TEE-Based Distributed Watchtowers for
Fraud Protection in the Lightning Network

Marc Leinweber!, Matthias Grundmann', Leonard Schénborn?, and Hannes
Hartenstein'

! Karlsruhe Institute of Technology, Karlsruhe, Germany
firstname.lastname@kit.edu
2 Karlsruhe Institute of Technology, Karlsruhe, Germany
leonard.schoenborn@student.kit.edu

Abstract. The Lightning Network is a payment channel network built
on top of the cryptocurrency Bitcoin. It allows Bitcoin to scale by per-
forming transactions off-chain to reduce load on the blockchain. Mali-
cious payment channel participants can try to commit fraud by closing
channels with outdated balances. The Lightning Network allows resolv-
ing this dispute on the blockchain. However, this mechanism forces the
channels’ participants to watch the blockchain in regular intervals. It has
been proposed to offload this monitoring duty to a third party, called a
watchtower. However, existing approaches for watchtowers do not scale
as they have storage requirements linear in the number of updates in
a channel. In this work, we propose TEE Guard, a new architecture for
watchtowers that leverages the features of Trusted Execution Environ-
ments to build watchtowers that require only constant memory and are
thus able to scale. We show that TEE Guard is deployable because it can
run with the existing Bitcoin and Lightning Network protocols. We also
show that it is economically viable for a third party to provide watch-
tower services. As a watchtower needs to be trusted to be watching the
blockchain, we also introduce a mechanism that allows customers to ver-
ify that a watchtower has been running continuously.

1 Introduction

On top of the Bitcoin protocol [19], the Lightning Network [21] has emerged as a
second layer solution to reduce the load of transactions on the Bitcoin blockchain
by implementing a payment channel network. The Lightning Network consists of
interconnected bilateral payment channels. Each payment channel encodes the
distribution of a fixed amount of bitcoins between its two participants. At any
time, either party can close the channel by publishing a commitment transaction
to the Bitcoin blockchain that pays each party the amount of coins they own
in the channel. However, in payment channels, it is possible to commit a fraud
by publishing an outdated commitment transaction to the blockchain. A fraud
is profitable when the outdated commitment transaction assigns more coins to
the cheating party than the most current channel state. To mitigate the fraud,

2 M. Leinweber et al.

the cheated party has the opportunity to react and invalidate the outdated
transaction during a predefined time span.

Channels are usually configured to allow users 24 hours (144 blocks) to react
to such transactions with a revocation transaction that reverts the fraudulent
commitment transaction. This means that users have to be online and search
the blockchain at least once every 24 hours to defend against fraud attempts. To
avoid the obligatory activity, to allow for longer phases of inactivity and to enable
the development of lightweight nodes, watchtower (or custodian) services have
already been proposed. Dryja [9] proposed in 2016 a monitor that searches new
blocks on the blockchain for commitment transactions concerning the channels
of its users and publishes, in the case of a fraud, revocation transactions on the
user’s behalf. The monitor needs to store a revocation transaction for every state
of the channel which obviates the need for sharing of secrets but introduces linear
memory consumption and is therefore limited in its scalability. Dryja’s approach
was followed by several other monitoring proposals [20/16/4], whose strengths
and limitations we discuss in

To run such watchtower services economically, their ability to scale to many
users is of vital importance. To keep the watchtower’s provider’s cost economical,
the computation time and storage requirements need to be low per monitored
channel and, for channels being open for a long time, the storage requirements
need to be constant with respect to the number of updates in the channel. In this
work, we present TEE Guard, a watchtower solution for the Lightning Network
based on Trusted Execution Environments (TEEs) that is scalable due to its
low and constant storage requirements. With TEE Guard, users of the Lightning
Network can create a watchtower for their channels that is hosted by a so-called
platform provider. To improve reliability, such a user can become a customer
of multiple independent platforms and interconnect the watchtowers running at
these different platforms. For initialisation of the watchtower service, the cus-
tomer transmits, in a secure channel and unseen by the platform provider, a
public key hash where revocation transactions will be paid to and references to
the Lightning channels to monitor. With each channel update, the customer has
to transmit the required secrets to invalidate the now outdated commitment to
their watchtowers. As the watchtower provider is not trusted by its customers
and might even collude with a customer’s channel partner, all secrets need to
be kept private by the watchtower service. By storing them inside the TEE, we
ensure that they cannot be read by the provider. The key derivation system of
the Lightning Network makes it possible to store the secrets for all past updates
of a channel using constant space. The watchtower provider may not only try
to learn secrets from its customers but also try to cheat them by stopping the
watchtower service to save operational costs. It would be too late if a customer
would notice that a watchtower stopped their service only after the watchtower
did not react to an outdated commitment transaction. To allow a watchtower’s
customers to wverify the watchtower’s availability, TEE Guard enables the cus-
tomers to interconnect multiple watchtowers forming a watchtower network and
the watchtowers will monitor each other and create logs about the others’ avail-

TEE-Based Distributed Watchtowers 3

ability. These logs are signed and, in conjunction with the remote attestation
feature of TEEs, the customer can thus verify that the provider has been running
the watchtower continuously.

