
A Modest Markov Automata Tutorial

Arnd Hartmanns1(B) and Holger Hermanns2,3

1 University of Twente, Enschede, The Netherlands
a.hartmanns@utwente.nl

2 Saarland University, Saarland Informatics Campus, Saarbrücken, Germany
hermanns@cs.uni-saarland.de

3 Institute of Intelligent Software, Guangzhou, China

Abstract. Distributed computing systems provide many important ser-
vices. To explain and understand why and how well they work, it is
common practice to build, maintain, and analyse models of the systems’
behaviours. Markov models are frequently used to study operational phe-
nomena of such systems. They are often represented with discrete state
spaces, and come in various flavours, overarched by Markov automata. As
such, Markov automata provide the ingredients that enable the study of
a wide range of quantitative properties related to risk, cost, performance,
and strategy. This tutorial paper gives an introduction to the formalism
of Markov automata, to practical modelling of Markov automata in the
Modest language, and to their analysis with the Modest Toolset. As
case studies, we optimise an attack on Bitcoin, and evaluate the perfor-
mance of a small but complex resource-sharing computing system.

1 Introduction

Distributed computing systems provide many important services, such as elec-
tronic banking, information and knowledge sharing, and social networking. They
are enablers for innovation; for instance, blockchain technology is based on mas-
sively distributed computing. Since our societies increasingly depend on the ser-
vices offered in this manner, it is important to ensure their performance, depend-
ability, and correctness. The purpose of performance evaluation is to investigate
and optimise the amount of useful work being accomplished. Dependability eval-
uation is concerned with assessing service continuity by means of measures such
as reliability and availability. The evaluation of correctness—usually called for-
mal verification—focusses on proving that the service delivered satisfies a formal
specification of its behaviour. Usually, all of these techniques are based on a model
of the system, which is an abstract representation of the system’s behaviour.

Markov Chains. In numerical performance and dependability evaluation, by far
the most prominent models used to represent the temporal dynamics of a system

Authors are listed alphabetically. This work has received financial support by DFG
grant 389792660 as part of TRR 248 (see perspicuous-computing.science), by ERC
Advanced Grant 69561 (POWVER), and by NWO VENI grant 639.021.754.
c© Springer Nature Switzerland AG 2019
M. Krötzsch and D. Stepanova (Eds.): Reasoning Web 2019, LNCS 11810, pp. 250–276, 2019.
https://doi.org/10.1007/978-3-030-31423-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31423-1_8&domain=pdf
http://orcid.org/0000-0003-3268-8674
http://orcid.org/0000-0002-2766-9615
https://perspicuous-computing.science
https://powver.org
https://doi.org/10.1007/978-3-030-31423-1_8

A Modest Markov Automata Tutorial 251

are Markov chains [38]. In this model family, the system is supposed to occupy
a state at any moment in time, with the set S of states (the state space) being
finite or countably infinite. Markov chains come in two flavours, dependent on
whether the time domain T is considered to be discrete (T = N = { 0, 1, . . . }) or
continuous (T = R+ = [0,∞)). The dynamics of a discrete-time Markov chain
(DTMC) is determined by a mapping from states to probability distributions
over (successor) states. For instance, if state s is mapped to probability distri-
bution μ, then the system once occupying state s is understood to jump to state
s′ with probability μ(s′) in one time step. Notably, the probability is assumed to
be independent of any further information (such as any past behaviour) apart
from the state identity of s. This is known as the Markov (or memoryless)
property. A continuous-time Markov chain (CTMC) adheres to this property,
too, but it now needs to be interpreted in stochastic time, i.e. on a continuous
time line where probability mass flows continuously between states. For CTMC,
the Markov property implies that neither the past history nor the time already
spent in the current state s influences the flow of probability into some state s′.
Instead, it is governed by a time-independent rate λ, a positive real value (or
zero if no flow exists). Thus the overall behaviour of a CTMC is determined by
a mapping from state pairs to rates in R+. CTMC are arguably better fit to the
nature of distributed computing [5], where it is difficult to assume a common
discrete time base. The time spent in state s before jumping to another state s′

is usually called the residence time (or sojourn time) in s. Residence times are
geometrically distributed in DTMC, and exponentially distributed in CTMC.

Labelled Transition Systems. In formal verification, other models appear: State-
transition diagrams, automata, and similar formalisms describe the dynamic
behaviour of systems here. They often appear in the specific form of labelled
transition systems (LTS). A transition system consists of a set of states S and a
set of possible state changes. The latter is given as a binary relation on states,
i.e. a subset of the cross product S × S. Intuitively, a pair of states 〈s, s′〉 is in
this relation if it is possible to jump from s to s′ in a single step. In LTS, state
changes are associated with occurrences of actions. A state change from s to s′

then implies the occurrence of a specific action a, which labels the transition—
thus we have an LTS. If multiple transitions are possible in a state, then the
decision of which one to take is usually interpreted as being nondeterministic.
Nondeterminism is especially useful to represent concurrency, a crucial aspect
of distributed computing systems. If two systems run concurrently and inde-
pendently, this is best represented as the nondeterministic interleaving of their
individual steps. LTS can thus be endowed with parallel composition operators
to model concurrency and interaction of component LTS [6,40,44]. With fur-
ther operators, this is convenient for a compositional modelling style, where the
behaviour of components is the result of compositions of smaller building blocks.

Model Checking. Within the spectrum of techniques used in formal verifica-
tion, model checking is an automated model-based technique to assess whether
the possible system behaviours satisfy a property describing the desirable

252 A. Hartmanns and H. Hermanns

behaviour [3]. Typically, properties are expressed in temporal logics such as
LTL or CTL. Model checking usually involves constructing an in-memory rep-
resentation of the (part of the) state space (relevant to assess the property). It
thus gives definitive answers, but faces the state space explosion problem. In
the past decades, model checking has been extended to treat aspects such as
discrete probabilities and stochastic time. It has become apparent that a joint
consideration of performance, dependability and correctness is both possible and
worthwhile [2].

This Paper. The purpose of this tutorial paper is to provide a gentle intro-
duction to working with a mathematical formalism integrating the modelling
aspects discussed above. We focus especially on the specification and modelling
of real systems. The formalism we introduce is called Markov automata (MA),
and it can best be described as an orthogonal and compositional superposition
of DTMC, CTMC, and LTS. MA have been coined in [22,23]. They are expres-
sive enough to give a semantics to generalised stochastic Petri nets (GSPN) in
their full generality [20]. The theoretical properties of MA are the subject of
the Ph.D. thesis of Christian Eisentraut [19]; a process-algebraic perspective is
covered in the Ph.D. thesis of Mark Timmer [50]. Various algorithmic analysis
methods for Markov automata have been developed over the past decade [8,9,14–
16,21,28,29,36,37,52].

Using the mathematical formalism of MA directly to build complex models
is, however, cumbersome. We instead need a higher-level modelling language.
Aside from parallel composition, such languages typically provide variables over
finite domains that can be used in expressions to e.g. enable or disable transi-
tions, allowing to compactly describe very large models. In this paper, we use
Modest [30] to construct MA models. Rooted in process algebra, Modest pro-
vides various composition operators that allow large models to be assembled from
smaller, easier-to-understand components. After a formal definition of MA, par-
allel composition, and various types of properties (that we may want to compute
for a given MA model) in Sect. 2, we introduce the basics of Modest in a step-by-
step fashion in Sect. 3. We compare it to alternative languages with respect to its
succinctness, expressivity, and readability. We then guide the reader through the
modelling and analysis of two very different applications: we optimise an attack
on Bitcoin in Sect. 4, and we evaluate the performance of a small, but intri-
cate resource-sharing queueing system in Sect. 5 with the Modest Toolset.
Algorithmic aspects of the analysis of MA with the Modest Toolset are the
subject of a companion paper [13].

Previous Work. Our presentation of MA in Sect. 2 is adapted and extended
from [13], as is the text in Sects. 3.2 and 3.3. The Bitcoin models in Sect. 4 are
inspired by [24], and the bitcoin-attack.modest model is part of the Quanti-
tative Verification Benchmark Set [34]. The reentrant queueing system, of which
we present a new Modest model in Sect. 5, was first described in [36].

A Modest Markov Automata Tutorial 253

Fig. 1. The MA family tree Fig. 2. Example Markov automata

2 Markov Automata

The mathematical formalism of Markov automata provides nondeterministic
choices as in LTS, discrete probabilistic decisions as in DTMC, and stochas-
tic time as in CTMC. The relationships between these and other formalisms
are visualised in Fig. 1. The combination of DTMC and LTS leads to the model
family of (discrete-time) Markov decision processes [46] (MDP, or probabilistic
automata [49]) where transitions of the form s a−→ μ offer in state s a (nondeter-
ministic) decision option (or choice option) labelled by action a that is followed
by a probabilistic decision of where to jump according to probability distribution
μ. The conceptually closest model in continuous time is that of continuous-time
MDP [46] (CTMDP), where action-labelled transitions are of the form s a e
with e mapping states to rates. Such a transition indicates that probability mass
flows from state s to state s′ with rate e(s′) provided action a is chosen in state
s. Markov automata instead combine MDP and CTMC in an orthogonal man-
ner by providing two types of transitions: s a−→ μ as in MDP, and s λ s′ as in
CTMC. We now define Markov automata formally and describe their semantics.

