Skip to main content

Logic-Based Learning of Answer Set Programs

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11810))

Abstract

Learning interpretable models from data is stated as one of the main challenges of AI. The goal of logic-based learning is to compute interpretable (logic) programs that explain labelled examples in the context of given background knowledge. This tutorial introduces recent advances of logic-based learning, specifically learning non-monotonic logic programs under the answer set semantics. We introduce several learning frameworks and algorithms, which allow for learning highly expressive programs, containing rules representing non-determinism, choice, exceptions, constraints and preferences. Throughout the tutorial, we put a strong emphasis on the expressive power of the learning systems and frameworks, explaining why some systems are incapable of learning particular classes of programs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    As the notions had not been defined at the time, they did not call it cautious induction, but the definitions are the same.

  2. 2.

    The original definitions of brave and cautious induction did not consider atoms which should not be present in an answer set (negative examples). Publicly available algorithms that realise brave induction, on the other hand, do allow for negative examples. We therefore upgrade the definitions in this tutorial to allow negative examples. Note that a negative example \(\mathtt {e}\) can be easily simulated by adding a rule to the background knowledge and giving \(\mathtt {a}\) as a positive example (where \(\mathtt {a}\) is a new atom that does not appear anywhere in the original task).

  3. 3.

    This is a slight simplification. In the ASPAL algorithm, this is a choice rule using conditional literals, in order to delegate the grounding of the possible constants to the ASP solver. The ground version of ASPAL’s choice rule is identical to the one presented in this definition.

  4. 4.

    Both XHAIL [36] and ASPAL [7] support learning non-stratified programs, but the background knowledge and hypothesis space of each of the example tasks in [36] and [7] is stratified.

  5. 5.

    A graph is Hamiltonian if it contains a cycle that visits each node exactly once.

  6. 6.

    Details of the encodings can be found in [20,21,22].

  7. 7.

    In Algorithm 1.1 the set Relevant is a pair of sets of examples, the first set being relevant positive examples and the second set relevant negative examples. The notation on Line 5 means to add example re to the appropriate set, depending on whether it is a positive or a negative example.

  8. 8.

    Note that to avoid cumbersome notation, we denote this \(E_{LAS}\) rather than \(E_{ILP_{LAS}}\).

  9. 9.

    In Table 1 the following two notations are used. For programs P and Q the relation \(P\equiv ^{s}Q\) means that for any program R \(AS(P \cup R) = AS(Q \cup R)\) and for a program P \(\mathcal {E}_c(BP)\) is the set of conjunctions of literals in every answer set of P.

References

  1. Athakravi, D.: Inductive logic programming using bounded hypothesis space. Ph.D. thesis, Imperial College London (2015)

    Google Scholar 

  2. Athakravi, D., Corapi, D., Broda, K., Russo, A.: Learning through hypothesis refinement using answer set programming. In: Zaverucha, G., Santos Costa, V., Paes, A. (eds.) ILP 2013. LNCS (LNAI), vol. 8812, pp. 31–46. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44923-3_3

    Chapter  MATH  Google Scholar 

  3. Blockeel, H., De Raedt, L.: Top-down induction of first-order logical decision trees. Artif. Intell. 101(1), 285–297 (1998)

    Article  MathSciNet  Google Scholar 

  4. Brain, M., Cliffe, O., De Vos, M.: A pragmatic programmer’s guide to answer set programming. In: Answer Set Programming, p. 49 (2009)

    Google Scholar 

  5. Corapi, D., Russo, A.: ASPAL. Proof of soundness and completeness. Technical report, Department of Computing (DTR11-5), Imperial College, London (2011)

    Google Scholar 

  6. Corapi, D., Russo, A., Lupu, E.: Inductive logic programming as abductive search. In: ICLP (Technical Communications), pp. 54–63 (2010)

    Google Scholar 

  7. Corapi, D., Russo, A., Lupu, E.: Inductive logic programming in answer set programming. In: Muggleton, S.H., Tamaddoni-Nezhad, A., Lisi, F.A. (eds.) ILP 2011. LNCS (LNAI), vol. 7207, pp. 91–97. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31951-8_12