In sum, TEEs allow us to design an architecture, on top of the currently
deployed Bitcoin and Lightning protocols, that is (1) scalable, (2) economically
viable, and (3) in its redundancy tunable and verifiable by the user. The remain-
der of this work is structured as follows. The background on payment channels
in general and the Lightning Network in particular as well as a definition and an
overview on TEEs is given in Furthermore, related work is discussed.
The TEE Guard architecture is presented in detail in quantitatively

evaluated in and its security is assessed in We conclude the
paper and give an outlook on future work with

2 Background and Related Work

2.1 Lightning Network

The Lightning Network consists of bilateral payment channels that encode the
distribution of bitcoins between their two participants. To open a new channel,
two parties agree on an initial distribution, exchange payment_basepoints, and
the funder of the bitcoins, who is one of the two participants, creates, signs, and
publishes a transaction that spends the bitcoins to a 2-of-2 multi-signature out-
put. The current distribution is managed in a commitment transaction which,
in turn, is not published until the channel is closed. Hence, with each change
of the channel’s balance, a new commitment transaction is negotiated. Each
commitment transaction uses keys derived from a new per_commitment_secret
and includes a counter (called commitment_number) that is incremented for each
update in the channel. After a new commitment transaction has been created,
both parties exchange the per_commitment_secrets for the outdated transac-
tion. In case one of the channel’s participants publishes an outdated commitment
transaction, the other party can spend the transaction’s outputs using the corre-
sponding per_commitment_secret and its own revocation_basepoint_secret.
To allow for the revocation transaction to be published, the commitment trans-
action’s outputs can only be spent by the other party after a fixed time span
called to_self delay (measured in number of blocks). This mechanism forces
the channel’s participants to check the Bitcoin blockchain in regular intervals
for invalid commitments and to store all old per_commitment_secrets. The se-
crets can, however, be stored efficiently at constant size using a key derivation
mechanism [1].

In the Lightning Network, payment channels are interconnected and the re-
sulting network can be used for transactions over multiple hops using Hashed
Time-Locked Contracts (HTLCs). The HTLC construction ensures that either
all participants are able to execute the payment (using their knowledge of a se-
cret x) or none of them are. A conditional output is added to each commitment
transaction along the payment’s path that includes y = h(z) (with h being a
collision-resistant hash function) in the condition. The output can be redeemed

4 M. Leinweber et al.

by the receiver by publishing x or becomes invalid after a timeout. If a commit-
ment transaction with an HTLC output is published on chain, it can either be
spent by the receiver with an HTLC success transaction providing x or after the
specified timeout with an HTLC timeout transaction by the sender.

2.2 Trusted Execution Environments (TEEs)

By using trustworthy features in hardware and software that isolate processes
from other user and system processes, an environment (called enclave) is estab-
lished that allows the trusted execution of code. Such TEEs are implemented,
for example, by Intel in the form of Security Guard Extensions (SGX) [172)
or by AMD’s Memory Encryption Technology [12]. Besides these proprietary
approaches, Keystone [I3] is an open-source framework for implementing TEEs
based on the open hardware architecture RISC-V. These implementations have
different design goals and features. Current proposals for systems using TEEs
are typically based on SGX. SGX protects the confidentiality of the application’s
data and the integrity of code and data against malicious applications and a ma-
licious operating system. The only trusted component is the Intel CPU whereby
the required trust is reduced to the hardware designer and manufacturer.

For TEE Guard, we require a TEE to provide isolated execution, protected
memory, and remote attestation. With these features, code is protected from
manipulation and runtime data is guaranteed to be of integrity, confidential and
fresh. The remote attestation enables the remote verification of the platform’s
identity (CPU secrets) and the code’s identity (its instruction order). The TEE
can derive encryption keys from its own identity and the code’s identity to store
data on disk.

2.3 Blockchain and TEEs

The work presented in this paper connects the research fields of blockchain
and TEEs. Previous work in this intersection has been done with different fo-
cuses. TEEs have been used to implement alternatives to proof-of-work as used
in Bitcoin, e.g. proof-of-luck [I8] or proof-of-elapsed-time [II]. They have also
been used to implement a trusted exchange [5], second layer architectures (e.g.
Teechain [I4] and Banklaves [10]), and an extension to Bitcoin to run arbitrary
smart contracts [7]. In this work, we present TEE Guard, which is, to the best of
our knowledge, a new approach to use TEEs in the world of cryptocurrencies by
leveraging their features to implement a watchtower service for payment channel
networks.

2.4 Watchtowers

Watchtowers have already been proposed very early in the development of the
Lightning Network by Dryja [9]. In his approach, a customer creates a revo-
cation transaction for every old commitment transaction, encrypts it with the

TEE-Based Distributed Watchtowers 5

old commitment transaction’s ID, and sends it to the watchtower. When an old
commitment transaction is published, the watchtower uses the old commitment
transaction’s ID to decrypt and then publish the revocation transaction. The
approach preserves the channel’s privacy and the watchtower does not learn any
secrets that could be abused, but requires the watchtower to store O(n) trans-
actions where n is the number of updates in the channel. To incentivise the
watchtower to perform this service, the customer can add an additional output
to the revocation transaction that pays the watchtower provider a fee. However,
this leaves the watchtower provider unpaid in case no fraud happens in a chan-
nel and in case of a fraud only the first watchtower to publish the revocation
transaction earns the fee.

Osuntokun [20] proposed an updated construction of channels for the Light-
ning Network that requires the introduction of a new opcode to the Bitcoin
protocol, but allows for constant storage for channel participants and watch-
towers. However, the opcode has not been implemented since and, thus, the
approach is not deployable yet.

Later, Pisa [I6] was proposed, which is an approach for watchtowers (called
custodians) which is constructed to work with state channels on top of Ethereum
instead of payment channels as used in the Lightning Network. As the state chan-
nel construction uses a smart contract that can compare states by their com-
mitment numbers, the custodian only needs constant sized memory. However, in
the Lightning Network, as currently deployed, the state is replaced by revocation
[21], which requires a specific revocation transaction for each new state. Storing
all revocation transactions requires storage linear to the number of payments in
a channel. As our approach uses TEEs, we can outsource the secrets needed to
generate the revocation transactions which reduces the required storage of the
watchtower to a constant size. Pisa requires the custodian to provide a security
deposit which is being destroyed in case the custodian fails to settle a dispute. To
prevent the custodian from colluding with a channel partner, the security deposit
has to be high enough that the custodian would not profit from such a collusion.
This necessitates high security deposits by the custodian and the required high
investment makes it somewhat unrealistic that someone would assume the role
of such a custodian. In our approach, we do not need such a security deposit.
In return, we require that multiple custodians (or watchtowers) are used and
we assume that they do not collude. We assume that it is more realistic to find
non-colluding service providers for watchtowers (at least one correctly working
watchtower is enough to protect the channel) than finding custodians that are
willing to place a high amount of capital as security deposits.

Decker et al. proposed eltoo [8] which is a payment channel construction for
Bitcoin with a different approach than the currently deployed Lightning Net-
work. Instead of replacing old states by revocation, it adds a counter to each
transaction and uses a construction that allows old transactions to be spent by
transactions with higher counter values. This requires both parties to only store
the transactions with the latest state and is thus also a solution to the linear
storage problem. However, the concept uses so called floating transactions which

6 M. Leinweber et al.

require an opcode added to the Bitcoin protocol which has not been included yet.
On a payment channel network using eltoo, watchtowers would require only con-
stant sized storage per channel. Yet, watchtowers would be necessary to watch
the blockchain for outdated commitment transactions. Our approach could still
be a valuable addition on such a network because TEE Guard introduces re-
dundancy and the mutual monitoring of watchtowers allows verification of the
watchtower providers’ availability.

In [4], Avarikioti et al. present DCWC, a protocol for a network of watch-
towers which forward revocation transactions to other watchtowers and publish
them during dispute. They also present a modified protocol DCWC*, which is
implementable on the Lightning Network in contrast to DCWC. Watchtowers
are incentivised to participate in the protocol by receiving a part of a channel’s
funds in case of dispute. The issue here is that watchtowers are not paid in case
no dispute arises and therefore they might not be sufficiently incentivised. Our
approach incentivises watchtowers by users paying the watchtower providers a
fixed rate per month. DCWC* requires the watchtowers to store O(n) messages,
where n is the number of channel updates. Using TEEs to store the revocation
secrets, we limit the watchtower’s storage to a constant size, which makes it
possible to watch a high number of channels for an unlimited time using a single
machine.

Recently, with Brick [3], a new state channel construction has been proposed.
Brick replaces the on-chain dispute process by a mediator committee of third
parties. Therefore, watchtowers are no longer necessary in Brick. However, the
channel partners have to agree on the committee members and trust that at
least a third of them will be honest.

3 TEE Guard Architecture

TEE Guard implements a watchtower solution for the Lightning Network in a
TEE. The TEE assures untampered and confidential execution of the watchtower
code and enables remote attestation of the TEE’s platform identity and the
executed code identity. Watchtowers are distributed to increase reliability and
implement mutual monitoring.

A Lightning Network user can become a customer of one or more independent
TEE Guard platform providers. Each platform provides watchtower instances for
an arbitrary number of customers, who send updates to the watchtower after
each update in their channels. The watchtowers monitor the blockchain for out-
dated commitment transactions and react to such transactions with revocation
transactions. By interconnecting their watchtower instances, customers can con-
struct a distributed system that fits their needs. The instances will then monitor
each other’s state to increase the reliability and to detect potentially malicious
or unreliable providers. On the detection of outdated information, correct states
will be exchanged. The activity monitoring results are logged and provided to
the customer. A provider can be, for example, a company, organisation or a
private person.

TEE-Based Distributed Watchtowers

Bitcoin Network

A}
Bitcoin Module Bitcoin Module Bitcoin Module
(BTCM) (BTCM) (BTCM)
[WTI WTI @
{ WTI
Wl il Charlie
Signing Signing Signing
Module (SM) Module (SM) Module (SM)
Proxy Proxy Proxy
Module (PM) Module (PM) Module (PM)
| H
Provider P, Provider Py Provider P,

Fig. 1. Abstract overview of the TEE Guard interconnected watchtowers showing the
TEE Guard software running at three watchtower providers with their different modules.
Each provider hosts different watchtower instances (WTI) that are owned by a specific
customer. In this scenario three users (Alice, Bob, and Charlie) operate a network of
interconnected watchtowers hosted at two or three providers respectively.

illustrates an example of the distributed system with three provider
platforms P4, Pg and Pg and three customers Alice, Bob and Charlie. The
figure only shows the TEE Guard components and abstracts away the enclave’s
surrounding runtime environment. Each provider platform is connected to the
Bitcoin peer-to-peer network and receives the blockchain. Because each platform
has a customer that is also customer of one of the two others, all platforms are
interconnected. The operating principle and the rationale behind it is discussed
in detail in the remainder of this section.

3.1 Provider Platform

A provider platform is implemented in one enclave and divided into modules.

Watchtower Module (WTM) The WTM implements the watchtower functional-
ity: monitoring of channel-related transactions, creation of revocation transac-
tions and monitoring of connected watchtowers. An instance of the WTM (called
WTTI) is created for each customer.

8 M. Leinweber et al.

Bitcoin Module (BTCM) The BTCM encapsulates the communication with the
Bitcoin blockchain. It manages a local copy of the last blocks of the blockchain
and provides them to the WTIs. The number of blocks to store depends on the
monitored channel with the longest time span between publication and validity
of its commitment transaction (given by the channel’s to_self_delay). When a
WTTI needs to publish a revocation transaction, this is done by the BTCM, too.

Proxy Module (PM) The PM implements the communication between provider
systems. The motivation behind the PM is to hide the traffic patterns of in-
dividual WTIs. Thus, providers cannot identify which WTI is communicating
with another provider and they cannot deduce the distribution of the customers
among the providers.

Signing Module (SM) To prove the presence or absence of the provider’s service
over time, the WTIs write encrypted and integrity-protected logs of the monitor-
ing process to secondary storage. The logs are encrypted to hide the connection
information of a customer from the provider and to prevent manipulation of the
information. A customer can request the logs to verify the providers’ activity. To
unambiguously associate the logs with a provider, the SM signs the logs before
they are sent to the customer. To do so, the SM creates an asymmetric key pair
on the first start of the provider platform.

3.2 Setup

The customer chooses a number n € IN of providers, sets up the n instances
(“Instance Setup”) and connects them (“Network Setup”).

Provider Platform Setup To allow verifiable and reproducible builds, which is
essential for meaningful remote attestation, TEE Guard has to be open-source
software. All a provider has to do is to download, build, and run the software.
The provider is flexible in the choice of the executed software and is free to alter
the code. The remote attestation feature ensures that the customer cannot be
betrayed by running code they do not agree with.

Instance Setup The provider creates a new WTI and gives access to it to the
customer. During a remote attestation, the customer verifies the provider plat-
form’s identity and establishes a secure channel to the WTI. Once the customer
has completed the verification, the WTT cannot be accessed by the provider any-
more. This is enforced by the implementation which is protected by the TEE.
The customer then has to provide the revocation payout_address, a Bitcoin
address for revocation payouts, that also serves as a customer identifier. Addi-
tionally, a list of trusted TEE Guard code identities for the network setup can
be transmitted. During the operation of the WTI, the customer can add and
remove channels to monitor.

TEE-Based Distributed Watchtowers 9

Network Setup As mentioned before, TEE Guard is designed to be a distributed
system. The WTIs of a customer can be connected to increase reliability and
enable mutual monitoring. To connect two WTIs A and B on platforms Py
and Ppg, the customer tells A to establish a connection to another provider
platform’s proxy module. In order to (re)establish a new or broken (down) con-
nection, one of the platforms has to be publicly reachable. Firstly, P4’s proxy
module checks if it already established a connection to Pg. If not, both proxy
modules perform a remote attestation and store the identity of the remote plat-
form. A compares Pp’s identity with its list of trusted TEE Guard code identi-
ties. If the list does not contain Ppg’s identity, A cancels the connection process.
The proxy module of Pg checks if the platform hosts a WTI B with the same
revocation_payout_address. Next, B checks its list of trusted identities against
P,’s identity and, if P4’s identity is not trusted, B cancels the connection pro-
cess. If both WTIs A and B agree on establishing a connection, they tell their
platform’s proxy modules to route upcoming messages between them. Finally,
the proxy module of A adds Pp to A’s list of connected platforms and vice versa.

3.3 Operation

A channel participant can attempt a fraud by issuing an outdated commitment
transaction txp with commitment _number (txr) < commitment_number (txc) of
the most current commitment transaction txg. If no revocation transaction is
issued within the time span defined by the channel’s to_self_delay parameter,
the fraud can claim the stolen funds.

Thus, to detect a fraud, the watchtower needs to scan the last to_self_delay
blocks of the blockchain because they may contain a revocable outdated commit-
ment transaction. To identify and revoke outdated transactions, the most current
commitment _number of a channel, the information to find channel-related com-
mitment transactions on the blockchain, and the secrets to sign a valid revocation
transaction are needed (see [Table 1)).

In sum, the customer has to contact the watchtowers on each channel trans-
action and the watchtower has to get active with each new block added to the
blockchain.

Channel Updates Most of the necessary parameters are fixed for the channel’s
life time and need to be transmitted during the setup of the channel monitor-
ing. For each channel update the customer has to contact its WTIs and pro-
vide the per_commitment_secret for the now outdated transaction and the new
commitment number. According to BOLT#3 [I] the per_commitment_secrets
can be stored efficiently by storing at most 49 (value, index) pairs at any given
point in time, which can be used to derive the keys for outdated commitment
transactions.

Blockchain Updates The BTCM of each provider platform is connected to the
Bitcoin network and parses incoming messages. On the reception of a new block,
the BTCM verifies the Merkle hash tree, compares the transaction inputs to the

10 M. Leinweber et al.

Table 1. Information required for watchtower operation that has to be stored for a
channel by each watchtower

lData [Purpose ‘

funding_txid identification of channel-related
commitment transactions

both participants’ payment_basepoints |decryption of commitment_numbers
in commitment transactions

most current commitment_number identification of outdated
commitment transactions

revocation_basepoint_secret, revocation key derivation
values to derive per_commitment_secrets

list of monitored channels of the platform’s WTIs and stores the block together
with a signature of it on the untrusted secondary storage of the provider’s system.
On future accesses, there is no need to verify the block again but only the signa-
ture. If a transaction input in the block is on the list of monitored channelsEI7 the
corresponding WTT is informed. The WTTI reconstructs the commitment _number
using the payment_basepoints and compares it to the stored most current
commitment _number.

In case the commitment transaction is outdated, the issuer of the transac-
tion has to be identified. If the WTI succeeds in calculating the revocation key
corresponding to the outdated commitment transaction, the transaction was not
issued by the customer but by the customer’s channel partner and the transac-
tion is identified as fraudulent. The WTT constructs and publishes a revocation
transaction that spends the fraud’s output to the revocation_payout_address.
If the outdated commitment transaction contains HTLC outputs, these outputs
are used as inputs for the revocation transaction, too. However, the revocation
transaction issued by the WTI may be preceded by an HTLC success or HTLC
timeout transaction. If so, the revocation transaction would be a double spend of
this transaction because both spend the same outputs. Thus, the watchtower has
to monitor the blockchain until the revocation transaction becomes valid and, in
case an HTLC transaction was issued by the fraud, the revocation transaction
has to be reissued using the HTLC transaction’s output instead of the commit-
ment transaction’s output. Channels can be removed from the list of monitored
channels if a block old enough contains the revocation or a closing transaction.

With each new block, the WTI contacts the connected WTIs on other provider
platforms with a New Block message. This message contains the list of moni-
tored channels, the most currently known commitment number and the current
blockchain height. If the receiving WTT identifies outdated channel information
(missing channels or outdated commitment numbers), it answers with a New
Block Response message. The incoming New Block messages are logged.

3 More specifically, this means that the transaction id of the input equals a
funding_txid contained in the list of monitored channels.

TEE-Based Distributed Watchtowers 11

Rollback Protection In case the freshness of the state information cannot be
ensured, the temporal correctness of code execution is not guaranteed. As long
as a TEE system is running, it can assure the freshness of the main memory
data. This does not hold for reboots or secondary storage. Thus, state has to be
identified with respect to time.

A WTI compares the correctness of its current channel information with
each blockchain update. The list of connected provider platforms, however, is
not transmitted. When a provider platform is rebooted, it stores its current
state to the secondary storage (encrypted and signed). During initialisation, this
stored state is restored to main memory. If a provider would manipulate the
information on the secondary storage by replaying a previously stored image,
they could remove, however not fine-grained, information on connected provider
platforms. Hardware monotonic counters in current TEE implementations have
been shown to be of reduced usability [I5]. We use a distributed state_counter
to circumvent hardware monotonic counters. Each time a channel is added or
removed or a provider platform is connected or disconnected, the WTI where
the action was taken updates the counter and broadcasts the change to the
connected WTIs. When the provider platform is restarted, the WTIs ask the
known connected WTIs for their current state and update if necessary. The
WTIs log received and sent state information.

Verification of Availability To verify that a provider fulfills the required availabil-
ity, a user can collect and analyse the providers’ logs. If the logs of watchtower A
show that a message for a new block from watchtower B has been received after
receiving a newer block from the blockchain, this indicates that A or B was not
online for some time. Comparing the logs of all watchtowers allows distinguishing
whether A or B was offline.

4 Quantitative Evaluation

In this section, we analyse TEE Guard assuming an implementation with Intel
SGX. We analyse the reliability of our approach using a simulation and its scal-
ability by analysing the computing and storage requirements. Using the results
of the analysis, we estimate the cost for a watchtower provider and find that it
is economically viable to provide this service for a cost below one USD cent per
channel per month, provided that enough customers per provider platform use
the service.

4.1 Reliability

The reliability solely rests on the availability of the provider platforms. If a
system is ready to work and not hindered in its execution, it will scan the
blockchain and emit revocation transactions if necessary. Availability is disrupted
by outages of any kind or malicious providers. Both kinds of disruption can be
proven by the logging utility, which will be discussed in

12 M. Leinweber et al.

1 watchtower ——+— 2 watchtowers ——<— 3 watchtowers 4 watchtowers
1 \V\’
(\x\’
0.95 T~

T
0.9 \

0.85
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
outage probability o

\;

reliability

Fig. 2. Reliability study with u = 5 users, mean channel lifetime ¢ = 30 d, mean
transaction interval ¢ = 36 h and simulated time s = 20 y set fix. The interval delimiters
show the 99.9 % Student’s t-distribution confidence interval.

To understand the implications of outages not only for TEE Guard but dis-
tributed watchtower scenarios in general, we conducted a simulation study using
a discrete-event simulator written in Java. A standard failure model cannot be
applied and analytically analysed, because not only outages of watchtowers are
relevant but also their state. The simulation model is simplified in contrast to
and counsists of users, watchtowers (WTIs), channels, and a simplified
blockchain. Channels and watchtowers are assigned to a user. Provider platforms
are not modelled; each watchtower runs independently of the other watchtow-
ers. Modelling the provider platforms would cause correlations of WTT outages
because a provider platform outage causes the outage of all WTIs running on it.
The blocks of the blockchain are only containing references to channels that are
being closed in this block. The opening of new channels is not modelled explicitly.
The parameters are the number of users u, the number of watchtowers per user w,
the outage probability of a watchtower o, the mean channel life time ¢, the mean
transaction interval for a channel transaction ¢ and the simulated time s. The
parameters ¢ and t are mean values for exponential distributions; a new block is
emitted every 10 minutes on average, following an exponential distribution. To
get a worst case estimation, outage periods of significant length are needed. The
outage length is set fix to 48 hours. Thus, the watchtowers fail independently
every 48 hours for a period of 48 hours with probability o. On startup, the users
and their watchtowers are created and for each user one channel is opened. The
channel transaction events as well as the channel close events are scheduled. All
channels are closed with an outdated commitment number chosen uniformly at
random and a new channel is immediately created for the user. After 144 blocks
it is evaluated, whether the fraud was detected. The watchtowers exchange state
information with every block update as discussed in

We conducted the simulation with u = 5 users, mean channel lifetime ¢ =
30 d, mean transaction interval ¢ = 36 h and simulated time s = 20 y set fix.
The number of users might seem low, but an increased number of users does
not affect the reliability, because each user has their own watchtowers which fail
independently of others. Increasing the number of users u or the simulated time
s only reduces the confidence intervals at the cost of a higher simulation time.

TEE-Based Distributed Watchtowers 13

A reduced channel transaction interval causes better reliability results because
it increases the probability that at least one watchtower learns the most current
commitment number before the channel partner tries to close the channel. We
have chosen channels to live a month on average and to have a new transaction
every 36 hours on average to model the behaviour of a super market and its
customer. The parameters w and o were varied in a range of 1 to 10 in steps of
1 resp. 0.00 to 1.00 in steps of 0.05. Each parameter combination was simulated
120 times with different seeds. shows the reliability for 1 to 4 watchtow-
ers with an outage probability range from 0.00 to 0.35. The simulation results
show that, using three watchtower instances, the mean reliability is over 96%
for an unrealistically high outage probability of 35 %. The following analytical
evaluation is based on these results and three watchtowers per user are assumed.

4.2 Scalability

Memory For the provider platforms, we have to distinguish between the enclave
memory that resides in main memory when the enclave is running and persistent
memory that is used to store data. In Intel SGX, the enclave memory is limited
to about 97 MB, but the persistent storage can be as high as the disk space
available in the hosting system. In we show which data needs to be
stored in an enclave’s memory. Summing it up leads to the following memory
requirements, where ny is the number of customers, nc the number of monitored
channels, ng the number of connected provider platforms per WTI, and np the
total number of connected provider platforms:

M(ny,nc,ng,np) = ny - 125 byte + ng - 1996 byte + np - 81 byte
4+ ng - ny - 4 byte + 36 byte

The provider platform also needs runtime memory for the verification of new
blocks. As they can be verified consecutively, only one block needs to be stored
at a time. We assume 2.5 MB memory usage for block verification which is more
than enough for the currently biggest block of 2.3 MB. We estimate the memory
requirement of the enclave’s code to be limited by 4 kB. Assuming np = 100
different connected provider platforms, ng = 3 connected provider platforms
per customer, and 5 channels per customer, the enclave’s memory suffices for
monitoring the channels of more than 9,500 users.

Disk space The received blocks need to be stored on disk. However, it suffices to
store the last 144 + 6 blocks (the highest value of to_self_delay + the blocks
needed for a block to be considered confirmed). Using the values from above
(nc = 45,000, ng = 3), the logs take a maximum of 3.5 MB per block. For
six months this would accumulate to 90 GB. However, this can be reduced mas-
sively by using a non-trivial storage format. To save storage cost, the watchtower
providers can agree with their customers on a time after which they are allowed
to remove old logging entries.

14 M. Leinweber et al.

Table 2. Memory requirements of a provider platform

lData [Type and Size

key material for communication| ECDH public/private key, 65 byte per customer,
between WTI and customer symmetric key 32 byte per customer
revocation_payout_addresses |32 byte hash per customer

blockchain height 4 byte integer

most current block hash 32 byte hash

state counter per customer: 4 byte integer

monitored channels per channel: 32 byte funding_txid,

6 byte commitment number,

both participants’ payment_basepoints, 2 - 32 byte
32 byte revocation _basepoint_secret,

49 - 38 byte to derive per_commitment_secrets
connected provider platforms |per provider platform: 16 byte IP address,

ECDH public key 33 byte, symmetric key 32 byte
connected provider platforms |list of 4 byte indizes

per WTI

Bandwidth When connecting provider platforms, messages are exchanged during
remote attestation. As this is only done once for establishing a connection, we can
ignore it for estimating the required bandwidth for the continuous operation of
the system. We need to download each new block that is added to the blockchain,
which results in an incoming traffic of about 10 Mbit/10 min = 17 kBit/s.
Assuming that, in the unrealistic worst case, a revocation transaction has to be
created for every transaction in a block, we need the same outgoing bandwidth
for publishing the revocation transactions. As new blocks are mined every 10
minutes on average in Bitcoin, the messages sent between watchtowers after
receiving a new block are so rare that they can be neglected for estimating the
bandwidth. For every update to a channel, a user has to send 74 bytes to the
watchtowers. Therefore, we can estimate the required bandwidth for channel
updates to B - n¢ - 74 byte, where 3 is the update rate per channel and n. is the
number of channels a user has. For a high channel update rate of 5 = 10/s for
five channels per user, this results in a bandwidth requirement of 28.9 kBit/s.
With 9,000 users on a system updating their five channels with such a high rate,
this results in an incoming bandwidth of 254 MBit/s, which is still realistic for
a professionally hosted system.

Computation time Channel updates do not require much computation and search-
ing the transactions inside a block could take a few minutes without a problem,
because new blocks arrive only every 10 minutes on average. Therefore, the
computation time is not a bottleneck.

TEE-Based Distributed Watchtowers 15

4.3 Deployability

Estimating that 100 GB of disk space will be more than enough for the persistent
storage, we used the Amazon AWS Calculatorﬁ to estimate the operational cost
of running a watchtower system. We require an SGX-enabled CPU, 256 GB
outgoing traffic per month and 100 GB of disk space. This results in a monthly
cost of about 80 USD. Assuming a system working to capacity with 9,000 users
and 5 channels per user, the system is viable if each user pays at least 0.18 cents
per channel per month. Assuming only 1000 users and 5 channels per user, each
user would have to pay at least 1.6 cents per channel per month to make the
system viable. As self hosted systems might be cheaper than using AWS, this
shows that providers are incentivised to host watchtower systems and offer them
to their customers for reasonable prices. Payment channels can be used for the
monthly payments to keep transaction fees low.