Preliminaries. We write [a, b] for the real interval {x ∈ R | a ≤ x ≤ b }, (a, b)
for {x ∈ R | a < x < b }, and analogously for half-open intervals. Given a
set S, its powerset is 2S . A (discrete) probability distribution over S is a func-
tion μ : S → [0, 1] such that its support spt(μ) def= { s ∈ S | μ(s) > 0 } is
countable and

∑
s∈spt(μ) μ(s) = 1. Dist(S) is the set of all probability distri-

butions over S, and μ1 ⊗ μ2 is the product distribution of μ1 and μ2 defined
by (μ1 ⊗ μ2)(〈s1, s2〉) = μ1(s1) · μ2(s2). We refer to discrete random choices as
probabilistic and to continuous ones as stochastic. We write {x1 	→ y1, . . . } to
denote the function that maps each xi to yi, and if necessary in some context,
implicitly maps to 0 all x for which no explicit mapping is specified. Thus we
can e.g. write { s 	→ 1 } for the Dirac distribution that assigns probability 1 to s.

Definition 1. A Markov automaton (MA) is a tuple M = 〈S, s0, A, P,Q, rr , br〉
where S is a finite set of states with initial state s0 ∈ S, A is a finite set of
actions, P : S → 2A×Dist(S) is the probabilistic transition function, Q : S →
2Q×S is the Markovian transition function, rr : S → [0,∞) is the rate reward

254 A. Hartmanns and H. Hermanns

function, and br : S × Tr(M) × S → [0,∞) is the branch reward function.
Tr(M) def=

⋃
s∈S P (s) ∪ Q(s) is the set of all transitions; it must be finite. We

require that br(〈s, tr , s′〉) �= 0 implies tr ∈ P (s) ∪ Q(s).

We also write s a−→P μ for 〈a, μ〉 ∈ P (s) and s λ
Q s′ for 〈λ, s′〉 ∈ Q(s), and omit

the P and Q subscripts if they are clear from the context. In s λ
Q s′, we call

λ the rate of the Markovian transition. We refer to every element of spt(μ) as a
branch of s a−→P μ; a Markovian transition has a single branch only (its target
state). We define the exit rate of s ∈ S as E(s) =

∑
〈λ,s′〉∈Q(s) λ.

Example 1. Fig. 2 shows two MA M1 and M2 without rewards. We draw proba-
bilistic transitions as solid, Markovian ones as dashed lines. If a transition leads
to a single target state, we omit the intermediate probabilistic branching node.
Thus, for M1 = 〈S, s0, A, P,Q, rr , br〉, we have five states in S = { 0, 1, 2, 3, 4 },
the initial state being s0 = 0, two actions in A = { a, c }, two probabilistic
transitions in P = { 0 	→ { 〈a, { 1 	→ 0.5, 2 	→ 0.5 }〉, 〈c, { 3 	→ 1 }〉 } }, and two
Markovian transitions in Q = { 1 	→ { 〈2, 4〉 }, 3 	→ { 〈2, 4〉 } }, both with rate 2.

Intuitively, the semantics of an MA is that, in state s, (1) the probability to
take Markovian transition s λ s′ and move to state s′ within t model time
units is λ/E(s) · (1−e−E(s)·t), i.e. the residence time in s follows the exponential
distribution with rate E(s) and the choice of transition is probabilistic, weighted
by the rates; and (2) at any point in time, a probabilistic transition s a−→ μ can be
taken with the successor state being chosen according to μ. An MA thus resolves
some choices in a probabilistic (the choice of successor state of a probabilistic
transition, the choice among Markovian transitions) or stochastic (the choice
of residence time) way, while other choices are left open as nondeterministic
(the timing of probabilistic transitions, and the choice among multiple available
probabilistic transitions). Due to the presence of nondeterminism, an MA itself
does not induce a probability measure over its possible behaviours. We refer the
interested reader to e.g. [35] for a complete formal definition of this semantics.

An MA without Markovian transitions is an MDP; it is a DTMC if in addition
P maps each state to a singleton set. An MA without probabilistic transitions is
a CTMC. The co-existence of action-labelled probabilistic transitions of the form
s a−→ μ and of Markovian transitions of the form s λ s′ separates actions from
timing. It enables parallel composition operators with action synchronisation for
MA without the need to prescribe an ad-hoc operation for combining rates.

Definition 2. Given two MA Mi = 〈Si, s0i , Ai, Pi, Qi, rr i, br i〉 i ∈ { 1, 2 }, a
finite set A of actions, and a synchronisation relation

sync ⊆ (A1
 {⊥}) × (A2
 {⊥}) × A,

their parallel composition is M1 ‖ M2
def= 〈S1×S2, 〈s01 , s02〉, A, P,Q, rr , br〉 where

P is the smallest function that satisfies the inference rules

s1
a1−→P1 μ 〈a1,⊥, a〉 ∈ sync

〈s1, s2〉 a−→P μ ⊗ { s2 	→ 1 }
s2

a2−→P2 μ 〈⊥, a2, a〉 ∈ sync
〈s1, s2〉 a−→P { s1 	→ 1 } ⊗ μ

A Modest Markov Automata Tutorial 255

s1
a1−→P1 μ1 s2

a2−→P2 μ2 〈a1, a2, a〉 ∈ sync
〈s1, s2〉 a−→P μ1 ⊗ μ2

,

Q is the smallest function that satisfies the inference rules

s1
λ

Q1 s′
1

〈s1, s2〉 λ
Q 〈s′

1, s2〉
s2

λ
Q2 s′

2

〈s1, s2〉 λ
Q 〈s1, s′

2〉
,

and for all states 〈s1, s2〉, we have rr(〈s1, s2〉) = rr1(s1) + rr2(s2). Function br
sums the values of br1 and br2 for the combinations of branches in synchronisa-
tion (third inference rule), and otherwise preserves the original branch rewards.

The first two inference rules for P allow the individual MA to proceed indepen-
dently of each other if allowed by sync; the third rule covers the case where both
automata synchronise on a pair of actions as determined by sync. The rules for
Q simply state that Markovian transitions are always performed independently.
An element of sync is called a synchronisation vector ; we also write 〈a1, a2〉 	→ a
for vector 〈a1, a2, a〉. This form of parallel composition can be generalised to
more than two automata in the straightforward way with longer synchronisation
vectors. It is very flexible, allowing in particular the traditional CCS-style binary
and CSP-style multi-way synchronisation patterns [40,44] to be encoded. Origi-
nally established by Cadp [26], it is today used for MA in the Jani format [12].
We refer to a general parallel composition of several MA as a network of MA.

Example 2. Fig. 2 includes the parallel composition of the example MA M1 and
M2, where we write nm for state 〈n,m〉. The two automata synchronise on the
shared actions a and c, i.e. we have sync = { 〈a, a〉 	→ a, 〈⊥, b〉 	→ b, 〈c, c〉 	→ c }.

We defined MA as open systems [10]: probabilistic transitions can interact with,
wait for, and be blocked by other MA in parallel composition. For verification,
we make the usual closed system and maximal progress assumptions: proba-
bilistic transitions face no further interference and take place without delay. If
multiple probabilistic transitions are available in a state, however, the choice
between them remains nondeterministic. Since the probability that a Markovian
transition is taken in zero time is 0, the maximal progress assumption allows us
to remove all Markovian transitions from states that also have a probabilistic
transition. In such closed MA, we can thus distinguish between Markovian states
(where P (s) = ∅) and probabilistic states (where Q(s) = ∅). The behaviour of
a closed, deadlock-free MA M is defined via its paths:

Definition 3. Let M be a closed, deadlock-free MA M as above. A path π of
M is an infinite sequence

π = s0 t0 tr0 s1 . . . ∈ (S × [0,∞) × Tr(M))ω

such that, for all i ∈ { 0, . . . }, Q(si) = ∅ implies ti = 0, tr i ∈ P (si) ∪ Q(si),
tr i = 〈a, μ〉 ∈ P (si) implies μ(si+1) > 0, and tr i = 〈λ, s′〉 ∈ Q(si) implies

256 A. Hartmanns and H. Hermanns

s′ = si+1. Π(M) is the set of all paths of M . We write Πfin(M) for the set of all
path prefixes πfin ending in a state. The last state of πfin is denoted last(πfin).
Let π≤j

def= s0 t0 . . . sj. The duration dur(πfin) of a path prefix is the sum of its
residence times ti. A path’s reward is

rew(π) def=
∑∞

i=0
ti · rr(si) + br(si, tri , si+1).

It may be ∞, and is defined analogously for prefixes (where it is always finite).

A path comprises states si, times ti spent in si, and transitions tr i taken from
si to si+1. It is a resolution of all nondeterministic, probabilistic, and stochastic
choices. To define a probability measure, we resolve nondeterminism only:

Definition 4. Let M be a closed, deadlock-free MA as above. A scheduler is a
function σ : Πfin(M) → Tr(M) s.t. ∀s ∈ S : σ(s) = tr implies tr ∈ P (s) ∪ Q(s).
We write S(M) for the set of all schedulers of M . A time-dependent scheduler
is in S × [0,∞) → Tr(M); a memoryless scheduler is in S → Tr(M). Given a
time bound b ∈ [0,∞), every time-dependent scheduler σt defines a correspond-
ing scheduler σ by σ(πfin) = σt(〈last(πfin), b − dur(πfin)〉). Every memoryless
scheduler σml defines a corresponding scheduler σ by σ(πfin) = σml(last(πfin)).

We define deterministic schedulers only since randomised schedulers are in prac-
tice only needed for multi-objective problems [47]. We note that CTMDP with
early schedulers [48] can be encoded as closed MA. If we “apply” a scheduler to
an MA, it removes all nondeterminism, and we are left with a fully stochastic
process whose paths can be measured and assigned probabilities according to
the rates and distributions in the (remaining) MA. Formally, these probability
measures over sets of measurable paths are built via cylinder sets; we refer the
interested reader to e.g. [35] for a fully formal definition. For all of the following
types of properties, we are interested in the maximum (supremum) and minimum
(infimum) values when ranging over all schedulers σ ∈ S(M):

Reachability probabilities: Given goal states G ⊆ S, compute the probability
of the set of paths that include a state in G. Memoryless schedulers suffice to
achieve optimal results (i.e. the maximum and minimum probabilities).

Time-bounded reachability: Additionally restrict to paths where the duration
of the prefix to the first state in G is below a bound b ∈ [0,∞). Time-
dependent schedulers suffice.

Expected accumulated rewards: Compute the expected value of the random
variable that assigns to π the value rew(πfin) with πfin being the shortest
prefix of π with a state in G. This is well-defined if the maximum (minimum)
probability to reach G is 1; otherwise, we define the minimum (maximum)
expected accumulated reward to be ∞. Memoryless schedulers suffice.

Long-run average rewards: Compute the expected value of the random vari-
able that assigns to path π the value limi→∞ rew(π≤i)/dur(π≤i). Memoryless
schedulers suffice.

A Modest Markov Automata Tutorial 257

Example 3. Consider MA M1 ‖ M2 of Fig. 2 and the
probability to reach state 〈4, 4〉 within 1 time unit.
In state 〈0, 1〉, we have to decide whether to choose
action a or b. The optimal decision depends on the
amount of time t that has passed in state 〈0, 0〉. In the
plot on the right, we show the probability of reaching
state 〈4, 4〉 within the time limit (y-axis) depending on
the remaining time 1 − t (x-axis). The blue (initially
upper) line represents the reachability probability for
the memoryless scheduler that always chooses a and the red (initially lower) one
is for the scheduler that always takes action b. A time-dependent scheduler can
make better decisions than either of these two by determining the values of t
for which a results in a higher probability than b and vice-versa. The optimal
scheduler thus chooses a if and only if 1 − t ≤ 0.63 approximately.

We can extend MA with discrete variables: An MA with variables (MAV) is an
MA like in Definition 1 that additionally contains a finite set of variables. We
call its states locations, its transitions edges, and their branches destinations.
Every edge additionally has a guard and every destination has a set of updates.
A guard is a Boolean expression over the variables that determines whether the
edge is enabled, and a set of assignments modifies the values of the variables.
Tools usually work with the semantics of an MAV in terms of an MA: The MAV

MV corresponds to the MA M with states 〈�, v〉, each consisting of a location �
of MV and a valuation v that assigns a value to every variable. The transitions
out of 〈�, v〉 are those edges out of � in MV whose guard is satisfied in v. The
target state of a branch of a transition is 〈�′, v′〉 with �′ the target location in MV

and v′ obtained by executing the destination’s assignments on v. Our parallel
composition operator extends to MA with variables by using the conjunction of
guards and the union of assignments for synchronising transitions. If we allow
variables to be shared between MAV, parallel composition does not distribute
over semantics; we need to compose the MAV before converting them to MA.

3 Modelling with Markov Automata

Tools for the automated analysis of MA need a syntax in which the model and
the properties of interest are specified. As noted in Sect. 1, such a modelling
language needs to provide a parallel composition operator (akin to the operator
introduced in the previous section) such that large MA can be built from small
specifications, and will typically support modelling with variables.

3.1 Modest for Markov Automata

Modest [4,30] is the modelling and description language for stochastic timed
systems. At its core, it is a process algebra: it provides various operations such as

258 A. Hartmanns and H. Hermanns

parallel and sequential composition, parameterised process definitions, process
calls, and guards to flexibly construct complex models out of small and reusable
components. Its syntax, however, borrows heavily from commonly used pro-
gramming languages, and it provides high-level conveniences such as loops and
an exception handling mechanism. As such, Modest tends to be more verbose
than classic process algebras, but also more readable and beginner-friendly. To
specify complex behaviour in a succinct manner, Modest provides variables of
standard basic types (e.g. bool, int, or bounded int), arrays, and user-defined
recursive datatypes akin to functional programming languages. Its syntax for
expressions is aligned with C-like programming languages for ease of use.

Let us now introduce the Modest language syntax step-by-step by using it
to model our example MA shown in Fig. 2, starting with M1. Modest models
are structured into processes, with each process consisting of declarations and a
behaviour. The declarations introduce all named objects like actions, variables,
exceptions, nested processes, etc., that are available for use in the behaviour
and inside nested processes. A process’ behaviour defines an MA with those
variables1. To model M1 as a Modest process, we thus start by declaring the
actions and a Boolean variable to later distinguish between states 1 and 2:
action a, c;
bool f = false; // to distinguish between states 1 and 2

The simplest behaviour in Modest is to perform a (previously declared) action:

Semantically, this behaviour represents the MA with variables shown above on
the right, where the one edge has guard expression true. Every location � is
uniquely identified by a behaviour such that the MA with � as its initial location
is the semantics of the behaviour. The checkmark � is a special behaviour called
successful termination that is not part of the syntax of Modest, and whose
semantics is a state with no outgoing edges. It receives special treatment by
several other Modest constructs. Modest also contains a stop construct with
the same semantics but without the special treatment.

Initially, automaton M1 offers a choice between two probabilistic transitions.
The alt construct combines multiple behaviours into a nondeterministic choice
between them, thus the initial choice in M1 can be represented as follows:

The semantic effect of the alt construct is simply to merge the initial states
of the semantics of its child behaviours, the start of each of which is indicated
by ::. Note that both edges lead to the same location here; this is because the
semantics of both behaviours a and c end in the identical location �.
1 Actually, the semantics of Modest [30] is defined in terms of stochastic hybrid

automata (SHA), of which MA are a special case; we restrict to that case in
this paper.

A Modest Markov Automata Tutorial 259

Now, in M1, the transition labelled a actually has two branches. The branch-
ing of probabilistic transitions can be represented in Modest with the palt
construct. Since it does not create a new transition, but only defines branches,
it has to be prefixed by the transition’s action:

Probabilities are specified as weights between colons :, i.e. the actual probability
in the semantics is calculated as the given weight divided by the sum of all
weights in the palt construct. The assignments for every branch are specified
in {= =} blocks, and they are executed atomically, so e.g. the assignment block
{= x = y, y = x =} performs an in-place swap of variables x and y. To create
an edge labelled a with a single destination and assignments u, we can omit the
palt and just write a {= u =}. Observe that, in the semantics of our example
above, all destinations still lead to the same location. However, the semantics of
this MAV contains two states in location �: one where f is true, which is the
target of the branch for the uppermost destination, and one where it is false.
We will from now on omit true guards and empty assignment sets in MAV.

Continuing to model M1 in Modest, we now add the Markovian transitions
to state 4. We need two new constructs: for sequential composition, and for
rates. First, the semantics of the sequential composition construct P; Q, for two
behaviours P and Q, is to first behave like P , and upon successful termination
of P (i.e. upon reaching location �), behave like Q. We thus get the following:

tau is the predefined silent action, which does not take part in synchronisation
(i.e. in a binary parallel composition, it is governed by synchronisation vectors
〈τ,⊥〉 	→ τ and 〈⊥, τ〉 	→ τ , but cannot occur in any other vectors). To turn the
τ -labelled probabilistic edge into a Markovian one, we simply specify rates:

260 A. Hartmanns and H. Hermanns

Modest enforces the separation of probabilistic and Markovian transitions by
requiring edges for which a rate is specified to have action tau. If this restriction
is not met, the model is recognised as a CTMDP.

In the model above, the behaviour rate(2) tau occurs twice. We can eliminate
this duplication by moving it out of the alt construct. At this point, let us also
introduce the when construct to specify guards: instead of using stop to make
the model deadlock in the upper destination, we use f to cause the deadlock in
the semantics of the MAV. The result is:

The semantics of the MAV on the right above is almost isomorphic to M1; the
difference is that states 1 and 3 are merged since they have the same behaviour.

In Fig. 3, we show the full Modest model of the parallel composition of MA
M1 and M2 of Fig. 2. It includes the model that we built for M1 above as the
body of the named process M1. Such processes can have parameters (specified
between the parentheses in the declaration, not shown here) and local variables.
A process call like M1() behaves exactly like the behaviour of M1, with all formal
parameters being assigned the values of the actual arguments, and new variable
instances created for all parameters and local variables to separate them from
any other calls to M1. The semantics of the parallel composition construct par
is the n-ary parallel composition of its child behaviours, with synchronisation
vectors that implement CSP-style synchronisation for all actions declared with
the action keyword (in this model, that is the vectors given in Example 2), and
as described above for τ . The model also declares two properties for verification,
P_Min and P_Max, which ask for the probability to reach state 〈4, 4〉—made
observable via the global variable succ, which is of bounded integer type2 with
range { 0, 1, 2 }—within time bound B akin to Example 3. B is an open parameter
for which values can be specified at verification time.

At this point, we have covered most basic constructs of Modest. There are
many features not used in this small model; we will introduce more constructs in
Sects. 4 and 5. The interested reader also finds additional Modest MA models
in the Quantitative Verification Benchmark Set (QVBS, [34]) at qcomp.org.

2 MA model checking requires finite state spaces; thus all variables must be bounded.
Indicating the bounds in the types is good practice to avoid accidentally creating
infinite-state models and may improve performance, but it is not a requirement for
the mcsta model checker (see Sect. 3.2) as long as only finitely many distinct values
are ever assigned to the variables occurring in the model.

http://qcomp.org/benchmarks/

A Modest Markov Automata Tutorial 261

Fig. 3. Modest model for M1 ‖M2

Fig. 4. MAPA process algebra

Fig. 5. Prism dialect supporting MA

Fig. 6. Imca state space format

3.2 The Modest Toolset

The creation and analysis of MA with Modest is supported by the Modest
Toolset [32], a comprehensive suite of tools for quantitative modelling and ver-
ification. Aside from Modest, it also supports the Jani model interchange for-
mat [12] as an input language. MA are supported in the toolset’s mosta, moconv3,
mcsta, and modes tools. mosta visualises the symbolic semantics of models (i.e.
networks of MAV before and after parallel composition as shown throughout
Sect. 3.1) and is useful for model debugging. moconv transforms models between
Modest and Jani, and performs syntactic rewriting and optimisations. mcsta is
3 moconv can also export CTMDP to Jani, but due to their lack of a natural parallel

composition operator, the analysis of CTMDP is not supported in the other tools.

262 A. Hartmanns and H. Hermanns

a fast explicit-state model checker that implements state-of-the-art MA-specific
algorithms [13] and uses secondary storage to alleviate state space explosion [33].
modes [11] is a statistical model checker with automated rare event simulation
capabilities. It implements lightweight scheduler sampling [43] for nondetermin-
istic models, including MA [17]. The Modest Toolset is written in C#, works
on Linux, Mac OS, and Windows, and is freely available at modestchecker.net.
All its tools share a common infrastructure for parsing and syntactic transfor-
mations. mcsta and modes build on the same state space exploration engine that
compiles models to bytecode at runtime for memory efficiency and performance.

3.3 Alternative Modelling Languages

Modest is not the only modelling language for MA. We now briefly contrast it
to the currently available alternative modelling languages with support for MA.

State Space Files for Imca. The first MA-specific algorithms were implemented
in the Imca tool [27]. Its only input language is a text-based explicit state space
format as illustrated for our example of M1 ‖ M2 in Fig. 6. This is clearly not a
useful modelling language, but a format to be automatically generated by tools.

Guarded Commands with Storm. The Storm model checker [18] provides many
input languages, with MA being supported through a state space format similar
to Imca’s, via Jani, as the semantics of generalised stochastic Petri nets [20] in
GreatSPN format [1], and through an extension of the Prism guarded com-
mand language. We show our example in the latter in Fig. 5. This is a very
simple and small language that is easy to learn, however it completely lacks
higher-level constructs to structure and compose models aside from the implicit
parallel composition of its modules.

Process Algebra with Scoop. Mapa [51] is a dedicated process algebra for MA. It
is supported by Scoop [51], which can linearise, reduce, and finally export Mapa
models to Imca for verification. We show the example of M1 and M2 in Mapa in
Fig. 4. As a classic concise process algebra, Mapa tends to be very succinct, but
also difficult to read. Mapa models can be much more flexibly composed than
Prism models, yet there is less syntactic structure than in Modest—although
the languages conceptually share many operators. Mapa notably has a prede-
fined queue datatype, and users can specify custom non-recursive datatypes.

Jani [12] is a model interchange format designed to ease tool development and
interoperation. It is Json-based and thus human-debuggable, but not intended as
human-writable. It represents networks of automata with variables symbolically.
Since both the Modest Toolset and Storm support Jani, it is possible to e.g.
build MA models in the Modest language, export them to Jani with moconv,
and then verify them with Storm. Likewise in the other direction, we can e.g.
create a Petri net with GreatSPN, convert to Jani with Storm, and analyse it
with mcsta or modes. In this way, the most appropriate modelling language can
be combined with the best analysis method and tool for every specific scenario.
The JSON-based syntax however is too verbose to display the example in JANI
format in this paper.

http://www.modestchecker.net/

A Modest Markov Automata Tutorial 263

4 Optimising Attacks on Bitcoin

Bitcoin [45] is currently the most popular cryptocurrency. It is built on
blockchain technology using the proof-of-work approach. Every block in the
blockchain contains a nonce (a randomly chosen number), a set of (monetary)
transactions, and a hash of the predecessor block in the chain. In this way, no
past block can be changed without invalidating (the hashes in) all its successors.
A block is valid if the hash of the block’s contents falls below a target value.
To create a valid block, a node in the Bitcoin network repeatedly selects a new
nonce until it finds one that makes the block valid. Creating new blocks is called
mining, and overall constitutes the proof-of-work approach since the repeated
hashing is computationally (and thus environmentally) expensive. As the com-
putational power used for mining (the hash rate) changes, the Bitcoin network
periodically adjusts the target value such that the average time to find a new
block (the confirmation time) is 10min. In practice, the actual confirmation time
varies; it was about 12min in 2017 [24]. Every node in the network stores its
own copy of the entire blockchain. Once a new node finds a new valid block, it
broadcasts the block to the network. Due to network delays, multiple new blocks
may propagate at the same time. Nodes add the first block they receive to their
local chain. Thus multiple forks of the blockchain may exist on different nodes.
Each node always considers the longest chain known to it as valid, and miners
extend the longest chain. A transaction is n-confirmed with confirmation depth
n = 0 if it is not part of any valid block and otherwise with n > 1 if there are
n − 1 blocks in the chain beyond the block b that the transaction is part of. The
amount of work to invalidate a fork that starts with b increases with n. Many
services only accept Bitcoin payments once they are at least 6-confirmed [7].

In this section, we use Modest and the Modest Toolset to study two
variants of a secret-fork attack on Bitcoin, inspired by the Andresen attack pro-
posal and a study performed with Uppaal smc in [24]. The attackers secretly
create a fork, keep mining on it until it reaches a certain length greater than that
of the publicly known blockchain, and then publish it all at once. This would
invalidate the public fork, with the private one becoming the valid blockchain.
The original aim of the attack was to undermine the trust in Bitcoin; if it suc-
ceeds on the first attempted fork, it can equally be used for double spending by
invalidating a specific transaction. For the attack to be feasible, the malicious
attacker must control a significant fraction m of the hash rate.

4.1 Modelling and Evaluating the Double-Spending Attack

If the goal of the attacker is double spending, then it creates a transaction that
spends some Bitcoin funds and announces it to the network for inclusion in the
next block. At the same time, it starts mining on its own secret fork. Let cd be
the confirmation depth after which a transaction is accepted by the receiver of
the funds. If the attacker manages for its secret fork to become longer than the
public fork, and longer than cd , then it can publish this fork immediately after
the public one reaches length cd . At that point, the receiver of the funds has

264 A. Hartmanns and H. Hermanns

just accepted the transaction (and presumably fulfilled its part of the contract).
The secret fork however invalidates the public one since it is longer, and thus
invalidates the transaction. The attacker is now free to spend the same funds
again. Due to the proof-of-work system, such an attack is possible, but—as
long as the attacker controls less than 50% of the hash rate—has a low success
probability and an immense computational cost.

Modelling the Attack in Modest. We build an abstract model of mining
in Modest, reduced to the aspects relevant to the attack. The observation that
a new block is mined every 12min on average fits well with MA: we model
block creation via Markovian transitions with a total rate of 1

12 . We abstract
from network delays, i.e. blocks propagate instantaneously. We consider a single
attacker, assuming that the rest of the world’s miners behave in the normal
“honest” manner and publish all mined blocks immediately.

Honest Mining Model. To start, we define a process HonestPool representing the
pool of honest miners, which control (1− m) · 100% of the global computational
resources used for mining, with m realised as model parameter M:
const real M; // fraction of hash rate controlled by malicious mining pool
action sln; // indicates that the honest pool mined a new block
process HonestPool()
{

rate(1/12 * (1 - M)) tau; // wait 12 / (1 − M) minutes on average
sln; // signal that a new block was found
HonestPool() // repeat

}

Action sln models the propagation of a new block through the network, which
can also be observed by the attacker. Due to the separation of timing and inter-
action in MA, we need two separate edges for mining delay and communication.

Attacker Model. We keep track of the length of the attacker’s fork, and of the
difference in length to the public fork. To make the MA finite, we identify all
fork lengths greater than cd with the value cd + 1 (since we only need to know
whether the fork is longer than cd , but not how much longer), and we assume
that the attacker gives up on its fork once it is db blocks shorter than the public
one. The attacker process is then as follows:
const int CD; // confirmation depth required by victim
const int DB = CD; // attacker gives up when this far behind
action cnt; // indicates that the attacker continues
int(0..CD+1) m_len; // length of the secret fork
int(-DB..CD+1) m_diff = 0; // length of secret fork minus honest fork
bool gup; // indicates whether the attacker gave up
process DoubleSpendingAttacker()
{

do {
:: rate(1/12 * M) {= m_len = min(CD+1, m_len + 1), m_diff++ =}
:: sln {= m_diff-- =}; // public fork extended

A Modest Markov Automata Tutorial 265

if(m_diff <= -DB) { tau {= gup = true =}; stop } // give up
else { cnt } // continue

}
}

For illustration, we use the do construct to implement a loop here instead of
the recursive process call used in HonestPool. A do loop is in essence a looping
alt: There is an initial nondeterministic choice between the child behaviours;
once the chosen behaviour successfully terminates, control loops back to the
nondeterministic choice. do loops can be exited via the predefined break action.
We also use the if shorthand: if(e) { P } else { Q } is syntactic sugar for
alt{ :: when(e) P :: when(!e) Q }. Thus the behaviour of the attacker process
is as follows: it waits until it either mines a new block itself (first child behaviour
of the do loop), or until it observes a new block in the public fork. In both cases,
it appropriately updates m_len and m_diff. In the second case, it then either
gives up if it has fallen too far behind, or otherwise continues the attack.

Composition and Nondeterminism. The overall behaviour of our model is the
parallel composition of the two processes, with synchronisation on sln:
par {
:: HonestPool()
:: DoubleSpendingAttacker()
}

Observe that the behaviour of neither of the two processes contains an actual
nondeterministic choice: HonestPool is entirely sequential, and the choices in the
attacker process are between a Markovian and a probabilistic edge (in do), i.e.
the probability for both to be available at the same time is 0, and between two
edges with disjoint guards (in if). Since the only probabilistic edge in HonestPool
synchronises with the attacker, and is immediately followed by a Markovian edge,
the parallel composition cannot introduce nondeterminism due to interleaving
probabilistic transitions, either. Thus the entire model takes the form of an MA,
but is in fact equivalent to a CTMC. MA that are equivalent to CTMC are a
class of models that occurs frequently in practice. Several of the MA models in
the QVBS belong to this class.

Evaluating the Attack. We are interested in the probability that the attacker
eventually wins, and that it eventually gives up without winning. We expect it to
eventually either win or give up, thus—due to the absence of nondeterminism—
the probabilities should sum to 1. We declare the two properties in Modest:
function bool win() = m_len > CD && m_diff > 0; // winning condition
property P_Win = Pmin(<> win()); // attacker wins
property P_GiveUp = Pmin(!win() U gup); // attacker gives up

266 A. Hartmanns and H. Hermanns

To avoid repeating the expression that characterises the winning condition, we
encapsulate it in the user-defined function win(). Functions in Modest can also
take parameters, and they can be (mutually) recursive. The body of a function
is an expression; since expressions in Modest are free of side effects, functions
provide for pure functional programming inside Modest models. Combined with
user-defined recursive datatypes (not shown in this paper), they make Modest
Turing-complete. Property P_Win is straightforward: we ask for the (minimum)
probability to eventually (<>) enter a state that satisfies the winning condition.
Since there is no nondeterminism, there is no difference between Pmin and Pmax
for this model. Property P_GiveUp uses the until (U) operator to ask for the
probability of those paths on which no state satisfies win() until a state where
gup is true is reached. If we invoke mcsta on this model by executing
./modest mcsta bitcoin-ds.modest -E "M = 0.2, CD = 6"

we obtain probability ≈ 0.0087 for P_Win and ≈ 0.9913 for P_GiveUp: the attack is
unlikely to succeed if the attacker controls only 20% of the hash rate. However,
at m = 0.4, we get P_Win ≈ 0.343, and at m = 0.5, it is ≈ 0.719. It is not 1 here
because the attacker gives up when falling behind too much. If we modify the
model such that the attacker never gives up, it becomes an infinite-state MA since
m_diff is no longer bounded from below. We cannot model-check this model, but
due to the absence of nondeterminism, we can easily perform statistical model
checking with modes by running
./modest modes bitcoin-ds-inf.modest -E "M=0.2, CD=6" --max-run-length 0

The output confirms our expectation that the probability is now 1, although we
only know this with the statistical confidence provided by modes.

4.2 Optimising the Attack on Trust in Bitcoin

If the goal of the attack is to undermine the trust in the Bitcoin system by
invalidating a large amount of work performed by the honest miners, the attacker
gains some freedom in choices: Instead of having to give up when it gets too far
behind, it can simply restart its attack from the then-current public fork. We
thus keep the cd parameter, which now indicates the minimum desired length of
the secret fork for it to be published. The winning condition becomes the length
of the secret fork being greater than or equal to cd . Instead of only giving up
(which now means resetting the secret fork) when db blocks behind, the attacker
can additionally choose to continue the attack or reset its fork every time that
the honest mining pool publishes a new block.

Modelling the Attack. Our new attacker process, which replaces the Double-
SpendingAttacker process presented previously, is thus as follows:

A Modest Markov Automata Tutorial 267

action rst; // indicates that the attacker restarts from the public fork
process TrustAttacker()
{

do {
:: rate((1/12) * M) {= m_len = min(CD, m_len + 1), m_diff++ =}
:: sln {= m_diff-- =}; // public fork extended

alt { // strategy choice: restart or continue malicious fork
:: rst {= m_len = 0, m_diff = 0 =} // can always restart
:: when(m_diff > -DB) cnt // can continue if not too far behind
}

}
}

This model is nondeterministic due to the choice between rst and cnt in the
attacker process. We use actions rst and cnt to indicate the choice made; they
have no synchronisation partner, but will help understand the optimal scheduler.

Evaluation. The probability for the attacker to eventually win as expressed by
an adjusted version of P_Win is now 1 since it can retry indefinitely. It is thus
more interesting to investigate the expected time until it wins:
property T_WinMin = Xmin(T, m_len >= CD && m_diff > 0);

We ask for the minimum time here, i.e. for the attacker to make its choices such
that the time to success is minimised, which arguably is its best strategy. mcsta
reports that the value is ≈ 3735.94 minutes for m = 0.2, i.e. a little over two and
a half days. Let us thus compute the probability to succeed in just two days:
property P_WinMax2 = Pmax(<>[T<=2880](m_len >= CD && m_diff > 0));

We now ask for the maximum probability, since this again corresponds to an
optimal attack. The result that mcsta gives is ≈ 0.535. As originally discovered
in [24], we thus have a more than 50% chance to undermine the trust in Bitcoin
if we control only 20% of the hash rate and invest only two days of mining.
According to blockchain.com/pools, on July 8, 2019, the BTC.com pool in fact
controlled 21.6% of the global hash rate; it could thus perform the attack.

Optimising the Attack Strategy. While the above numbers tell us the time
and probability for the attack to succeed, they do not give any information about
the attack strategy: What are the points, in terms of the length of the secret and
public forks, where we should restart in order to obtain these optimal times and
probabilities? Probabilistic model checking as implemented by mcsta, however,
implicitly computes the optimal choice for every state of the MA underlying the
model it checks, and it can be instructed to write this scheduler to a file:
./modest mcsta bitcoin-attack.modest -E "M=0.2,CD=6" --scheduler sched.txt

The result is a text file sched.txt with entries of the form
+ State: (HonestPool.location = loc_1, TrustAttacker.location = loc_10,

m_len = 1, m_diff = -2)
Choice: rst

for every state; here, in a state where the secret fork’s length is 1, and it is two
blocks shorter than the public one, the attacker restarts. We processed the file

https://www.blockchain.com/pools

268 A. Hartmanns and H. Hermanns

by projecting to m_len and m_diff and then eliminating all subsequent duplicate
entries to find that the optimal strategy is to restart the attack if

– the honest pool announces a block, but the secret fork is still empty,
– the secret fork has one block and the public fork adds a third block, or
– the secret fork has ≥2 blocks and gets 3 blocks shorter than the public one,

and to continue the attack in all other cases.

Summary. Throughout this section, we first built an MA model that was equiv-
alent to a CTMC, and then a truly nondeterministic MA. However, even that
model does not use all features of the MA formalism: it lacks discrete proba-
bilistic branching. As such, it falls into the interactive Markov chain (IMC, [39])
subset of MA. In the next section, we will introduce a model that is a true MA.

5 Evaluating a Reentrant Queueing System

In the previous section, we considered quantitative aspects of attacks on a
stochastic timed system. We now turn our attention to a prominent use of
continuous-time Markov models: performance and dependability evaluation. A
classic application is resource-sharing queueing systems, using various CTMC-
based formalisms like (Jackson) queueing networks [41], with analytical or
simulation-based techniques for the analysis. Yet these approaches are restricted,
both in modelling and in analysis, to fully stochastic systems. MA as a model,
and our analysis tools in the Modest Toolset, sit right at the edge between
performance evaluation and model checking [2]. In particular, they add the con-
cept of nondeterminism, which is at the core of classic qualitative model checking,
to modelling formalisms and analysis algorithms that directly apply to perfor-
mance evaluation scenarios. We now study a queueing system with stochastic
timing, discrete probabilistic choices, and nondeterministic decisions—its model
is thus an MA that does not fall into any of the existing subsets.

We consider the system with two queues depicted in Fig. 7, originally pre-
sented in [36]. Both queues have the same capacity c. Jobs arrive with rate λ

Fig. 7. A queuing system with postprocessing needs [36]

A Modest Markov Automata Tutorial 269

and enter one of the queues according to the standard join-the-shortest-queue
strategy. This strategy is implicitly nondeterministic if both queues are equally
filled. For each queue, jobs are processed by a dedicated server, serving jobs
with rates μu and μd, respectively. Jobs leaving the lower server leave the sys-
tem, while jobs once processed by the upper server are subject to an additional
check. Dependent on the (nondeterministic) outcome thereof, they are either sent
into the lower queue again (action d), or (action u) they may either leave the
queue (with probability p) or reenter the upper queue (with probability 1 − p).

A Modest Model. As usual, we start our Modest model by declaring all
relevant constants, including the model parameters without specified values:
const int C; // queue capacity
const int LAMBDA = 5; // job arrival rate
const real MU_UP = 10; // service rate of up server
const int MU_DOWN = 4; // service rate of down server
const real P = 0.3; // probability to be done after up server

In this model, we will use two transient variables to track when jobs are done,
and when a job is dropped because both queues are full on arrival, or the queue
in which it is due to re-enter after being processed by the up server is full:
transient int(0..1) done = 0; // 1 when a job is done, otherwise 0
transient int(0..1) loss = 0; // 1 when a job is dropped, otherwise 0

Unlike regular variables in MAV, transient variables do not become part of the
states. They can be used in assignments, but the assigned values are lost once
the successor state is entered. However, the assigned value is visible to properties
when the branch is taken, and we will make use of this later to define rewards.

We structure our model along the components shown in Fig. 7, defining a
Modest process for each of them. The arrivals process and the down server
have the simplest behaviours:
action put, get;
process Arrivals()
{

rate(LAMBDA) tau;
put;
Arrivals()

}

process ServerDown()
{

get;
rate(MU_DOWN) tau {= done = 1 =};
ServerDown()

}

Both processes synchronise with the input queues: Arrivals uses action put to
enqueue a job that just arrived, and ServerDown uses action get to obtain a job
to work on when idle, as soon as one is available. We will use synchronisation
vectors to ensure that the synchronisation on put happens between Arrivals and
exactly one of the two queues. Both queues use the same process definition:
int(0..C)[] q = [0, 0]; // array: number of jobs in the two queues
function bool isShortest(int id) = q[id] <= q[(id + 1) % 2];
process Queue(int id)
{

do {

270 A. Hartmanns and H. Hermanns

:: when(isShortest(id)) // enqueue
put {= q[id] = min(q[id]+1, C), loss = q[id] == C ? 1 : 0 =}

:: when(q[id] > 0) get {= q[id]-- =} // dequeue
}

}

To distinguish the two queues, we use a process parameter id, and a two-element
array storing the lengths of the queues that the processes index with their id.
Function isShortest indicates whether the queue with the given id is no longer
than the other one. A queue only accepts new jobs when isShortest(id) is true;
if the queue is full in that case, the job is dropped, and loss is (temporarily) set
to 1. The get action removes a job from a non-empty queue.

Finally, the up server has the most complicated structure, since it manages
the reentry of jobs that it has finished serving into the two queues:
action u, d, rup, rdn;
process ServerUp()
{

get; // get job from queue
rate(MU_UP) tau; // serve job
alt { // nondeterministic choice between u and d:
:: u palt { // action u: probabilistic choice to either

:1-P: {==}; rup // reenter the up queue with probability 1−P,
: P: {= done = 1 =} // or leave the system with probability P
}

:: d; rdn // action d: reenter the down queue
};
ServerUp()

}

The nondeterministic choice between u and d is a choice between (d) making
the job surely leave the system within a certain expected time, at the cost of
processing by the slower down server, and (u) taking the chance for the job to
leave the system immediately, at the risk of it reentering the up queue. The
optimal choice will likely depend on the current lengths of both queues.

Now that we have specified all the necessary processes, we can put them into
a parallel composition. We have rather different synchronisation requirements:
put shall use a binary synchronisation between Arrivals and one of the two
queues, with a nondeterministic choice if both have the same lengths; get in a
queue shall synchronise only with the one server for that queue; and rup and rdn
shall look like a put to the respective queues. We could declare put as a binary
action, and cleverly use the relabel construct to rename the other actions in a
way that makes Modest create the correct synchronisation vectors internally.
However, we can also just specify the desired vectors explicitly in a par:
par { put, put, get, get, put, put, u, d } {

: put, put, - , - , - , - , -, - : Arrivals()
: put, - , get, - , put, - , -, - : Queue(0)
: - , - , get, - , rup, rdn, u, d : ServerUp()
: - , put, - , get, - , put, -, - : Queue(1)
: - , - , - , get, - , - , -, - : ServerDown()

}

A Modest Markov Automata Tutorial 271

If we read the “columns” in the above specification from bottom to top, we read
the synchronisation vectors, with the topmost entry being the action that labels
the synchronising edge in the composed MAV, and - corresponding to ⊥.

Performance Evaluation. We first add properties to investigate the proba-
bility and time until the queues are full, which is an undesirable condition that
affects the dependability of the system by making it likely for jobs to be lost:
property ProbFullIsOne = Pmin(<> (q[0] == C && q[1] == C)) == 1;
property TminFull = Xmin(T, q[0] == C && q[1] == C);
property TmaxFull = Xmax(T, q[0] == C && q[1] == C);
property PminFull10 = Pmin(<>[T<=10] (q[0] == C && q[1] == C));
property PmaxFull10 = Pmax(<>[T<=10] (q[0] == C && q[1] == C));

We thus assert that the minimum probability for both queues to eventually be
full is 1, which is a sanity check for the model; then we ask for the minimum and
maximum of the expected time for both queues to be full, and of the probability
for this to happen within 10 time units. By repeating the bottom two properties
for different values of the time bound, we can obtain an approximation of the
underlying cumulative distribution function over time. If we run mcsta with
./modest mcsta reentrant-q.modest -E"C=5" -O results.txt Minimal

we get an easy-to-parse file results.txt with the results:
"ProbFullIsOne": True
"TminFull": 7.165959461963808
"TmaxFull": 54.167593727326874
"PminFull10": 0.1338675853224175
"PmaxFull10": 0.7958342318163893

We see that the nondeterministic choices have a significant influence on the
behaviour of the system; between the worst and best choices, the time to and
probability for the undesirable event differs by a factor of 6 to 7. Since the stan-
dard probabilistic model checking algorithms implemented in mcsta are iterative
numeric algorithms using double-precision floating-point numbers, every result
is only an approximation of the true value despite the high number of decimal
digits included in the output. The precision of mcsta is configurable.

Assume that we are designing a system of which our reentrant queueing
system is an abstract model, and we have one parameter for which we must
decide on a concrete value: the queue capacity c. We expect a higher capacity to
improve throughput, utilisation, and reduce the number of lost jobs; however,
it is also more costly to implement. We would thus like to find a good tradeoff
between c and these quantities. We first specify properties that query for them:
property Throughput = Smax(S(done));
property Loss = Smax(S(loss));
property IdleOne = Smin(T(q[0] == 0 || q[1] == 0 ? 1 : 0));
property IdleBoth = Smin(T(q[0] == 0 && q[1] == 0 ? 1 : 0));

These queries are for long-run average rewards. The rewards are described by
accumulation expressions: S(done) attaches to every branch (i.e. to every dis-
crete step) the value of done after the branch’s assignments have been executed

272 A. Hartmanns and H. Hermanns

(but before transient variables lose their values) as a branch reward. Expres-
sion T(q[0] == 0 || q[1] == 0 ? 1 : 0) sets the rate reward (accumulated over
time) in every state to 1 if both queues are empty, and to 0 otherwise. We
chose maximisation/minimisation as appropriate to correspond to the best pos-
sible strategy. We can ask mcsta to compute these quantities for many different
values of c by specifying multiple experiments via the -E parameter:
./modest mcsta reentrant-q.modest -E "C=1" -E "C=2" -E "C=3" -E "C=4" \

-E "C=5" -E "C=6" -E "C=7" -E "C=8" -E "C=9" -E "C=10" -E "C=11" \
-E "C=12" -E "C=13" -E "C=14" -E "C=15" -E "C=16" -O perf.txt Minimal

We visualise the results in Fig. 8. The two lines converging to zero plot
IdleOne (red, upper line) and IdleBoth (orange, lower). The other two lines
plot Throughput (blue, upper) and Loss (purple, lower). We see that the frac-
tion of time that the servers spent idle drops quickly with increasing c, whereas
throughput and loss do not improve so much. Looking at this plot, we might
choose c around 5 to 8.

Summary. In this section, we built a model for a queueing system that utilises
all the features of the MA formalism. mcsta offers algorithms to calculate a
variety of quantities (cf. Sect. 2), and we fully utilised them to evaluate the
system from several perspectives.

Fig. 8. Long-run average performance values for the reentrant queueing system

6 Conclusion

This tutorial paper has discussed how Modest can be used as a convenient mod-
elling language for Markov automata, together with some hints on what analysis
is possible for such models. Markov automata can be considered as a central
model family for studying the performance, dependability, and correctness of
randomised and distributed systems.

We introduced all the basic and several advanced constructs of the Modest
language for MA. Among the features that we did not cover are exception han-
dling (using the throw and try-catch constructs), the specification of values for

A Modest Markov Automata Tutorial 273

transient variables in locations (using the with construct), dynamic array con-
structors, user-defined recursive datatypes (which allow the specification of, for
example, unbounded list types), recursive functions, and binary and broadcast
actions (which automatically generate appropriate synchronisation vectors, just
like “normal” actions do for multi-way synchronisation). Going beyond MA,
Modest also supports the formalisms of probabilistic timed automata [42]
(which add a clock type and time progress conditions via the constrain con-
struct), stochastic timed automata [4] (which allow sampling values from contin-
uous probability distributions in assignments; they are a generalisation of MA),
and stochastic hybrid automata [25] (which add continuous variables of type var
whose behaviour over time is specified via differential equations and inclusions
using the der operator for derivatives). Further Modest models are included
in the Modest Toolset download, available at modestchecker.net, and in the
Quantitative Verification Benchmark Set at qcomp.org.

Data Availability. The models, example command lines, and results pre-
sented in this paper are archived and available at DOI 10.4121/uuid:5a73169e-
b494-411b-b3a8-051e62efba9e [31].

Acknowledgments. The authors thank Michaela Klauck (Saarland University) for
preparing an initial version of the Modest model appearing in Sect. 5 and for helpful
comments on a draft of this paper.

References

1. Amparore, E.G., Balbo, G., Beccuti, M., Donatelli, S., Franceschinis, G.: 30 years
of GreatSPN. In: Fiondella, L., Puliafito, A. (eds.) Principles of Performance and
Reliability Modeling and Evaluation. SSRE, pp. 227–254. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-30599-8_9

2. Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.P.: Performance evaluation
and model checking join forces. Commun. ACM 53(9), 76–85 (2010)

3. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press, Cambridge (2008)
4. Bohnenkamp, H.C., D’Argenio, P.R., Hermanns, H., Katoen, J.P.: MoDeST: a

compositional modeling formalism for hard and softly timed systems. IEEE Trans.
Softw. Eng. 32(10), 812–830 (2006)

5. Bolch, G., Greiner, S., de Meer, H., Trivedi, K.S.: Queueing Networks and Markov
Chains - Modeling and Performance Evaluation with Computer Science Applica-
tions, 2nd edn. Wiley, Hoboken (2006)

6. Bolognesi, T., Brinksma, E.: Introduction to the ISO specification language
LOTOS. Comput. Netw. 14, 25–59 (1987)

7. Bonneau, J., Miller, A., Clark, J., Narayanan, A., Kroll, J.A., Felten, E.W.: SoK:
research perspectives and challenges for Bitcoin and cryptocurrencies. In: SP, pp.
104–121. IEEE Computer Society (2015)

8. Braitling, B., Fioriti, L.M.F., Hatefi, H., Wimmer, R., Becker, B., Hermanns, H.:
MeGARA: menu-based game abstraction and abstraction refinement of Markov
automata. In: QAPL. EPTCS, vol. 154, pp. 48–63 (2014)

http://www.modestchecker.net/
http://qcomp.org/benchmarks/
https://doi.org/10.4121/uuid:5a73169e-b494-411b-b3a8-051e62efba9e
https://doi.org/10.4121/uuid:5a73169e-b494-411b-b3a8-051e62efba9e
https://doi.org/10.1007/978-3-319-30599-8_9

274 A. Hartmanns and H. Hermanns

9. Braitling, B., Ferrer Fioriti, L.M., Hatefi, H., Wimmer, R., Becker, B., Hermanns,
H.: Abstraction-based computation of reward measures for Markov automata. In:
D’Souza, D., Lal, A., Larsen, K.G. (eds.) VMCAI 2015. LNCS, vol. 8931, pp. 172–
189. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46081-8_10

10. Brázdil, T., Hermanns, H., Krcál, J., Kretínský, J., Rehák, V.: Verification of
open interactive Markov chains. In: FSTTCS. LIPIcs, vol. 18, pp. 474–485. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik (2012)

11. Budde, C.E., D’Argenio, P.R., Hartmanns, A., Sedwards, S.: A statistical model
checker for nondeterminism and rare events. In: Beyer, D., Huisman, M. (eds.)
TACAS 2018. LNCS, vol. 10806, pp. 340–358. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-89963-3_20

12. Budde, C.E., Dehnert, C., Hahn, E.M., Hartmanns, A., Junges, S., Turrini, A.:
JANI: quantitative model and tool interaction. In: Legay, A., Margaria, T. (eds.)
TACAS 2017. LNCS, vol. 10206, pp. 151–168. Springer, Heidelberg (2017). https://
doi.org/10.1007/978-3-662-54580-5_9

13. Butkova, Y., Hartmanns, A., Hermanns, H.: A Modest approach to modelling and
checking Markov automata. In: Parker, D., Wolf, V. (eds.) QEST 2019. LNCS,
vol. 1785, pp. 52–69. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
30281-8_4

14. Butkova, Y., Hatefi, H., Hermanns, H., Krčál, J.: Optimal continuous time Markov
decisions. In: Finkbeiner, B., Pu, G., Zhang, L. (eds.) ATVA 2015. LNCS, vol. 9364,
pp. 166–182. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24953-
7_12

15. Butkova, Y., Wimmer, R., Hermanns, H.: Long-run rewards for Markov automata.
In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10206, pp. 188–203.
Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54580-5_11

16. Butkova, Y., Wimmer, R., Hermanns, H.: Markov automata on discount!. In: Ger-
man, R., Hielscher, K.-S., Krieger, U.R. (eds.) MMB 2018. LNCS, vol. 10740, pp.
19–34. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74947-1_2

17. D’Argenio, P.R., Hartmanns, A., Sedwards, S.: Lightweight statistical model check-
ing in nondeterministic continuous time. In: Margaria, T., Steffen, B. (eds.) ISoLA
2018. LNCS, vol. 11245, pp. 336–353. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-03421-4_22

18. Dehnert, C., Junges, S., Katoen, J.-P., Volk, M.: A Storm is coming: a modern prob-
abilistic model checker. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS,
vol. 10427, pp. 592–600. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63390-9_31

19. Eisentraut, C.: Principles of Markov automata. Ph.D. thesis, Saarland University,
Saarbrücken, Germany (2017)

20. Eisentraut, C., Hermanns, H., Katoen, J.-P., Zhang, L.: A semantics for every
GSPN. In: Colom, J.-M., Desel, J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp.
90–109. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38697-
8_6

21. Eisentraut, C., Hermanns, H., Schuster, J., Turrini, A., Zhang, L.: The quest for
minimal quotients for probabilistic and Markov automata. Inf. Comput. 262(Part),
162–186 (2018)

22. Eisentraut, C., Hermanns, H., Zhang, L.: Concurrency and composition in a
stochastic world. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol.
6269, pp. 21–39. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
15375-4_3

https://doi.org/10.1007/978-3-662-46081-8_10
https://doi.org/10.1007/978-3-319-89963-3_20
https://doi.org/10.1007/978-3-319-89963-3_20
https://doi.org/10.1007/978-3-662-54580-5_9
https://doi.org/10.1007/978-3-662-54580-5_9
https://doi.org/10.1007/978-3-030-30281-8_4
https://doi.org/10.1007/978-3-030-30281-8_4
https://doi.org/10.1007/978-3-319-24953-7_12
https://doi.org/10.1007/978-3-319-24953-7_12
https://doi.org/10.1007/978-3-662-54580-5_11
https://doi.org/10.1007/978-3-319-74947-1_2
https://doi.org/10.1007/978-3-030-03421-4_22
https://doi.org/10.1007/978-3-030-03421-4_22
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-642-38697-8_6
https://doi.org/10.1007/978-3-642-38697-8_6
https://doi.org/10.1007/978-3-642-15375-4_3
https://doi.org/10.1007/978-3-642-15375-4_3

A Modest Markov Automata Tutorial 275

23. Eisentraut, C., Hermanns, H., Zhang, L.: On probabilistic automata in continuous
time. In: LICS, pp. 342–351. IEEE Computer Society (2010)

24. Fehnker, A., Chaudhary, K.: Twenty percent and a few days – optimising a Bitcoin
majority attack. In: Dutle, A., Muñoz, C., Narkawicz, A. (eds.) NFM 2018. LNCS,
vol. 10811, pp. 157–163. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-77935-5_11

25. Fränzle, M., Hahn, E.M., Hermanns, H., Wolovick, N., Zhang, L.: Measurability
and safety verification for stochastic hybrid systems. In: HSCC, pp. 43–52. ACM
(2011)

26. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2011: a toolbox for the
construction and analysis of distributed processes. STTT 15(2), 89–107 (2013)

27. Guck, D., Han, T., Katoen, J.-P., Neuhäußer, M.R.: Quantitative timed analysis of
interactive Markov chains. In: Goodloe, A.E., Person, S. (eds.) NFM 2012. LNCS,
vol. 7226, pp. 8–23. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-28891-3_4

28. Guck, D., Hatefi, H., Hermanns, H., Katoen, J.P., Timmer, M.: Analysis of timed
and long-run objectives for Markov automata. Logical Methods Comput. Sci. 10(3)
(2014)

29. Guck, D., Timmer, M., Hatefi, H., Ruijters, E., Stoelinga, M.: Modelling and anal-
ysis of Markov reward automata. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014.
LNCS, vol. 8837, pp. 168–184. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-11936-6_13

30. Hahn, E.M., Hartmanns, A., Hermanns, H., Katoen, J.P.: A compositional mod-
elling and analysis framework for stochastic hybrid systems. Formal Methods Syst.
Des. 43(2), 191–232 (2013)

31. Hartmanns, A.: A Modest Markov automata tutorial (artifact). 4TU.Centre for
Research Data (2019). https://doi.org/10.4121/uuid:5a73169e-b494-411b-b3a8-
051e62efba9e

32. Hartmanns, A., Hermanns, H.: The Modest Toolset: an integrated environment
for quantitative modelling and verification. In: Ábrahám, E., Havelund, K. (eds.)
TACAS 2014. LNCS, vol. 8413, pp. 593–598. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-642-54862-8_51

33. Hartmanns, A., Hermanns, H.: Explicit model checking of very large MDP using
partitioning and secondary storage. In: Finkbeiner, B., Pu, G., Zhang, L. (eds.)
ATVA 2015. LNCS, vol. 9364, pp. 131–147. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-24953-7_10

34. Hartmanns, A., Klauck, M., Parker, D., Quatmann, T., Ruijters, E.: The quanti-
tative verification benchmark set. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019.
LNCS, vol. 11427, pp. 344–350. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17462-0_20

35. Hatefi, H.: Finite horizon analysis of Markov automata. Ph.D. thesis, Saarland
University, Germany (2017). scidok.sulb.uni-saarland.de/volltexte/2017/6743/

36. Hatefi, H., Hermanns, H.: Model checking algorithms for Markov automata. Elec-
tron. Commun. EASST 53 (2012)

37. Hatefi, H., Wimmer, R., Braitling, B., Fioriti, L.M.F., Becker, B., Hermanns, H.:
Cost vs. time in stochastic games and Markov automata. Formal Asp. Comput.
29(4), 629–649 (2017)

38. Haverkort, B.R.: Performance of Computer Communication Systems - A Model-
Based Approach. Wiley, Hoboken (1998)

https://doi.org/10.1007/978-3-319-77935-5_11
https://doi.org/10.1007/978-3-319-77935-5_11
https://doi.org/10.1007/978-3-642-28891-3_4
https://doi.org/10.1007/978-3-642-28891-3_4
https://doi.org/10.1007/978-3-319-11936-6_13
https://doi.org/10.1007/978-3-319-11936-6_13
https://doi.org/10.4121/uuid:5a73169e-b494-411b-b3a8-051e62efba9e
https://doi.org/10.4121/uuid:5a73169e-b494-411b-b3a8-051e62efba9e
https://doi.org/10.1007/978-3-642-54862-8_51
https://doi.org/10.1007/978-3-642-54862-8_51
https://doi.org/10.1007/978-3-319-24953-7_10
https://doi.org/10.1007/978-3-319-24953-7_10
https://doi.org/10.1007/978-3-030-17462-0_20
https://doi.org/10.1007/978-3-030-17462-0_20
http://scidok.sulb.uni-saarland.de/volltexte/2017/6743/

276 A. Hartmanns and H. Hermanns

39. Hermanns, H.: Interactive Markov Chains: The Quest for Quantified Quality.
LNCS, vol. 2428, pp. 35–55. Springer, Heidelberg (2002). https://doi.org/10.1007/
3-540-45804-2_3

40. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Upper Saddle
River (1985)

41. Jackson, J.R.: Jobshop-like queueing systems. Manag. Sci. 10(1), 131–142 (1963)
42. Kwiatkowska, M.Z., Norman, G., Segala, R., Sproston, J.: Automatic verification

of real-time systems with discrete probability distributions. Theor. Comput. Sci.
282(1), 101–150 (2002)

43. Legay, A., Sedwards, S., Traonouez, L.-M.: Scalable verification of Markov decision
processes. In: Canal, C., Idani, A. (eds.) SEFM 2014. LNCS, vol. 8938, pp. 350–362.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15201-1_23

44. Milner, R.: Communication and Concurrency. Prentice-Hall, Upper Saddle River
(1989)

45. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2009). bitcoin.org
46. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-

gramming. Wiley Series in Probability and Statistics, Wiley, Hoboken (1994)
47. Quatmann, T., Junges, S., Katoen, J.-P.: Markov automata with multiple objec-

tives. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp.
140–159. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9_7

48. Rabe, M.N., Schewe, S.: Finite optimal control for time-bounded reachability in
CTMDPs and continuous-time Markov games. Acta Inf. 48(5–6), 291–315 (2011)

49. Segala, R.: Modeling and verification of randomized distributed real-time systems.
Ph.D. thesis, Massachusetts Institute of Technology, Cambridge (1995)

50. Timmer, M.: Efficient modelling, generation and analysis of Markov automata.
Ph.D. thesis, University of Twente, Enschede (2013)

51. Timmer, M., Katoen, J.-P., van de Pol, J., Stoelinga, M.I.A.: Efficient modelling
and generation of Markov automata. In: Koutny, M., Ulidowski, I. (eds.) CONCUR
2012. LNCS, vol. 7454, pp. 364–379. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-32940-1_26

52. Timmer, M., Katoen, J.P., van de Pol, J., Stoelinga, M.: Confluence reduction for
Markov automata. Theor. Comput. Sci. 655, 193–219 (2016)

https://doi.org/10.1007/3-540-45804-2_3
https://doi.org/10.1007/3-540-45804-2_3
https://doi.org/10.1007/978-3-319-15201-1_23
http://bitcoin.org
https://doi.org/10.1007/978-3-319-63387-9_7
https://doi.org/10.1007/978-3-642-32940-1_26
https://doi.org/10.1007/978-3-642-32940-1_26

	A Modest Markov Automata Tutorial
	1 Introduction
	2 Markov Automata
	3 Modelling with Markov Automata
	3.1 Modest for Markov Automata
	3.2 The Modest Toolset
	3.3 Alternative Modelling Languages

	4 Optimising Attacks on Bitcoin
	4.1 Modelling and Evaluating the Double-Spending Attack
	4.2 Optimising the Attack on Trust in Bitcoin

	5 Evaluating a Reentrant Queueing System
	6 Conclusion
	References