    Chapter  MATH  Google Scholar 

  8. Dastani, M., Jacobs, N., Jonker, C.M., Treur, J.: Modeling user preferences and mediating agents in electronic commerce. In: Dignum, F., Sierra, C. (eds.) Agent Mediated Electronic Commerce. LNCS (LNAI), vol. 1991, pp. 163–193. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44682-6_10

    Chapter  Google Scholar 

  9. Eiter, T., Ianni, G., Krennwallner, T.: Answer set programming: a primer. In: Tessaris, S., et al. (eds.) Reasoning Web 2009. LNCS, vol. 5689, pp. 40–110. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03754-2_2

    Chapter  Google Scholar 

  10. Erdem, E., Gelfond, M., Leone, N.: Applications of answer set programming. AI Mag. 37(3), 53–68 (2016)

    Article  Google Scholar 

  11. Fürnkranz, J., Hüllermeier, E.: Pairwise preference learning and ranking. In: Lavrač, N., Gamberger, D., Blockeel, H., Todorovski, L. (eds.) ECML 2003. LNCS (LNAI), vol. 2837, pp. 145–156. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39857-8_15

    Chapter  MATH  Google Scholar 

  12. Geisler, B., Ha, V., Haddawy, P.: Modeling user preferences via theory refinement. In: Proceedings of the 6th International Conference on Intelligent User Interfaces, pp. 87–90. ACM (2001)

    Google Scholar 

  13. Gelfond, M., Kahl, Y.: Knowledge Representation, Reasoning, and the Design of Intelligent Agents: The Answer-Set Programming Approach. Cambridge University Press, Cambridge (2014)

    Book  Google Scholar 

  14. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: ICLP/SLP, vol. 88, pp. 1070–1080 (1988)

    Google Scholar 

  15. Horváth, T.: A model of user preference learning for content-based recommender systems. Comput. Inform. 28(4), 453–481 (2012)

    MathSciNet  Google Scholar 

  16. Inoue, K., Kudoh, Y.: Learning extended logic programs. In: IJCAI, no. 1, pp. 176–181 (1997)

    Google Scholar 

  17. Katzouris, N., Artikis, A., Paliouras, G.: Incremental learning of event definitions with inductive logic programming. Mach. Learn. 100(2–3), 555–585 (2015)

    Article  MathSciNet  Google Scholar 

  18. Kazmi, M., Schüller, P., Saygın, Y.: Improving scalability of inductive logic programming via pruning and best-effort optimisation. Expert Syst. Appl. 87, 291–303 (2017)

    Article  Google Scholar 

  19. Kowalski, R., Sergot, M.: A logic-based calculus of events. New Gener. Comput. 4(1), 67–95 (1986)

    Article  Google Scholar 

  20. Law, M.: Inductive learning of answer set programs. Ph.D. thesis, Imperial College London (2018)

    Google Scholar 

  21. Law, M., Russo, A., Broda, K.: Inductive learning of answer set programs. In: Fermé, E., Leite, J. (eds.) JELIA 2014. LNCS (LNAI), vol. 8761, pp. 311–325. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11558-0_22

    Chapter  Google Scholar 

  22. Law, M., Russo, A., Broda, K.: Learning weak constraints in answer set programming. Theory Pract. Log. Program. 15(4–5), 511–525 (2015)

    Article  MathSciNet  Google Scholar 

  23. Law, M., Russo, A., Broda, K.: Simplified reduct for choice rules in ASP. Technical report, Department of Computing (DTR2015-2), Imperial College London (2015)

    Google Scholar 

  24. Law, M., Russo, A., Broda, K.: Iterative learning of answer set programs from context dependent examples. Theory Pract. Log. Program. 16(5–6), 834–848 (2016)

    Article  MathSciNet  Google Scholar 

  25. Law, M., Russo, A., Broda, K.: The complexity and generality of learning answer set programs. Artif. Intell. 259, 110–146 (2018)

    Article  MathSciNet  Google Scholar 

  26. Law, M., Russo, A., Broda, K.: Inductive learning of answer set programs from noisy examples. In: Advances in Cognitive Systems (2018)

    Google Scholar 

  27. Mueller, E.T.: Commonsense Reasoning: An Event Calculus Based Approach. Morgan Kaufmann, San Francisco (2014)

    Google Scholar 

  28. Muggleton, S.: Inductive logic programming. New Gener. Comput. 8(4), 295–318 (1991)

    Article  Google Scholar 

  29. Muggleton, S.: Inverse entailment and progol. New Gener. Comput. 13(3–4), 245–286 (1995)

    Article  Google Scholar 

  30. Muggleton, S., et al.: ILP turns 20. Mach. Learn. 86(1), 3–23 (2012)

    Article  MathSciNet  Google Scholar 

  31. Nogueira, M., Balduccini, M., Gelfond, M., Watson, R., Barry, M.: An A-Prolog decision support system for the space shuttle. In: Ramakrishnan, I.V. (ed.) PADL 2001. LNCS, vol. 1990, pp. 169–183. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45241-9_12

    Chapter  Google Scholar 

  32. Nuffelen, B.: Abductive constraint logic programming: implementation and applications. Ph.D. thesis, K.U. Leuven (2004)

    Google Scholar 

  33. Otero, R.P.: Induction of stable models. In: Rouveirol, C., Sebag, M. (eds.) ILP 2001. LNCS (LNAI), vol. 2157, pp. 193–205. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44797-0_16

    Chapter  Google Scholar 

  34. Papadimitriou, C.H.: Computational Complexity. Wiley, New York (2003)

    MATH  Google Scholar 

  35. Ray, O.: Hybrid abductive inductive learning. Ph.D. thesis, Imperial College London (2005)

    Google Scholar 

  36. Ray, O.: Nonmonotonic abductive inductive learning. J. Appl. Log. 7(3), 329–340 (2009)

    Article  MathSciNet  Google Scholar 

  37. Ray, O., Broda, K., Russo, A.: Hybrid abductive inductive learning: a generalisation of progol. In: Horváth, T., Yamamoto, A. (eds.) ILP 2003. LNCS (LNAI), vol. 2835, pp. 311–328. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39917-9_21

    Chapter  MATH  Google Scholar 

  38. Ricca, F., et al.: A logic-based system for e-tourism. Fundam. Inform. 105(1–2), 35–55 (2010)

    MathSciNet  Google Scholar 

  39. Sakama, C.: Inverse entailment in nonmonotonic logic programs. In: Cussens, J., Frisch, A. (eds.) ILP 2000. LNCS (LNAI), vol. 1866, pp. 209–224. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44960-4_13

    Chapter  MATH  Google Scholar 

  40. Sakama, C.: Nonmonotomic inductive logic programming. In: Eiter, T., Faber, W., Truszczyński, M. (eds.) LPNMR 2001. LNCS (LNAI), vol. 2173, pp. 62–80. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45402-0_5

    Chapter  MATH  Google Scholar 

  41. Sakama, C., Inoue, K.: Brave induction: a logical framework for learning from incomplete information. Mach. Learn. 76(1), 3–35 (2009)

    Article  Google Scholar 

  42. Seitzer, J., Buckley, J.P., Pan, Y.: INDED: a distributed knowledge-based learning system. IEEE Intell. Syst. Appl. 15(5), 38–46 (2000)

    Article  Google Scholar 

  43. Soininen, T., Niemelä, I.: Developing a declarative rule language for applications in product configuration. In: Gupta, G. (ed.) PADL 1999. LNCS, vol. 1551, pp. 305–319. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49201-1_21

    Chapter  Google Scholar 

  44. Srinivasan, A.: The Aleph Manual. Machine Learning at the Computing Laboratory, Oxford University (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra Russo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Law, M., Russo, A., Broda, K. (2019). Logic-Based Learning of Answer Set Programs. In: Krötzsch, M., Stepanova, D. (eds) Reasoning Web. Explainable Artificial Intelligence. Lecture Notes in Computer Science(), vol 11810. Springer, Cham. https://doi.org/10.1007/978-3-030-31423-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31423-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31422-4

  • Online ISBN: 978-3-030-31423-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics