1
Control set 2: x1=1

STEP 2
Control set 1: x3=1

execution time of control=0.003 seconds

Suppose attractor A2 is the undesired intermediate attractor, the specification file,
saved as ‘rmAtt.txt’, can be written as follows.

Specification file for undesired attractors

2

Now we add the constraint on intermediate attractors by inserting ’-rmID <file
name> to the command line. The output is given at the next page. The sequential
paths passing though the undesired attractors are eliminated from the results.

Command for AST control with constraints on intermediate attractors

./cabean -compositional 2 -rmID rmAtt.txt -control AST -sin 1 -tin 3
toy.ispl

7.3. Case study 109

Output of AST control with constraints on intermediate attractors

==ATTRACTOR-BASED SEQUENTIAL TEMPORARY SOURCE-TARGET CONTROL (DECOMP)==
Indices of undesired attractors: 2
source - 1 target - 3
PATH 1 - #perturbations: 2
Sequence of the attractors: 1 -> 3

STEP 1
Control set 1: x2=1 x3=1
Control set 2: x1=1 x3=1

execution time of control=0.001 seconds

Target control

Taking TTC as the representative, TTC of attractor A3 can be computed with the
following command line:

Command for TTC

./cabean -compositional 2 -control TTC -tin 3 toy.ispl

Option ‘-control TTC’ selects the TTC method and option ‘-tin 3’ sets A3 as the
target attractor. The results show that the network can reach A3 from any initial
state with the control of {x1=1 x3=1} or {x2=1 x3=1}.

Output of TTC control

====== TEMPORARY TARGET COTNROL (DECOMP) ======

TARGET ATTRACTOR #3

Control set 1: x1=1 x3=1
Control set 2: x2=1 x3=1

Time for temporary target control = 0.002 seconds

111

Chapter 8

Conclusions and Future Work

8.1 Limitations of existing biological networks

Direct cell reprogramming has opened up an unprecedented opportunity for tissue
engineering and regenerative medicine. Throughout the thesis, we have introduced
several methods to identify intervention targets for direct cell reprogramming via
the control of asynchronous Boolean networks.

Even though the dynamics of asynchronous Boolean networks are non-deterministic,
our methods guarantee to find solutions with 100% success rate in silico. Experi-
mental validation is necessary to confirm their therapeutic efficacy in vivo. It is
worth noting that the consistency of their efficacy in silico and in vivo highly relies
on the quality of the Boolean network being used. That is, the upper bound on the
performance of our methods are determined by the underlying network. The iden-
tified intervention targets can effectively modulate the dynamics as expected, pro-
vided that the adopted network well captures the structural and dynamical prop-
erties of the real-life biological system. We cannot expect that a control method can
make predictions out of the scope of the network.

Our methods are designed for Boolean networks that model diverse biological sys-
tems, but essentially network inference itself is a fundamental challenge in systems
biology [BK18]. During the analysis of existing networks, we spotted some flaws
that should be paid attention to during the network inference, summarised below.

1. Simulation is often used to evaluate the stable behaviour of dynamics and to
cross-validate the in silico perturbations with related studies in most of the
works. However, simulation is less likely to cover the entire transition sys-
tem, which is exponential in the size of the network. As a consequence, the
information on attractors is usually incomplete or even missing, especially
for networks of medium or large sizes. Without a complete knowledge of
the attractors, the inferred networks might have a considerable number of
attractors and/or huge attractors, that do not appear in real systems. The at-
tractor detection method based on our near-optimal decomposition can solve
this problem by identifying all the exact attractors within a reasonable time.
This also makes it possible to study biologically interpretations of the identi-
fied attractors, which plays an essential role in making the reprogramming or
control meaningful.

112 Chapter 8. Conclusions and Future Work

2. We noticed that attractors of some large networks are purely induced by input
nodes. For instance, suppose a network with 2 input nodes (nodes without
upstream regulators) has 22 attractors. Each attractor corresponds to one com-
bination of the input nodes (00, 01, 10, 11). For such networks, the input nodes,
that have different values in the source and target attractors, are intuitively the
key nodes that should be perturbed for reprogramming the dynamics.

3. In some networks, cell phenotypes or cell fates, such as apoptosis, prolifer-
ation and differentiation, are represented as marker nodes. Benefiting from
this, we can classify attractors by only looking at the expressions of those
nodes. However, a problem we often encounter is that there does not exist
any reprogramming paths without perturbing these marker nodes. Because
our control methods focus on the original attractors of the Boolean network,
we conjecture that these networks are more suitable for the control problems
that are not restricted to the original attractors. In this way, the marker nodes
can be used to define desired properties and the purpose of the control is
to identify interventions that can drive the network to the original or newly
generated attractors that meet the desired properties.

The performance of inferred networks is usually assessed based on the structural
accuracy and dynamics accuracy [BK18]. Specifically, the dynamics accuracy is
computed by comparing the trajectories generated by the inferred network and the
observed time-series data for all the nodes. The network inference is not a one-off
step. One often needs to repeatedly come back to refine the model. The limitations
we identified indicate that the inferred networks can be refined with the aid of our
methods for attractor detection [MPQY19] and control [PSPM18, PSPM19, SPP19b,
MSH+19, MSP+19]. Our methods provide accurate information of the networks,
which can be used to polish up the networks by updating the Boolean functions or
adding/deleting regulators. This is mutually beneficial to both the inference and
the analysis of biological systems.

