Skip to main content

Classical Algorithms for Reasoning and Explanation in Description Logics

  • Chapter
  • First Online:
  • 1366 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11810))

Abstract

Description Logics (DLs) are a family of languages designed to represent conceptual knowledge in a formal way as a set of ontological axioms. DLs provide a formal foundation of the ontology language OWL, which is a W3C standardized language to represent information in Web applications. The main computational problem in DLs is finding relevant consequences of the information stored in ontologies, e.g., to answer user queries. Unlike related techniques based on keyword search or machine learning, the notion of a consequence is well-defined using a formal logic-based semantics. This course provides an in-depth description and analysis of the main reasoning and explanation methods for ontologies: tableau procedures and axiom pinpointing algorithms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://schema.org/.

  2. 2.

    https://developers.google.com/knowledge-graph/.

  3. 3.

    https://www.wikidata.org.

  4. 4.

    \(n!=n\cdot (n-1)\cdot (n-2)\cdots 2\cdot 1\), there are n possibilities to choose the first element, \(n-1\) to choose the second element from the remaining ones, \(n-2\) to choose the third one, etc.

  5. 5.

    The conjuncts for \(J_{ij}\) in F consist of two negated propositional variables, the conjunct for \(R_1\) and \(R_2\) in F consist of n propositional variables.

  6. 6.

    http://www.cs.man.ac.uk/~ezolin/dl/.

References

  1. Arif, M.F., Mencía, C., Marques-Silva, J.: Efficient MUS enumeration of horn formulae with applications to axiom pinpointing. CoRR abs/1505.04365 (2015)

    Google Scholar 

  2. Baader, F.: Description logics. In: Tessaris, S., et al. (eds.) Reasoning Web 2009. LNCS, vol. 5689, pp. 1–39. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03754-2_1

    Chapter  Google Scholar 

  3. Baader, F., Brandt, S., Lutz, C.: Pushing the \(\cal{EL}\) envelope. In: Proceedings of the 19th International Joint Conference on Artificial Intelligence (IJCAI 2005), pp. 364–369 (2005)

    Google Scholar 

  4. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The Description Logic Handbook: Theory, Implementation, and Applications, 2nd edn. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  5. Baader, F., Franconi, E., Hollunder, B., Nebel, B., Profitlich, H.J.: An empirical analysis of optimization techniques for terminological representation systems. Appl. Intell. 4(2), 109–132 (1994)

    Article  Google Scholar 

  6. Baader, F., Horrocks, I., Lutz, C., Sattler, U.: An Introduction to Description Logic. Cambridge University Press, Cambridge (2017)

    Book  Google Scholar 

  7. Bate, A., Motik, B., Grau, B.C., Cucala, D.T., Simancik, F., Horrocks, I.: Consequence-based reasoning for description logics with disjunctions and number restrictions. J. Artif. Intell. Res. 63, 625–690 (2018)

    Article  MathSciNet  Google Scholar 

  8. Baumgartner, P., Furbach, U., Niemelä, I.: Hyper tableaux. In: Alferes, J.J., Pereira, L.M., Orlowska, E. (eds.) JELIA 1996. LNCS, vol. 1126, pp. 1–17. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61630-6_1

    Chapter  Google Scholar 

  9. Bienvenu, M., Bourgaux, C.: Inconsistency-tolerant querying of description logic knowledge bases. In: Pan, J.Z., et al. (eds.) Reasoning Web 2016. LNCS, vol. 9885, pp. 156–202. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-49493-7_5

    Chapter  MATH  Google Scholar 

  10. Bienvenu, M., Ortiz, M.: Ontology-mediated query answering with data-tractable description logics. In: Faber, W., Paschke, A. (eds.) Reasoning Web 2015. LNCS, vol. 9203, pp. 218–307. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21768-0_9

    Chapter  Google Scholar 

  11. Bonatti, P.A., Faella, M., Petrova, I.M., Sauro, L.: A new semantics for overriding in description logics. Artif. Intell. 222, 1–48 (2015)

    Article  MathSciNet  Google Scholar 

  12. Botoeva, E., Konev, B., Lutz, C., Ryzhikov, V., Wolter, F., Zakharyaschev, M.: Inseparability and conservative extensions of description logic ontologies: a survey. In: Pan, J.Z., et al. (eds.) Reasoning Web 2016. LNCS, vol. 9885, pp. 27–89. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-49493-7_2

    Chapter  MATH  Google Scholar 

  13. Brandt, S.: Polynomial time reasoning in a description logic with existential restrictions, GCI axioms, and - what else? In: de Mántaras, R.L., Saitta, L. (eds.) Proceedings of the 16th European Conference on Artificial Intelligence (ECAI 2004), pp. 298–302. IOS Press (2004)

    Google Scholar 

  14. Casini, G., Straccia, U.: Defeasible inheritance-based description logics. J. Artif. Intell. Res. 48, 415–473 (2013)

    Article  MathSciNet  Google Scholar 

  15. Cucala, D.T., Grau, B.C., Horrocks, I.: Consequence-based reasoning for description logics with disjunction, inverse roles, number restrictions, and nominals. In: Lang, J. (ed.) Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI 2018), pp. 1970–1976. ijcai.org (2018)

    Google Scholar 

  16. Cuenca Grau, B., Horrocks, I., Kazakov, Y., Sattler, U.: Modular reuse of ontologies: theory and practice. J. Artif. Intell. Res. 31, 273–318 (2008)

    Article  MathSciNet  Google Scholar 

  17. Feld, M., Müller, C.: The automotive ontology: managing knowledge inside the vehicle and sharing it between cars. In: Proceedings of the 3rd International Conference on Automotive User Interfaces and Interactive Vehicular Applications, AutomotiveUI 2011, pp. 79–86. ACM, New York (2011). http://doi.acm.org/10.1145/2381416.2381429

  18. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: A non-monotonic description logic for reasoning about typicality. Artif. Intell. 195, 165–202 (2013)

    Article  MathSciNet  Google Scholar 

  19. Glimm, B., Horrocks, I., Motik, B.: Optimized description logic reasoning via core blocking. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS (LNAI), vol. 6173, pp. 457–471. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14203-1_39

    Chapter  MATH  Google Scholar 

  20. Glimm, B., Horrocks, I., Motik, B., Shearer, R., Stoilos, G.: A novel approach to ontology classification. J. Web Semant. 14, 84–101 (2012)

    Article  Google Scholar 

  21. Golbreich, C., Zhang, S., Bodenreider, O.: The foundational model of anatomy in OWL: experience and perspectives. J. Web Semant. 4(3), 181–195 (2006)

    Article  Google Scholar 

  22. Greiner, R., Smith, B.A., Wilkerson, R.W.: A correction to the algorithm in Reiter’s theory of diagnosis. In: Readings in Model-Based Diagnosis, pp. 49–53. Morgan Kaufmann Publishers Inc. (1992)

    Google Scholar 

  23. Group, T.W.W. (ed.): SPARQL 1.1 Overview. W3C Recommendation, 21 March 2013. http://www.w3.org/TR/sparql11-overview/

  24. Haarslev, V., Möller, R., Turhan, A.-Y.: Exploiting pseudo models for TBox and ABox reasoning in expressive description logics. In: Goré, R., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS, vol. 2083, pp. 61–75. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45744-5_6

    Chapter  MATH  Google Scholar 

  25. Hoehndorf, R., Dumontier, M., Gkoutos, G.V.: Evaluation of research in biomedical ontologies. Briefings Bioinform. 14(6), 696–712 (2012)

    Article  Google Scholar 

  26. Horridge, M.: Justification based explanation in ontologies. Ph.D. thesis, University of Manchester, UK (2011)

    Google Scholar 

  27. Horridge, M., Parsia, B., Sattler, U.: Laconic and precise justifications in OWL. In: Sheth, A., et al. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 323–338. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88564-1_21

    Chapter  Google Scholar 

  28. Horridge, M., Parsia, B., Sattler, U.: Justification oriented proofs in OWL. In: Patel-Schneider, P.F., et al. (eds.) ISWC 2010. LNCS, vol. 6496, pp. 354–369. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17746-0_23

    Chapter  Google Scholar 

  29. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible \(\cal{SROIQ}\). In: Doherty, P., Mylopoulos, J., Welty, C.A. (eds.) Proceedings 10th International Conference on Principles of Knowledge Representation and Reasoning (KR 2006), pp. 57–67. AAAI Press (2006)

    Google Scholar 

  30. Hudek, A.K., Weddell, G.E.: Binary absorption in tableaux-based reasoning for description logics. In: Proceedings of the 19th International Workshop on Description Logics (DL 2006), vol. 189. CEUR (2006)

    Google Scholar 

  31. Kazakov, Y.: \(\cal{RIQ}\) and \(\cal{SROIQ}\) are harder than \(\cal{SHOIQ}\). In: Brewka, G., Lang, J. (eds.) Proceedings of the 11th International Conference on Principles of Knowledge Representation and Reasoning (KR 2008), pp. 274–284. AAAI Press (2008)

    Google Scholar 

  32. Kazakov, Y.: Consequence-driven reasoning for Horn \(\cal{SHIQ}\) ontologies. In: Proceedings of the 21st International Joint Conference on Artificial Intelligence (IJCAI 2009), pp. 2040–2045. IJCAI (2009)

    Google Scholar 

  33. Kazakov, Y., Klinov, P.: Goal-directed tracing of inferences in EL ontologies. In: Mika, P., et al. (eds.) ISWC 2014. LNCS, vol. 8797, pp. 196–211. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11915-1_13

    Chapter  Google Scholar 

  34. Kazakov, Y., Krötzsch, M., Simančík, F.: ELK: a reasoner for OWL EL ontologies. System description, University of Oxford (2012)

    Google Scholar 

  35. Kharlamov, E., et al.: Ontology based data access in statoil. Web Semant. Sci. Serv. Agents World Wide Web 44, 3–36 (2017)

    Article  Google Scholar 

  36. Kontchakov, R., Zakharyaschev, M.: An introduction to description logics and query rewriting. In: Koubarakis, M., et al. (eds.) Reasoning Web 2014. LNCS, vol. 8714, pp. 195–244. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10587-1_5

    Chapter  Google Scholar 

  37. Krötzsch, M., Marx, M., Ozaki, A., Thost, V.: Attributed description logics: reasoning on knowledge graphs. In: Lang, J. (ed.) Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018, Stockholm, Sweden, 13–19 July 2018. pp. 5309–5313. ijcai.org (2018). https://doi.org/10.24963/ijcai.2018/743

  38. Maier, A., Schnurr, H.-P., Sure, Y.: Ontology-based information integration in the automotive industry. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp. 897–912. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39718-2_57

    Chapter  Google Scholar 

  39. Manthey, N., Peñaloza, R., Rudolph, S.: Efficient axiom pinpointing in \(\cal{EL}\) using SAT technology. In: Lenzerini, M., Peñaloza, R. (eds.) Proceedings of the 29th International Workshop on Description Logics (DL 2016). CEUR Workshop Proceedings, vol. 1577. CEUR-WS.org (2016). http://ceur-ws.org/Vol-1577/paper_33.pdf

  40. Motik, B.: Representing and querying validity time in RDF and OWL: a logic-based approach. J. Web Semant. 12, 3–21 (2012). https://doi.org/10.1016/j.websem.2011.11.004

    Article  Google Scholar 

  41. Motik, B., Cuenca Grau, B., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C. (eds.): OWL 2 Web Ontology Language: Profiles. W3C Recommendation, 27 October 2009. http://www.w3.org/TR/owl2-profiles/

  42. Motik, B., Shearer, R., Horrocks, I.: Hypertableau reasoning for description logics. J. Artif. Intell. Res. 36, 165–228 (2009)

    Article  MathSciNet  Google Scholar 

  43. Ortiz, M., Šimkus, M.: Reasoning and query answering in description logics. In: Eiter, T., Krennwallner, T. (eds.) Reasoning Web 2012. LNCS, vol. 7487, pp. 1–53. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33158-9_1

    Chapter  MATH  Google Scholar 

  44. OWL Working Group, W.: OWL 2 Web Ontology Language: Document Overview. W3C Recommendation, 27 October 2009. http://www.w3.org/TR/owl2-overview/

  45. Peñaloza, R.: Explaining axiom pinpointing. In: Lutz, C., Sattler, U., Tinelli, C., Turhan, A.-Y., Wolter, F. (eds.) Description Logic, Theory Combination, and All That. LNCS, vol. 11560, pp. 475–496. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22102-7_22

    Chapter  Google Scholar 

  46. Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1), 57–95 (1987)

    Article  MathSciNet  Google Scholar 

  47. Robinson, J.A.: Automatic deduction with hyper-resolution. Int. J. Comput. Math. 1(3), 227–234 (1965)

    MathSciNet  MATH  Google Scholar 

  48. Armas Romero, A., Cuenca Grau, B., Horrocks, I.: MORe: modular combination of OWL reasoners for ontology classification. In: Cudré-Mauroux, P., et al. (eds.) ISWC 2012. LNCS, vol. 7649, pp. 1–16. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35176-1_1