5 Security Assessment

5.1 Confidentiality

Based on the assumptions of TEEs, all secrets that are stored in the watchtower
are protected from observation by any third party. The secrets are stored securely
in the enclave’s memory resp. encrypted on hard disk. To send secrets to the
provider platform, customers use an encrypted authenticated channel which is
established during remote attestation. This ensures that secrets cannot be leaked
when uploading them to the provider platform and that they are stored only at
attested and trusted platforms.

5.2 Verification of Availability

To fulfill the requirements considering verification of availability, it is necessary
to recognise the outage of enclaves and prove it to others. TEE Guard creates
logs of the availability of connected enclaves. To establish trust in these logs, the
messages are signed with the providers signing key. The logs are stored in an en-
crypted and integrity-protected form. To disguise a time of unavailability in the
past, a provider would have to manipulate the logs stored at their competitors’
instances. The only way to manipulate the log in order to make a competitor’s
instance look unresponsive is by suppressing messages sent from and to that
instance. However, this also leads to the provider’s own instance being seen as
unresponsive from the competitor’s instance, which is not in the provider’s in-
terest. If the provider would delete the logs before the user retrieves them, the
manipulation would be detected by retrieving the logs from the connected plat-
forms. The availability of other enclaves is verified using logs of all received New
Block messages which only allows determining the availability once per block
interval. Since a WTI searches the transactions inside a block for fraud before
sending the New Block message, this suffices to verify the availability required
for a watchtower.

* lhttps://calculator.aws/# /configureEc2, June 2019

https://calculator.aws/#/configureEc2

16 M. Leinweber et al.

5.3 Attacks on TEEs

It has been shown that practical implementations of TEESs are not free of bugs [6]
and experience tells us that any implementation might have flaws and thus po-
tential bugs have to be considered. Therefore, we lastly analyse how the security
of TEE Guard is affected when an attacker breaks the security assumptions of
TEEs. If an attacker extracts the hardware secrets from the enclave, they might
be able to impersonate an enclave and fool customers into sending them the
data instead of a legitimate watchtower. In this case, the attacker could use the
revocation keys to create revocation transactions that do not send the revoked
funds to the customer but an address owned by the attacker. However, this also
requires an outdated commitment transaction to be published on the blockchain.
To run this attack, an active fraud attempt is needed. If the customer’s channel
partner does not attempt a fraud, the attack is only possible when the provider
colludes with the customer’s channel partner. The maximum profit of such an
attack run by a watchtower provider, who broke the TEE and colludes with the
channel partner of the customer, would be the difference between the customer’s
balance in the last commitment transaction and the commitment transaction
with the lowest balance for the customer. In the worst case, this could be all
funds of the channel. It is not possible for an attacker to create new commit-
ment transactions because the basepoint_secret is not sent to the watchtower
and thus cannot be stolen even by an attacker breaking the TEE.

6 Conclusion

In this work, we presented TEE Guard, a proposal for a watchtower solution for
the Lightning Network. The use of TEEs led to a concept that scales, because
TEEs allow secrets to be securely outsourced to the watchtower and, thus, re-
vocation transactions to be created directly by the watchtower instead of the
customer. The decentralised nature of TEE Guard ensures a high reliability of
the watchtower service. We have shown with a simulation that, even at unreal-
istically high outage rates per platform provider, the whole system already has
a reliability of 96 % with only three watchtowers. As customers do not trust the
platform providers to keep their watchtowers running, we presented the logging
mechanism that allows the providers to prove to their customers that they have
continuously been running the service. Even a very strong attacker, who is able
to break the TEE, does only get access to the revocation secrets, which can-
not be abused as long as there is no dispute in the channel or the watchtower
provider colludes with the customer’s channel partner. We quantitatively anal-
ysed the concept showing that the system is deployable and running a provider
platform is financially profitable for the provider even with very low prices for
the customers.

For future work, we plan to analyse the requirements for watchtowers for
other payment channel networks and the security trade-offs implied by adapt-
ing TEE Guard to these networks. We also want to generalise the concept by
transferring the ideas of TEE Guard to state channels.

TEE-Based Distributed Watchtowers 17

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

BOLT 3: Bitcoin Transaction and Script Formats (2018), https://github.com/
lightningnetwork /lightning-rfc/blob/914ebab9080ccccb0ff176/03- transactions.md
Anati, I., Gueron, S., Johnson, S., Scarlata, V.: Innovative Technology for CPU
Based Attestation and Sealing. In: Proc. of the 2nd International Workshop on
Hardware and Architectural Support for Security and Privacy. HASP ’13, ACM,
New York, NY, USA (2013)

Avarikioti, G., Kogias, E.K., Wattenhofer, R.: Brick: Asynchronous State Chan-
nels. arXiv preprint arXiv:1905.11360 (May 2019)

Avarikioti, G., Laufenberg, F., Sliwinski, J., Wang, Y., Wattenhofer, R.: Towards
Secure and Efficient Payment Channels. arXiv preprint arXiv:1811.12740 (2018)
Bentov, 1., Ji, Y., Zhang, F., Li, Y., Zhao, X., Breidenbach, L., Daian, P., Juels, A.:
Tesseract: Real-Time Cryptocurrency Exchange using Trusted Hardware. TACR
Cryptology ePrint Archive 2017, 1153 (2017)

Bulck, J.V., Minkin, M., Weisse, O., Genkin, D., Kasikci, B., Piessens, F., Sil-
berstein, M., Wenisch, T.F., Yarom, Y., Strackx, R.: Foreshadow: Extracting the
Keys to the Intel SGX Kingdom with Transient Out-of-Order Execution. In: 27th
USENIX Security Symposium (USENIX Security 18). USENIX Association, Bal-
timore, MD (2018)

Das, P., Eckey, L., Frassetto, T., Gens, D., Hostdkova, K., Jauernig, P., Faust,
S., Sadeghi, A.R.: FastKitten: Practical Smart Contracts on Bitcoin. In: 28th
USENIX Security Symposium (USENIX Security 19). pp. 801-818. USENIX As-
sociation, Santa Clara, CA, https://www.usenix.org/conference/usenixsecurityl9/
presentation/das

Decker, C., Russell, R., Osuntokun, O.: eltoo: A Simple Layer2 Protocol for Bitcoin.
White paper: https://blockstream. com/eltoo. pdf (2018)

Dryja, T.: Unlinkable Outsourced Channel Monitoring (10 2016), talk at Scaling
Bitcoin, Milano, 2016

Grundmann, M., Leinweber, M., Hartenstein, H.: Banklaves: Concept for a
Trustworthy Decentralized Payment Service for Bitcoin. In: 2019 IEEE Inter-
national Conference on Blockchain and Cryptocurrency (ICBC). pp. 268-276
(May 2019). https://doi.org/10.1109/BLOC.2019.8751394, https://publikationen.
bibliothek.kit.edu/1000092459

Intel: PoET 1.0 Specification (2015), https://sawtooth.hyperledger.org/docs/core/
releases/latest/architecture/poet.html

Kaplan, D., Powell, J., Woller, T.. AMD Memory Encryption (2016), http:
/ /developer.amd.com/wordpress/media/2013/12/AMD_Memory_Encryption_
Whitepaper_v7-Public.pdf

Lee, D., Kohlbrenner, D., Shinde, S., Song, D., Asanovié¢, K.: Keystone: A Frame-
work for Architecting TEEs. arXiv preprint arXiv:1907.10119 (2019)

Lind, J., Eyal, 1., Kelbert, F., Naor, O., Pietzuch, P.R., Sirer, E.G.: Teechain:
Scalable Blockchain Payments using Trusted Execution Environments (2017), http:
//arxiv.org/abs/1707.05454

Matetic, S., Ahmed, M., Kostiainen, K., Dhar, A., Sommer, D., Gervais,
A., Juels, A., Capkun, S.: ROTE: Rollback Protection for Trusted Execution
pp. 1289-1306 (Aug 2017), https://www.usenix.org/conference/usenixsecurity17/
technical-sessions/presentation/matetic

McCorry, P., Bakshi, S., Bentov, 1., Miller, A., Meiklejohn, S.: Pisa: Arbitration
Outsourcing for State Channels. IACR Cryptology ePrint Archive 2018, 582
(2018)

https://github.com/lightningnetwork/lightning-rfc/blob/914ebab9080ccccb0ff176/03-transactions.md
https://github.com/lightningnetwork/lightning-rfc/blob/914ebab9080ccccb0ff176/03-transactions.md
https://www.usenix.org/conference/usenixsecurity19/presentation/das
https://www.usenix.org/conference/usenixsecurity19/presentation/das
https://doi.org/10.1109/BLOC.2019.8751394
https://publikationen.bibliothek.kit.edu/1000092459
https://publikationen.bibliothek.kit.edu/1000092459
https://sawtooth.hyperledger.org/docs/core/releases/latest/architecture/poet.html
https://sawtooth.hyperledger.org/docs/core/releases/latest/architecture/poet.html
http://developer.amd.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
http://developer.amd.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
http://developer.amd.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
http://arxiv.org/abs/1707.05454
http://arxiv.org/abs/1707.05454
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/matetic
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/matetic

18

17.

18.

19.

20.

21.

M. Leinweber et al.

McKeen, F., Alexandrovich, I., Berenzon, A., Rozas, C.V., Shafi, H., Shanbhogue,
V., Savagaonkar, U.R.: Innovative Instructions and Software Model for Isolated
Execution. In: Proc. of the 2nd International Workshop on Hardware and Archi-
tectural Support for Security and Privacy. HASP ’13, ACM, New York, NY, USA
(2013)

Milutinovic, M., He, W., Wu, H., Kanwal, M.: Proof of Luck: An Efficient
Blockchain Consensus Protocol. In: Proc. of the 1st Workshop on System Soft-
ware for Trusted Execution. pp. 2:1-2:6. SysTEX ’16, ACM, New York, NY, USA
(2016), |http://doi.acm.org/10.1145/3007788.3007790

Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System (2008), https://
bitcoin.org/bitcoin.pdf

Osuntokun, O.: Hardening Lightning (01 2018), talk at Blockchain Protocol Anal-
ysis and Security Engineering, 2018

Poon, J., Dryja, T.: The Bitcoin Lightning Network: Scalable Off-Chain Instant
Payments (2016), https://lightning.network /lightning-network-paper.pdf

The final publication is available at [link.springer.com.

http://doi.acm.org/10.1145/3007788.3007790
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://lightning.network/lightning-network-paper.pdf
http://dx.doi.org/10.1007/978-3-030-31500-9_11

	TEE-Based Distributed Watchtowers forFraud Protection in the Lightning Network