8.2 Conclusions

In this thesis, we perform a comprehensive study on the scalable control of asyn-
chronous Boolean networks. More specifically, given a Boolean network, we com-
pute a subset of nodes of the network, whose perturbation can drive the dynamics
from a given source state or any source state to the desired attractor.

Prior to the development of the control methods, we worked on the identification
of attractors and the computation of strong basins. We developed the near-optimal
decomposition of Boolean networks to improve the efficiency of the decomposition-
based attractor detection [MPQY19]. After that, we proposed the decomposition-
based method to compute the strong basin of an attractor in a block-wise manner.
These two methods pave the way for the development of the control methods.

We worked on bridging the gap between computational control methods and prac-
tical applications from three perspectives.

8.3. Future work 113

First, we explored three kinds of perturbations: instantaneous, temporary and per-
manent perturbations. All of them are feasible to conduct in biological experiments
and each type of perturbations has its own advantages and disadvantages. Instan-
taneous perturbations only require instantaneous applications, which are the least
invasive to the dynamics, at the cost that a relatively larger number of perturbations
is needed to reach the target. Thanks to the extended effects on the network dy-
namics, temporary and permanent perturbations can achieve the goal with much
fewer perturbations than instantaneous perturbations. Nevertheless, permanent
perturbations should be treated with care due to their permanent influences on the
network dynamics.

Second, we investigated different strategies for reprogramming the dynamics of
networks. Remarkably, we developed six source-target control methods and three
target control methods. Among these methods, attractor-based sequential source-
target control brings all the attractors of the network into play to lead the network
from the source attractor to the target attractor though other attractors. Because
there is no universal standard of ‘good’ strategies for the control of Boolean net-
works, the current recommendation is to compute all the control paths with avail-
able control methods for a specific task. Various sets of identified targets serve as
candidates, such that biologists can choose appropriate targets, the modulation of
which will not disrupt physiological functions of biological systems.

Third, the evaluation results confirm that our methods can find a small subset of
nodes to fulfil the control purpose. Moreover, the identified perturbations appear
consistent with empirical knowledge. This is beneficial to practical applications,
as fewer perturbations can tremendously decrease experimental costs and improve
the practicality of experiments. Regardless, controlling more nodes may shorten the
time for reaching the target attractors, i.e. generating sufficient desired cells [GD19].
To address this, we integrate our methods with a threshold on the number of per-
turbations, such that when the threshold is defined, all the solutions within the
threshold will be returned.

Overall, we believe that our works have established a solid foundation for the anal-
ysis of asynchronous Boolean networks. They can provide deep insights into reg-
ulatory mechanisms of biological processes and promote the application of direct
cell reprogramming.

8.3 Future work

“Our imagination is the only limit to what we can hope to have in the future.”

Charles F. Kettering

Although we consider this thesis has achieved its goal, by looking back critically,
we summarise some works that could be investigated for future work.

114 Chapter 8. Conclusions and Future Work

One of the greatest bottlenecks of our methods is scalability. Even though we can
substantially reduce the network size by focusing on essential nodes for the biolog-
ical process under study, by extending the scalability of our methods, we will be
able to analyse more extensive networks that cover more relevant nodes. Currently,
our methods make use of the structural information in the computation of strong
basins. Except for that, they are merely based on the network dynamics. Owing to
the state space explosion problem, we conjecture that our methods are not power-
ful enough to analyse real-life biological networks with thousands of nodes. Recent
studies on positive and negative cycles of the dependency graphs provide a hint on
how to accelerate the efficiency of our methods [Ric19].

Besides the high-complexity, uncertainty is also an important factor that impedes
the mathematical modelling of biological systems. Uncertainty may be induced by
experimental observations or by the biological system itself intrinsically or extrin-
sically [GGC16]. For instance, even though the GRN is identical in all the cells in
the human body, different parts of the network may be expressed in different cell
types [SD16]. Moreover, structural changes in a GRN might occur over time and
conditions [MDCR+16]. Thus, only looking at Boolean networks is insufficient. It
is essential to move on to more complicated networks, such as Bayesian networks
and probabilistic Boolean networks that incorporate uncertainty.

Various biological networks are inferred from different types of experimental data
to describe specific biological processes. Common types of biological networks
include GRNs, signalling networks, metabolic networks, neuronal networks and
protein-protein interaction networks. Network-based computational methods can
reveal novel features of various biological systems, identify drug targets and pro-
vide a good understanding of the mechanism-of-action of interventions from a
systematic perspective. However, they usually deal with homogeneous networks,
which contain one type of nodes or edges. In real-life biological systems, there
exist various biological entities and interactions [GJFM18]. There is a surge for the
study of heterogeneous networks, which will lead to a deeper and more complete
understanding of cellular functions.

Further, to handle intrinsically large and complex biological networks, network-
based computational methods require significant computational power and net-
work inference requires large quantities of biomedical data, which is often un-
available [MKH+19]. Recently, emerging methods based on biomedical data, such
as machine learning and deep learning methods, explore features in accessible
datasets and have high predictive power for the identification of intervention tar-
gets [MKH+19]. Such methods can be applied to heterogeneous data to uncover
diverse information, which is another way of addressing the limitation of network-
based computational methods mentioned in the previous paragraph. Future studies
on such data-driven methodologies could be quite beneficial to drug discovery and
clinical applications.

115

Bibliography

[AB02] Réka Albert and Albert-László Barabási. Statistical mechanics of com-
plex networks. Reviews of Modern Physics, 74(1):47, 2002.

[Aku18] Tatsuya Akutsu. Algorithms for Analysis, Inference, and Control of Boolean
Networks. World Scientific, 2018.

[ATE08] Ali Abdi, Mehdi Baradaran Tahoori, and Effat S. Emamian. Fault diag-
nosis engineering of digital circuits can identify vulnerable molecules
in complex cellular pathways. Science Signaling, 1(42):ra10–ra10, 2008.

[BBAIDB07] Mukesh Bansal, Vincenzo Belcastro, Alberto Ambesi-Impiombato, and
Diego Di Bernardo. How to infer gene networks from expression pro-
files. Molecular Systems Biology, 3(1):78, 2007.

[BD18] Célia Biane and Franck Delaplace. Causal reasoning on Boolean con-
trol networks based on abduction: theory and application to cancer
drug discovery. IEEE/ACM Transactions on Computational Biology and
Bioinformatics, 16(5):1574–1585, 2018.

[BGMN20] Roberto Barbuti, Roberta Gori, Paolo Milazzo, and Lucia Nasti. A sur-
vey of gene regulatory networks modelling methods: from differential
equations, to Boolean and qualitative bioinspired models. Journal of
Membrane Computing, pages 1–20, 2020.

[BK18] Shohag Barman and Yung-Keun Kwon. A Boolean network inference
from time-series gene expression data using a genetic algorithm. Bioin-
formatics, 34(17):i927–i933, 2018.

[Bor05] Stefan Bornholdt. Less is more in modeling large genetic networks.
Science, 310(5747):449–451, 2005.

[BPSP19] Alexis Baudin, Soumya Paul, Cui Su, and Jun Pang. Controlling
large Boolean networks with single-step perturbations. Bioinformatics,
35(14):i558–i567, 2019.

[Bry85] Randal E. Bryant. Symbolic verification of mos circuits. pages 419–438,
1985.

[CGC+16] Eugen Czeizler, Cristian Gratie, Wu Kai Chiu, Krishna Kanhaiya, and
Ion Petre. Target controllability of linear networks. In Proc. 14th Inter-
national Conference on Computational Methods in Systems Biology, volume
9859 of LNCS, pages 67–81. Springer, 2016.

116 BIBLIOGRAPHY

[CGWR18] Rion B. Correia, Alexander J. Gates, Xuan Wang, and Luis M. Rocha.
CANA: a python package for quantifying control and canalization in
Boolean networks. Frontiers in Physiology, 9:1046, 2018.

[CHS+14] Brittany D. Conroy, Tyler A. Herek, Timothy D. Shew, Matthew Lat-
ner, Joshua J. Larson, Laura Allen, Paul H. Davis, Tomáš Helikar, and
Christine E. Cutucache. Design, assessment, and in vivo evaluation
of a computational model illustrating the role of CAV1 in CD4+ T-
lymphocytes. Frontiers in Immunology, 5:599, 2014.

[CKM13] Sean P. Cornelius, William L. Kath, and Adilson E. Motter. Realistic
control of network dynamics. Nature Communications, 4(1):1–9, 2013.

[CLB94] Jason Cong, Zheng Li, and Rajive Bagrodia. Acyclic multi-way parti-
tioning of Boolean networks. In Proc. 31st Annual Design Automation
Conference, pages 670–675. IEEE, 1994.

[CLL+14] Lian En Chai, Swee Kuan Loh, Swee Thing Low, Mohd Saberi Mo-
hamad, Safaai Deris, and Zalmiyah Zakaria. A review on the compu-
tational approaches for gene regulatory network construction. Com-
puters in Biology and Medicine, 48:55–65, 2014.

[CLW16] Hongwei Chen, Jinling Liang, and Zidong Wang. Pinning controllabil-
ity of autonomous Boolean control networks. Science China Information
Sciences, 59(7):070107, 2016.

[CMR+15] David P.A. Cohen, Loredana Martignetti, Sylvie Robine, Emmanuel
Barillot, Andrei Zinovyev, and Laurence Calzone. Mathematical mod-
elling of molecular pathways enabling tumour cell invasion and mi-
gration. PLOS Computational Biology, 11(11):e1004571, 2015.

[COAM15] Vaishali L. Chudasama, Meric A. Ovacik, Darrell R. Abernethy, and
Donald E. Mager. Logic-based and cellular pharmacodynamic model-
ing of bortezomib responses in U266 human myeloma cells. Journal of
Pharmacology and Experimental Therapeutics, 354(3):448–458, 2015.

[CvOO+17] Samuel Collombet, Chris van Oevelen, Jose Luis Sardina Ortega,
Wassim Abou-Jaoudé, Bruno Di Stefano, Morgane Thomas-Chollier,
Thomas Graf, and Denis Thieffry. Logical modeling of lymphoid and
myeloid cell specification and transdifferentiation. Proceedings of the
National Academy of Sciences, 114(23):5792–5799, 2017.

[CZD+11] Benoit Charloteaux, Quan Zhong, Matija Dreze, Michael E. Cusick,
David E. Hill, and Marc Vidal. Protein–protein interactions and net-
works: forward and reverse edgetics. In Yeast Systems Biology, pages
197–213. Springer, 2011.

[DB08] Maria I. Davidich and Stefan Bornholdt. Boolean network model pre-
dicts cell cycle sequence of fission yeast. PLOS ONE, 3(2):e1672, 2008.

BIBLIOGRAPHY 117

[dSB14] Antonio del Sol and Noel J. Buckley. Concise review: A popula-
tion shift view of cellular reprogramming. Stem Cells, 32(6):1367–1372,
2014.

[EMMP16] Jennifer Enciso, Hector Mayani, Luis Mendoza, and Rosana Pelayo.
Modeling the pro-inflammatory tumor microenvironment in acute
lymphoblastic leukemia predicts a breakdown of hematopoietic-
mesenchymal communication networks. Frontiers in Physiology, 7:349,
2016.

[FER+13] Naznin Fauzia, Venmugil Elango, Mahesh Ravishankar, Jagannathan
Ramanujam, Fabrice Rastello, Atanas Rountev, Louis-Noël Pouchet,
and Ponnuswamy Sadayappan. Beyond reuse distance analysis: Dy-
namic analysis for characterization of data locality potential. ACM
Transactions on Architecture and Code Optimization, 10(4):1–29, 2013.

[FLNP00] Nir Friedman, Michal Linial, Iftach Nachman, and Dana Pe’er. Using
Bayesian networks to analyze expression data. Journal of Computational
Biology, 7(3-4):601–620, 2000.

[FMKS13] Bernold Fiedler, Atsushi Mochizuki, Gen Kurosawa, and Daisuke
Saito. Dynamics and control at feedback vertex sets. I: Informative
and determining nodes in regulatory networks. Journal of Dynamics
and Differential Equations, 25(3):563–604, 2013.

[FTS20] Laura Cifuentes Fontanals, Elisa Tonello, and Heike Siebert. Control
strategy identification via trap spaces in Boolean networks. In Proc.
18th International Conference on Computational Methods in Systems Biol-
ogy, volume 12314 of LNCS, pages 159–175. Springer, 2020.

[GCBP+13] Luca Grieco, Laurence Calzone, Isabelle Bernard-Pierrot, François
Radvanyi, Brigitte Kahn-Perles, and Denis Thieffry. Integrative mod-
elling of the influence of MAPK network on cancer cell fate decision.
PLOS Computational Biology, 9(10):e1003286, 2013.

[GD19] Alexander Grath and Guohao Dai. Direct cell reprogramming for tis-
sue engineering and regenerative medicine. Journal of Biological Engi-
neering, 13(1):14, 2019.

[GGC16] Liesbet Geris and David Gomez-Cabrero. An introduction to uncer-
tainty in the development of computational models of biological pro-
cesses. In Uncertainty in Biology, pages 3–11. Springer, 2016.

[GJ79] Michael R. Garey and David S. Johnson. Computers and intractability: a
guide to the theory of incompleteness. A series of books in mathematical
sciences. W. H. Freeman and Co., 1979.

[GJFM18] Shawn Gu, John Johnson, Fazle E. Faisal, and Tijana Milenković.
From homogeneous to heterogeneous network alignment via colored
graphlets. Scientific Reports, 8(1):1–16, 2018.

118 BIBLIOGRAPHY

[GLDB14] Jianxi Gao, Yang-Yu Liu, Raissa M. D’Souza, and Albert-László
Barabási. Target control of complex networks. Nature Communications,
5:5415, 2014.

[GLSG01] F.J. Geske, R. Lieberman, R. Strange, and L.E. Gerschenson. Early
stages of p53-induced apoptosis are reversible. Cell Death & Differenti-
ation, 8(2):182–191, 2001.

[Gol19] Michael S. Goligorsky. New trends in regenerative medicine: re-
programming and reconditioning. Journal of the American Society of
Nephrology, 30(11):2047–2051, 2019.

[GR16] Alexander J. Gates and Luis M. Rocha. Control of complex networks
requires both structure and dynamics. Scientific Reports, 6(1):1–11,
2016.

[GSPP19] Rihab Gam, Minkyung Sung, and Arun Prasad Pandurangan. Exper-
imental and computational approaches to direct cell reprogramming:
Recent advancement and future challenges. Cells, 8(10):1189, 2019.

[GTZ+18] Diego Germini, Tatiana Tsfasman, Vlada V. Zakharova, Nikolajs Sjak-
ste, Mar Lipinski, and Yegor Vassetzky. A comparison of techniques to
evaluate the effectiveness of genome editing. Trends in Biotechnology,
36(2):147–159, 2018.

[Gur62] John B. Gurdon. The developmental capacity of nuclei taken from
intestinal epithelium cells of feeding tadpoles. Development, 10(4):622–
640, 1962.

[HGZ+12] Franziska Herrmann, Alexander Groß, Dao Zhou, Hans A Kestler,
and Michael Kühl. A Boolean model of the cardiac gene regulatory
network determining first and second heart field identity. PLOS ONE,
7(10):e46798, 2012.

[HKU+17] Julien Herrmann, Jonathan Kho, Bora Uçar, Kamer Kaya, and Ümit V
Çatalyürek. Acyclic partitioning of large directed acyclic graphs. In
Proc. 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing, pages 371–380. IEEE, 2017.

[HLT+09] Michael Hecker, Sandro Lambeck, Susanne Toepfer, Eugene
Van Someren, and Reinhard Guthke. Gene regulatory network in-
ference: data integration in dynamic models - a review. BioSystems,
96(1):86–103, 2009.

[Hua01] Sui Huang. Genomics, complexity and drug discovery: insights from
Boolean network models of cellular regulation. Pharmacogenomics,
2(3):203–222, 2001.

[Kau69] Stuart Kauffman. Homeostasis and differentiation in random genetic
control networks. Nature, 224:177–178, 1969.

BIBLIOGRAPHY 119

[Ker71] Brian W. Kernighan. Optimal sequential partitions of graphs. Journal
of the ACM, 18(1):34–40, 1971.

[KMST11] Jan Krumsiek, Carsten Marr, Timm Schroeder, and Fabian J. Theis.
Hierarchical differentiation of myeloid progenitors is encoded in the
transcription factor network. PLOS ONE, 6(8):e22649, 2011.

[KPC13] Junil Kim, Sang-Min Park, and Kwang-Hyun Cho. Discovery of a ker-
nel for controlling biomolecular regulatory networks. Scientific Reports,
3:2223, 2013.

[KS08] Guy Karlebach and Ron Shamir. Modelling and analysis of gene reg-
ulatory networks. Nature Reviews Molecular Cell Biology, 9(10):770–780,
2008.

[KSS17] Hannes Klarner, Adam Streck, and Heike Siebert. PyBoolNet: a
python package for the generation, analysis and visualization of
Boolean networks. Bioinformatics, 33(5):770–772, 2017.

[LCL17] Jinling Liang, Hongwei Chen, and James Lam. An improved criterion
for controllability of Boolean control networks. IEEE Transactions on
Automatic Control, 62(11):6012–6018, 2017.

[LK12] Pey-Chang Kent Lin and Sunil P. Khatri. Application of Max-SAT-
based ATPG to optimal cancer therapy design. BMC Genomics,
13(S6):S5, 2012.

[LQR17] Alessio Lomuscio, Hongyang Qu, and Franco Raimondi. MCMAS: An
open-source model checker for the verification of multi-agent systems.
International Journal on Software Tools for Technology Transfer, 19(1):9–30,
2017.

[LSB11] Yang-Yu Liu, Jean-Jacques Slotine, and Albert-László Barabási. Con-
trollability of complex networks. Nature, 473:167–173, 2011.

[LZH+16] Jianquan Lu, Jie Zhong, Daniel W.C. Ho, Yang Tang, and Jinde Cao.
On controllability of delayed Boolean control networks. SIAM Journal
on Control and Optimization, 54(2):475–494, 2016.

[MDCR+16] Alberto J.M. Martin, Calixto Dominguez, Sebastian Contreras-
Riquelme, David S. Holmes, and Tomas Perez-Acle. Graphlet based
metrics for the comparison of gene regulatory networks. PLOS ONE,
11(10):e0163497, 2016.

[MFKS13] Atsushi Mochizuki, Bernold Fiedler, Gen Kurosawa, and Daisuke
Saito. Dynamics and control at feedback vertex sets. II: A faithful
monitor to determine the diversity of molecular activities in regula-
tory networks. Journal of Theoretical Biology, 335:130–146, 2013.

[MGFA19] Mohammad Moradi, Sama Goliaei, and Mohammad-Hadi
Foroughmand-Araabi. A Boolean network control algorithm guided
by forward dynamic programming. PLOS ONE, 14(5):e0215449, 2019.

120 BIBLIOGRAPHY

[MHK10] Christoph Müssel, Martin Hopfensitz, and Hans A. Kestler. BoolNet-
an R package for generation, reconstruction and analysis of Boolean
networks. Bioinformatics, 26(10):1378–1380, 2010.

[MHP16] Hugues Mandon, Stefan Haar, and Loïc Paulevé. Relationship be-
tween the reprogramming determinants of Boolean networks and
their interaction graph. In Proc. 5th International Workshop on Hybrid
Systems Biology, volume 9957 of LNCS, pages 113–127. Springer, 2016.

[MHP17] Hugues Mandon, Stefan Haar, and Loïc Paulevé. Temporal repro-
gramming of Boolean networks. In Proc. 15th International Conference
on Computational Methods in Systems Biology, volume 10545 of LNCS,
pages 179–195. Springer, 2017.

[MKH+19] Neel S. Madhukar, Prashant K. Khade, Linda Huang, Kaitlyn Gayvert,
Giuseppe Galletti, Martin Stogniew, Joshua E. Allen, Paraskevi Gian-
nakakou, and Olivier Elemento. A bayesian machine learning ap-
proach for drug target identification using diverse data types. Nature
Communications, 10(1):1–14, 2019.

[MPQY19] Andrzej Mizera, Jun Pang, Hongyang Qu, and Qixia Yuan. Tam-
ing asynchrony for attractor detection in large Boolean networks.
IEEE/ACM Transactions on Computational Biology and Bioinformatics,
16(1):31–42, 2019.

[MPS17] Orlando Moreira, Merten Popp, and Christian Schulz. Evolutionary
acyclic graph partitioning. arXiv preprint arXiv:1709.08563, 2017.

[MPSY18] Andrzej Mizera, Jun Pang, Cui Su, and Qixia Yuan. ASSA-PBN: A
toolbox for probabilistic Boolean networks. IEEE/ACM Transactions on
Computational Biology and Bioinformatics, 15(4):1203–1216, 2018.

[MPY15] Andrzej Mizera, Jun Pang, and Qixia Yuan. ASSA-PBN: a tool for
approximate steady-state analysis of large probabilistic Boolean net-
works. In Proc. 13th International Symposium on Automated Technol-
ogy for Verification and Analysis, volume 9364 of LNCS, pages 214–220.
Springer, 2015.

[MSH+19] Hugues Mandon, Cui Su, Stefan Haar, Jun Pang, and Loïc Paulevé.
Sequential reprogramming of Boolean networks made practical. In
Proc. 17th International Conference on Computational Methods in Systems
Biology, volume 11773 of LNCS, pages 3–19. Springer, 2019.

[MSP+19] Hugues Mandon, Cui Su, Jun Pang, Soumya Paul, Stefan Haar,
and Loïc Paulevé. Algorithms for the sequential reprogramming of
Boolean networks. IEEE/ACM Transactions on Computational Biology
and Bioinformatics, 16(5):1610–1619, 2019.

BIBLIOGRAPHY 121

[MVCAL16] David Murrugarra, Alan Veliz-Cuba, Boris Aguilar, and Reinhard
Laubenbacher. Identification of control targets in Boolean molecu-
lar network models via computational algebra. BMC Systems Biology,
10(1):94, 2016.

[NCCT10] Aurélien Naldi, Jorge Carneiro, Claudine Chaouiya, and Denis Thief-
fry. Diversity and plasticity of th cell types predicted from regulatory
network modelling. PLOS Computational Biology, 6(9):e1000912, 2010.

[NV12] Tamás Nepusz and Tamás Vicsek. Controlling edge dynamics in com-
plex networks. Nature Physics, 8(7):568–573, 2012.

[ODRS14] Oyebode J. Oyeyemi, Oluwafemi Davies, David L. Robertson, and
Jean-Marc Schwartz. A logical model of HIV-1 interactions with the
T-cell activation signalling pathway. Bioinformatics, 31(7):1075–1083,
2014.

[OKS+16] Barbara Offermann, Steffen Knauer, Amit Singh, María L Fernández-
Cachón, Martin Klose, Silke Kowar, Hauke Busch, and Melanie Boer-
ries. Boolean modeling reveals the necessity of transcriptional regu-
lation for bistability in PC12 cell differentiation. Frontiers in Genetics,
7:44, 2016.

[Pei14] Tiago P. Peixoto. The graph-tool python library. figshare, 2014. Avail-
able at http://graph-tool.skewed.de.

[PG18] Arnaud Poret and Carito Guziolowski. Therapeutic target discovery
using Boolean network attractors: improvements of kali. Royal Society
Open Science, 5(2):171852, 2018.

[PSPM18] Soumya Paul, Cui Su, Jun Pang, and Andrzej Mizera. A
decomposition-based approach towards the control of Boolean net-
works. In Proc. 9th ACM Conference on Bioinformatics, Computational
Biology, and Health Informatics, pages 11–20. ACM Press, 2018.

[PSPM19] Soumya Paul, Cui Su, Jun Pang, and Andrzej Mizera. An effi-
cient approach towards the source-target control of Boolean networks.
IEEE/ACM Transactions on Computational Biology and Bioinformatics,
2019. accepted.

[PWHL17] Shao-Peng Pang, Wen-Xu Wang, Fei Hao, and Ying-Cheng Lai. Uni-
versal framework for edge controllability of complex networks. Scien-
tific Reports, 7(1):1–12, 2017.

[Ric19] Adrien Richard. Positive and negative cycles in Boolean networks.
Journal of Theoretical Biology, 463:67–76, 2019.

[RRC+15] Elisabeth Remy, Sandra Rebouissou, Claudine Chaouiya, Andrei Zi-
novyev, François Radvanyi, and Laurence Calzone. A modeling ap-
proach to explain mutually exclusive and co-occurring genetic alter-
ations in bladder tumorigenesis. Cancer Research, 75(19):4042–4052,
2015.

122 BIBLIOGRAPHY

[RRL+08] Sobia Raza, Kevin A. Robertson, Paul A. Lacaze, David Page, Anton J.
Enright, Peter Ghazal, and Tom C. Freeman. A logic-based diagram of
signalling pathways central to macrophage activation. BMC Systems
Biology, 2(1):36, 2008.

[SB07] Thomas Schlitt and Alvis Brazma. Current approaches to gene regu-
latory network modelling. BMC Bioinformatics, 8(S6):S9, 2007.

[SD16] Deepak Srivastava and Natalie DeWitt. In vivo cellular reprogram-
ming: the next generation. Cell, 166(6):1386–1396, 2016.

[SDKZ02] Ilya Shmulevich, Edward R Dougherty, Seungchan Kim, and Wei
Zhang. Probabilistic Boolean networks: a rule-based uncertainty
model for gene regulatory networks. Bioinformatics, 18(2):261–274,
2002.

[SFL+09] Özgür Sahin, Holger Fröhlich, Christian Löbke, Ulrike Korf, Sara
Burmester, Meher Majety, Jens Mattern, Ingo Schupp, Claudine
Chaouiya, Denis Thieffry, Annemarie Poustka, Stefan Wiemann, Tim
Beissbarth, and Dorit Arlt. Modeling ERBB receptor-regulated G1/S
transition to find novel targets for de novo trastuzumab resistance.
BMC Systems Biology, 3(1):1, 2009.

[SKI+20] Julian D. Schwab, Silke D. Kühlwein, Nensi Ikonomi, Michael Kühl,
and Hans A. Kestler. Concepts in Boolean network modeling: What
do they all mean? Computational and Structural Biotechnology Journal,
18:571 – 582, 2020.

[SNK+12] Amit Singh, Juliana M. Nascimento, Silke Kowar, Hauke Busch, and
Melanie Boerries. Boolean approach to signalling pathway modelling
in HGF-induced keratinocyte migration. Bioinformatics, 28(18):495–
501, 2012.

[Som15] Fabio Somenzi. CUDD: CU decision diagram package - release 2.5.1.
http://vlsi.colorado.edu/ fabio/CUDD/, 2015.

[SP20a] Cui Su and Jun Pang. CABEAN: a software for the control of asyn-
chronous Boolean networks. Bioinformatics, 2020. accpeted.

[SP20b] Cui Su and Jun Pang. A dynamics-based approach for the target con-
trol of Boolean networks. In Proc. 11th ACM Conference on Bioinfor-
matics, Computational Biology, and Health Informatics. ACM Press, 2020.
accepted.

[SP20c] Cui Su and Jun Pang. Sequential temporary and permanent control
of Boolean networks. In Proc. 18th International Conference on Com-
putational Methods in Systems Biology, volume 12314 of LNCS, pages
234–251. Springer, 2020.

[SPP19a] Cui Su, Jun Pang, and Soumya Paul. Towards optimal decomposition
of Boolean networks. IEEE/ACM Transactions on Computational Biology
and Bioinformatics, 2019. accepted.

BIBLIOGRAPHY 123

[SPP19b] Cui Su, Soumya Paul, and Jun Pang. Controlling large Boolean net-
works with temporary and permanent perturbations. In Proc. 23rd In-
ternational Symposium on Formal Methods, volume 11800 of LNCS, pages
707–724. Springer, 2019.

[SPRF08] Manish Dev Shrimali, Awadhesh Prasad, Ram Ramaswamy, and Ul-
rike Feudel. The nature of attractor basins in multistable systems.
International Journal of Bifurcation and Chaos, 18(06):1675–1688, 2008.

[Sto18] Lewi Stone. The feasibility and stability of large complex biologi-
cal networks: a random matrix approach. Scientific Reports, 8(1):1–12,
2018.

[TMP+13] Panuwat Trairatphisan, Andrzej Mizera, Jun Pang, Alexandru Adrian
Tantar, Jochen Schneider, and Thomas Sauter. Recent development
and biomedical applications of probabilistic Boolean networks. Cell
Communication and Signaling, 11(1):46, 2013.

[TPM+12] Juilee Thakar, Ashutosh K. Pathak, Lisa Murphy, Réka Albert, and
Isabella M. Cattadori. Network model of immune responses reveals
key effectors to single and co-infection dynamics by a respiratory bac-
terium and a gastrointestinal helminth. PLOS Computational Biology,
8(1):e1002345, 2012.

[TTO+07] Kazutoshi Takahashi, Koji Tanabe, Mari Ohnuki, Megumi Narita,
Tomoko Ichisaka, Kiichiro Tomoda, and Shinya Yamanaka. Induc-
tion of pluripotent stem cells from adult human fibroblasts by defined
factors. Cell, 131(5):861–872, 2007.

[VCS13] Nedumparambathmarath Vijesh, Swarup Kumar Chakrabarti, and Ja-
nardanan Sreekumar. Modeling of gene regulatory networks: a re-
view. Journal of Biomedical Science and Engineering, 6(02):223, 2013.

[VSRGS17] Santiago Videla, Julio Saez-Rodriguez, Carito Guziolowski, and Anne
Siegel. caspo: a toolbox for automated reasoning on the response of
logical signaling networks families. Bioinformatics, 33(6):947–950, 2017.

[WKM15] Daniel K. Wells, William L. Kath, and Adilson E. Motter. Control of
stochastic and induced switching in biophysical networks. Physical
Review X, 5(3):031036, 2015.

[WSH+16] Le-Zhi Wang, Ri-Qi Su, Zi-Gang Huang, Xiao Wang, Wen-Xu Wang,
Celso Grebogi, and Ying-Cheng Lai. A geometrical approach to con-
trol and controllability of nonlinear dynamical networks. Nature Com-
munications, 7(1):1–11, 2016.

[WSZS19] Yuhu Wu, Xi-Ming Sun, Xudong Zhao, and Tielong Shen. Optimal
control of Boolean control networks with average cost: A policy itera-
tion approach. Automatica, 100:378–387, 2019.

124 BIBLIOGRAPHY

[Yam07] Shinya Yamanaka. Strategies and new developments in the generation
of patient-specific pluripotent stem cells. Cell Stem Cell, 1(1):39–49,
2007.

[YKOO+18] Ayako Yachie-Kinoshita, Kento Onishi, Joel Ostblom, Matthew A. Lan-
gley, Eszter Posfai, Janet Rossant, and Peter W. Zandstra. Modeling
signaling-dependent pluripotency with boolean logic to predict cell
fate transitions. Molecular Systems Biology, 14(1):e7952, 2018.

[YMPQ19] Qixia Yuan, Andrzej Mizera, Jun Pang, and Hongyang Qu. A new
decomposition-based method for detecting attractors in synchronous
boolean networks. Science of Computer Programming, 180:18–35, 2019.

[YYCJ19] Jumei Yue, Yongyi Yan, Zengqiang Chen, and Xin Jin. Identification of
predictors of Boolean networks from observed attractor states. Mathe-
matical Methods in the Applied Sciences, 42(11):3848–3864, 2019.

[ZH14] Peican Zhu and Jie Han. Asynchronous stochastic Boolean networks
as gene network models. Journal of Computational Biology, 21(10):771–
783, 2014.

[ZKF13] Yin Zhao, Jongrae Kim, and Maurizio Filippone. Aggregation algo-
rithm towards large-scale Boolean network analysis. IEEE Transactions
on Automatic Control, 58(8):1976–1985, 2013.

[ZL08] Ren Zhang and Yan Lin. Deg 5.0, a database of essential genes in both
prokaryotes and eukaryotes. Nucleic Acids Research, 37(suppl_1):D455–
D458, 2008.

[ZLK+19] Jie Zhong, Yang Liu, Kit Ian Kou, Liangjie Sun, and Jinde Cao. On
the ensemble controllability of Boolean control networks using STP
method. Applied Mathematics and Computation, 358:51–62, 2019.

[ZLLC18] Qunxi Zhu, Yang Liu, Jianquan Lu, and Jinde Cao. Further results on
the controllability of Boolean control networks. IEEE Transactions on
Automatic Control, 64(1):440–442, 2018.

[ZnA15] Jorge G.T. Zañudo and Réka Albert. Cell fate reprogramming by con-
trol of intracellular network dynamics. PLOS Computational Biology,
11(4):e1004193, 2015.

[ZYA17] Jorge Gomez Tejeda Zañudo, Gang Yang, and Réka Albert. Structure-
based control of complex networks with nonlinear dynamics. Proceed-
ings of the National Academy of Sciences, 114(28):7234–7239, 2017.

[ZYL+13] Desheng Zheng, Guowu Yang, Xiaoyu Li, Zhicai Wang, Feng Liu,
and Lei He. An efficient algorithm for computing attractors of
synchronous and asynchronous Boolean networks. PLOS ONE,
8(4):e60593, 2013.

125

Curriculum Vitae

2016 – 2020 Ph.D. student, University of Luxembourg, Luxembourg
2013 – 2016 M.E. in Systems Engineering, Yanshan University, China.
2009 – 2013 M.E. in Automation, Yanshan University, China

Born on January 29, 1991, Hebei, China.

	Introduction
	Cell reprogramming
	Mathematical modelling of biological systems
	Research questions
	Related work
	Contributions
	Layout

	Preliminaries
	Boolean networks
	Boolean networks
	Dynamics of Boolean networks
	Attractors and basins

	Decomposition of Boolean networks
	SCC decomposition
	Blocks
	Projection of states and the cross operation
	Transition system of the blocks

	Acyclic partitioning of directed acyclic graphs
	Real-life biological networks

	Near-optimal Decomposition of Boolean Networks
	Introduction
	Problem definition
	Acyclic partitioning of SCC graphs
	Initial partitioning
	Topological refinement
	Iteration

	Integration with the SCC decomposition
	Evaluation
	Conclusion

	Computation of the Basin of Attraction
	Introduction
	A global method
	A decomposition-based method
	Evaluation

	Source-target Control
	Introduction
	The source-target control problems
	Boolean networks under control
	The control problems

	One-step instantaneous control
	One-step temporary control
	One-step permanent control
	Attractor-based sequential instantaneous control
	Attractor-based sequential temporary control
	Attractor-based sequential permanent control
	Evaluation
	Control of the cardiac gene regulatory network
	Control of the myeloid differentiation network
	Control of the tumour network
	Control of other biological networks

	Conclusion

	Target Control
	Introduction
	The target control problems
	Instantaneous target control
	Temporary target control
	Permanent target control
	Evaluation
	Control of the cardiac gene regulatory network
	Control of the myeloid differentiation network
	Control of the tumour network
	Control of other biological networks

	Conclusion

	CABEAN: a Software for the Control of Asynchronous Boolean Networks
	Introduction
	General features
	Case study

	Conclusions and Future Work
	Limitations of existing biological networks
	Conclusions
	Future work

	Bibliography
	Curriculum Vitae