    Chapter  Google Scholar 

  49. Rudolph, S.: Foundations of description logics. In: Polleres, A., et al. (eds.) Reasoning Web 2011. LNCS, vol. 6848, pp. 76–136. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23032-5_2

    Chapter  Google Scholar 

  50. Sattler, U.: Reasoning in description logics: basics, extensions, and relatives. In: Antoniou, G., et al. (eds.) Reasoning Web 2007. LNCS, vol. 4636, pp. 154–182. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74615-7_2

    Chapter  MATH  Google Scholar 

  51. Schmidt-Schauß, M., Smolka, G.: Attributive concept descriptions with complements. J. Artif. Intell. 48, 1–26 (1991)

    Article  MathSciNet  Google Scholar 

  52. Schreiber, G., Raimond, Y. (eds.): RDF 1.1 Primer. W3C Working Group Note, 24 June 2014. http://www.w3.org/TR/rdf11-primer/

  53. Sebastiani, R., Vescovi, M.: Axiom pinpointing in lightweight description logics via horn-SAT encoding and conflict analysis. In: Schmidt, R.A. (ed.) CADE 2009. LNCS (LNAI), vol. 5663, pp. 84–99. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02959-2_6

    Chapter  Google Scholar 

  54. Simančík, F., Kazakov, Y., Horrocks, I.: Consequence-based reasoning beyond horn ontologies. In: Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI 2011), pp. 1093–1098. AAAI Press/IJCAI (2011)

    Google Scholar 

  55. Sirin, E.: From wine to water: optimizing description logic reasoning for nominals. In: Proceedings of the 10th International Conference on Principles of Knowledge Representation and Reasoning (KR 2006), pp. 90–99. AAAI Press (2006)

    Google Scholar 

  56. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: a practical OWL-DL reasoner. J. Web Semant. 5(2), 51–53 (2007)

    Article  Google Scholar 

  57. Steigmiller, A., Glimm, B., Liebig, T.: Optimised absorption for expressive description logics. In: Proceedings of the 27th International Workshop on Description Logics (DL 2014). CEUR Workshop Proceedings, vol. 1193. CEUR-WS.org (2014). https://www.uni-ulm.de/fileadmin/website_uni_ulm/iui.inst.090/Publikationen/2014/StGL14b.pdf

  58. Steigmiller, A., Liebig, T., Glimm, B.: Konclude: system description. J. Web Semant. 27–28, 78–85 (2014)

    Article  Google Scholar 

  59. Straccia, U.: All about fuzzy description logics and applications. In: Faber, W., Paschke, A. (eds.) Reasoning Web 2015. LNCS, vol. 9203, pp. 1–31. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21768-0_1

    Chapter  Google Scholar 

  60. Tobies, S.: Complexity results and practical algorithms for logics in knowledge representation. Ph.D. thesis, RWTH Aachen, Germany (2001)

    Google Scholar 

  61. Tsarkov, D., Horrocks, I.: Efficient reasoning with range and domain constraints. In: Proceedings of the 17th International Workshop on Description Logics (DL 2004), vol. 104. CEUR (2004)

    Google Scholar 

  62. Tsarkov, D., Horrocks, I.: FaCT++ description logic reasoner: system description. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 292–297. Springer, Heidelberg (2006). https://doi.org/10.1007/11814771_26

    Chapter  Google Scholar 

  63. Tudorache, T., Nyulas, C.I., Noy, N.F., Musen, M.A.: Using semantic web in ICD-11: three years down the road. In: Alani, H., et al. (eds.) ISWC 2013. LNCS, vol. 8219, pp. 195–211. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41338-4_13

    Chapter  Google Scholar 

  64. Turhan, A.-Y.: Reasoning and explanation in \(\cal{EL}\) and in expressive description logics. In: Aßmann, U., Bartho, A., Wende, C. (eds.) Reasoning Web 2010. LNCS, vol. 6325, pp. 1–27. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15543-7_1

    Chapter  Google Scholar 

  65. Turhan, A.-Y.: Introductions to description logics – a guided tour. In: Rudolph, S., Gottlob, G., Horrocks, I., van Harmelen, F. (eds.) Reasoning Web 2013. LNCS, vol. 8067, pp. 150–161. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39784-4_3

    Chapter  Google Scholar 

  66. Vardi, M.Y.: Why is modal logic so robustly decidable? In: Immerman, N., Kolaitis, P.G. (eds.) Descriptive Complexity and Finite Models, Proceedings of a DIMACS Workshop 1996, Princeton, New Jersey, USA, 14–17 January 1996. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 31, pp. 149–183. DIMACS/AMS (1996)

    Google Scholar 

  67. Vescovi, M.: Exploiting SAT and SMT techniques for automated reasoning and ontology manipulation in description logics. Ph.D. thesis, University of Trento, Italy (2011). http://eprints-phd.biblio.unitn.it/477/

  68. Zhao, L., Ichise, R., Mita, S., Sasaki, Y.: Core ontologies for safe autonomous driving. In: Villata, S., Pan, J.Z., Dragoni, M. (eds.) Proceedings of the ISWC 2015 Posters & Demonstrations Track co-located with the 14th International Semantic Web Conference (ISWC-2015), Bethlehem, PA, USA, 11 October 2015. CEUR Workshop Proceedings, vol. 1486. CEUR-WS.org (2015). http://ceur-ws.org/Vol-1486/paper_9.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yevgeny Kazakov .

Editor information

Editors and Affiliations

A Appendix

A Appendix

For the convenience of interested readers, in this appendix we recap some background material used in this course, such as the basic notions for describing the (theoretical) complexity of algorithms, and the propositional satisfiability problem.

1.1 A.1 Computational Complexity

A decision problem (for an input set X) is simply a mapping \(P :X \rightarrow \{\textit{yes}, \textit{no}\}\). Note that X can be an arbitrary set of objects. For example, for the concept subsumption problem, X consists of all possible pairs \(\langle {\mathcal {O},C\sqsubseteq D}\rangle \) where the first component is an ontology \(\mathcal {O}\) and the second component is a concept subsumption \(C\sqsubseteq D\). An algorithm A solves (or decides) a decision problem P for X, if A accepts each value \(x\in X\) as input, terminates for all these values, and returns the (correct) result \(A(x)=P(x)\).

There are several dimensions according to which one can measure the computational complexity of problems and algorithms. We say that an algorithm A has an (upper) time complexity f(n) if for each input \(x\in X\) with the size (e.g., the number of symbols) n, the algorithm A terminates after at most f(n) steps. A problem P for X is solvable in time f(n) if there exists an algorithm A that solves P and has the time complexity f(n). We say that a problem P is solvable in polynomial time if there exists a polynomial function f(n) such that P is solvable in time f(n). A problem P is solvable in exponential time (doubly exponential time, ...) if there exists a polynomial function f(n) such that P is solvable in time \(2^{f(n)}\) (\(2^{2^{f(n)}}\), ...). Analogously to the algorithmic time complexity, one can define the algorithmic space complexity: a problem P for X is solvable in space f(n) if there exists an algorithm A that solves P such that for each input \(x\in X\) with the size n, the algorithm A uses at most f(n) units of memory at every step of the computation.

Another dimension of the computational complexity is based on the notion of a non-deterministic computation. An algorithm A is said to be non-deterministic if the result of some operations that it can perform is not uniquely determined. Thus, the algorithm can produce different results for different runs even with the same input. A non-deterministic algorithm A solves a problem P for X if, for each \(x\in X\) such that \(P(x)=\textit{no}\), each run of A terminates with the result \(\textit{no}\), and for each \(x\in X\) such that \(P(x)=\textit{yes}\), there exists at least one run for which the algorithm terminates and produces \(\textit{yes}\). The intuition is that, if one has an unlimited number of identical computers, then one can solve the problem P by starting the algorithm A in parallel on all of these computers; if \(P(x)=\textit{yes}\), one of them is guaranteed to return \(\textit{yes}\) (provided the results of all non-deterministic instructions are chosen at random).

The time and space complexity measures are also extended to non-deterministic algorithms. For example, a non-deterministic algorithm A has the (upper) time complexity f(n) if, for every input \(x\in X\) of the size n, every run of A terminates after at most f(n) steps. We say that a problem P for X is solvable in non-deterministic time f(n) if there exists a non-deterministic algorithm A that solves P and has the time complexity f(n). Thus, a problem P is solvable in non-deterministic polynomial (exponential, doubly exponential, ...) time if P is solvable in non-deterministic time f(n), where f(n) is a polynomial (exponential, doubly exponential) function. The non-deterministic space complexity is defined similarly.

A common way to solve a problem is to reduce it to another problem, for which a solution is known. A decision problem \(P_1 :X \rightarrow \{\textit{yes}, \textit{no}\}\) is (many-one) reducible to a decision problem \(P_2 :Y \rightarrow \{\textit{yes}, \textit{no}\}\) if there exists an algorithm \(R :X \rightarrow Y\) (that takes an input from X and produces an output from Y) such that for every \(x\in X\), we have \(P_1(x)=P_2(R(x))\). In this case the algorithm R is called a reduction from \(P_1\) to \(P_2\). Depending on the time or space complexity of the algorithm R (i.e., the maximal number of steps or memory units consumed for inputs of size n), the complexity bounds of the problems are also transferred by the reduction. Usually one is interested in polynomial reductions, where the number of steps for computing each R(x) is bounded by a polynomial function in the size of x. In this case, if the complexity of \(P_2\) is polynomial, exponential, or doubly exponential (for deterministic or non-deterministic, time or space complexity), then \(P_1\) has the same complexity as \(P_2\).

1.2 A.2 Propositional Logic and SAT

The vocabulary of Propositional Logic consists of a countably infinite set P of propositional variables, Boolean constants: \(\top \) (Verum), \(\bot \) (Falsum), and Boolean operators: \(\wedge \) (conjunction), \(\vee \) (disjunction), \(\lnot \) (negation) and \(\rightarrow \) (implication). Propositional formulas are constructed from these symbols according to the grammar:

$$\begin{aligned} F,G \,{::=} \,p \mid \top \mid \bot \mid F \wedge G \mid F \vee G \mid \lnot F \mid F\rightarrow G, \end{aligned}$$
(10)

where \(p\in P\). A propositional interpretation \(\mathcal {I}\) assigns to each propositional variable \(p\in P\) a truth value \(p^\mathcal {I}\in \{1,0\}\) (1 means ‘true’, 0 means ‘false’) and is extended to other propositional formulas by induction over the grammar definition (10) as follows:

  • \(\top ^\mathcal {I}=1\) and \(\bot ^\mathcal {I}=0\) for each \(\mathcal {I}\),

  • \((F\wedge G)^\mathcal {I}=1\) if and only if \(F^\mathcal {I}=1\) and \(G^\mathcal {I}=1\),

  • \((F\vee G)^\mathcal {I}=1\) if and only if \(F^\mathcal {I}=1\) or \(G^\mathcal {I}=1\),

  • \((\lnot F)^\mathcal {I}=1\) if and only if \(F^\mathcal {I}=0\),

  • \((F\rightarrow G)^\mathcal {I}=1\) if and only if \(F^\mathcal {I}=0\) or \(G^\mathcal {I}=1\).

If \(F^\mathcal {I}=1\) then we say that \(\mathcal {I}\) is a model of F (or F is satisfied in \(\mathcal {I}\)). We say that F is satisfiable if F has at least one model; otherwise F is unsatisfiable. A propositional satisfiability problem (short: SAT) is the following decision problem:

  • Given: a propositional formula F,

  • Return: yes if F is satisfiable and no otherwise.

SAT is a classical example of a non-deterministic polynomial (short: NP) problem: it can be solved using an algorithm that non-deterministically choses a propositional interpretation \(\mathcal {I}\), computes (in polynomial time) the value \(F^\mathcal {I}\) and returns \(yes \) if \(F^\mathcal {I}=1\) and \(no \) if \(F^\mathcal {I}=0\). It can be shown that each problem solvable by a non-deterministic polynomial algorithm has a polynomial reduction to SAT, which means that SAT is actually an NP-complete problem. Currently, the most efficient algorithms for solving SAT are based on (extensions of) the Davis-Putnam-Logemann-Loveland (short: DPLL) procedure, which systematically explores interpretations in a goal-directed way. A program that implements an algorithm for solving SAT is called a SAT-solver. Usually a SAT-solver not only decides satisfiability of a given propositional formula F, but can also output a model of F in case F is satisfiable.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Glimm, B., Kazakov, Y. (2019). Classical Algorithms for Reasoning and Explanation in Description Logics. In: Krötzsch, M., Stepanova, D. (eds) Reasoning Web. Explainable Artificial Intelligence. Lecture Notes in Computer Science(), vol 11810. Springer, Cham. https://doi.org/10.1007/978-3-030-31423-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31423-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31422-4

  • Online ISBN: 978-3-030-31423-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics