
Runtime verification of parametric properties
using SMEDL?

Teng Zhang, Ramneet Kaur, Insup Lee, and Oleg Sokolsky

University of Pennsylvania, Philadelphia PA 19104, USA,
{tengz,ramneetk,lee,sokolsky}@cis.upenn.edu

Abstract. Parametric properties are typical properties to be checked
in runtime verification (RV). As a common technique for parametric
monitoring, trace slicing divides an execution trace into a set of sub
traces which are checked against non-parametric base properties. An
efficient trace slicing algorithm is implemented in MOP. Another RV
technique, QEA further allows for nested use of universal and existential
quantification over parameters. In this paper, we present a methodology
for parametric monitoring using the RV framework SMEDL. Trace slicing
algorithm in MOP can be expressed by execution of a set of SMEDL
monitors. Moreover, the semantics of nested quantifiers is encoded by a
hierarchy of monitors for aggregating verdicts of sub traces. Through case
studies, we demonstrate that SMEDL provides a natural way to monitor
parametric properties with more potentials for flexible deployment and
optimizations.

Keywords: Runtime verification · Parametric property · Trace slicing ·
SMEDL.

1 Introduction

Runtime verification (RV) is a technique for monitoring correctness of systems.
The objective of RV is to use runtime monitors to check properties against a run
of a system (referred as a target system) which can be abstracted as an event
trace from the execution or the logging information. Usually, the event stream
delivered to a monitor carries data bound to event parameters. The property
may depend not only on event order in the trace but also on parameter values
of events.

Example 1: unsafeMapIter [26]. An iterator of a collection created from a
map is not allowed to be used after the map has been updated. The property
that points out the violation of it can be described as a parametric regular ex-
pression : createC (m, c)updateM (m)

∗
createI (c, i)useI (i)

∗
updateM (m)

+
useI (i)

where createC (m, c) denotes creation of a collection c, the key set of a map m;

? This work is supported in part by the Air Force Research Laboratory (AFRL) and
Defense Advanced Research Projects Agency (DARPA) under contract FA8750-16-
C-0007 and by ONR SBIR contract N00014-15-C-0126.

2 Teng Zhang et al.

createI (c, i) is creation of iterator i from c; updateM (m) is update of m; and
useI (i) is use of i.

To monitor parametric properties, an efficient trace slicing algorithm is im-
plemented in the MOP framework [26]. A parametric event trace is sliced into
sub traces according to event parameters. Each sub trace is then checked against
a non-parametric property. The property of the whole trace is obtained by ag-
gregation of verdicts from all sub traces. QEA [4] further supports nested use of
universal or existential quantifiers over parameters.

In [33], we presented a general RV framework SMEDL. A monitoring system
in SMEDL is composed of a set of monitor instances communicating with each
other using events, forming a monitor network. Instances can be created dynam-
ically by binding monitor parameters with values. A scalable monitor network
can not only describe multiple types of properties such temporal properties and
numeric properties but also provides a flexible and intuitive way for monitor de-
ployment [32], which is vital for balancing between the overhead of monitoring
and timeliness of getting verdicts.

In this paper, we will further use SMEDL to describe and check paramet-
ric properties. We will present a transformation from MOP to SMEDL through
an example of a MOP specification. The trace slicing algorithm can be repre-
sented by execution and evolution of a monitor network. We then will present
that the semantics of nested quantifiers in QEA can be described by a hierarchy
of SMEDL monitors aggregating verdicts from sub traces. Due to its flexibil-
ity in specifying monitors and communications, SMEDL may check parametric
properties with more potentials for flexible deployment and optimizations.

The paper is organized as follows. Section 2 gives definitions of SMEDL
and introduces MOP and QEA. Section 3 presents a transformation algorithm
from MOP to SMEDL and illustrates how to check parametric properties using
SMEDL monitors. Section 4 presents how to construct SMEDL monitors to ex-
press nested quantifiers in QEA. Section 5 presents the related work and Section
6 concludes the paper and presents the future work.

2 Preliminaries

2.1 Overview of SMEDL

A SMEDL specification contains a set of monitor specifications and an archi-
tecture description that captures patterns of communication between them. The
relation between a SMEDL specification and a monitor network is illustrated in
Fig 1. During execution, each monitor can be instantiated as monitor instances
multiple times with different parameters, either statically during startup of the
target system or dynamically at runtime, in response to receiving creation events.
The event communication and creation of instances within the monitor network
is controlled by a global wrapper according to the architecture description.

Single monitor. A SMEDL monitor is a collection of scenarios. Each sce-
nario is an EFSM (Extended Finite State Machine) [33] in which the transitions

Runtime verification of parametric properties using SMEDL 3

Fig. 1. SMEDL overview

are performed by reacting to events. Scenarios interact with each other using
shared state variables or by triggering execution of other scenarios through raised
events. There are three types of events: imported, exported and internal. Im-
ported events, which are responsible for triggering the execution of a monitor,
are raised from the target system or by other monitors; exported events are
raised within the monitor and sent to other monitors; internal events are used
to trigger transitions, but are only seen and processed within the monitor. Each
transition is labeled with a triggering event and attached to a guard condition
and a list of actions to be executed after the transition. Actions on transitions
can raise events and update state variables. A monitor may have a set of typed
parameters for identification. Multiple instances are created by binding param-
eters with actual values. The detailed syntax and semantics of a monitor was
presented in [34].

Architecture description and monitor network. The architecture de-
scription defines the event communication pattern among monitors, which con-
sists of a set of monitor interfaces and event connection specifications. The in-
terface of an monitor contains the name, parameter list, imported events and
exported events of that monitor. If an imported event is labeled as a creation
event, it can be used to create a instance of that monitor. When multiple in-
stances exist, a finer control on delivery of events is desirable. For instance, we
could specify that an event raised by an instance of monitor A is sent to instances
of monitor B having the same value on the first parameter. This is achieved by
event connection specifications.

An event connection specification is a tuple (SrcMon,SrcEv ,TarMon,TarEv ,
PatternExprs), which specifies how a source event SrcEv exported from a source
monitor SrcMon is delivered to a target monitor TarMon as its imported event
TarEv. Note that SrcMon is empty if SrcEv is sent from the target system.
Each parameter of a monitor or an event corresponds to an index according to
its position in the parameter list, starting from 0. Each element of PatternExpr
is a tuple (targetIdx , source, sourceIdx), meaning that the parameter value of
TarMon with index targetIdx must be matched to the parameter value of source
with index sourceIdx. source can be either SrcMon or SrcEv.

For example, an event connection specification that describes event delivery
from e1 (x , y) of mon1 〈a〉 to e2 (x ′, y ′) of mon2 〈b, c〉 is defined as (mon1 , e1 ,mon2,

4 Teng Zhang et al.

e2, ps) where ps is {(0,mon1 , 0), (1, e1 , 0)}. Note that (x,y) is the formal param-
eter list of e1 ; a is the formal parameter of mon1 and so on. When an event
instance e1 (x1 , y1) is sent from an monitor instance mon1 (a1), only one moni-
tor instance of mon2 , mon2 (a1 , x1) receives it as e2 (x1 , y1) as ps specifies that
the first and second parameter of mon2 are respectively matched to the first
parameter of mon1 and e1. e2 is instantiated by parameters of e1.

If there is no instance of mon2 parameterized with (a1 , x1) and e2 is a
creation event for mon2, mon2 (a1 , x1) will be created. Note that if TarEv is a
creation event, corresponding PatternExprs must specify mapping relations to
all parameters of TarMon. If PatternExprs is empty, each raised SrcEv is sent
to all existing instances of TarMon.

The overall flow of event processing conducted by a monitor network is illus-
trated in Fig. 2. The global wrapper receives/outputs events from/to the environ-
ment and controls event dispatch to monitor instances and creation of instances
using the architecture description. Two shared data structures, InnerQueue and
OutputQueue are used to store events that are to be consumed within the mon-
itor network and sent to the environment. The execution of the global wrapper
begins with an event from the environment put into the InnerQueue. The global
wrapper waits for the next incoming event from the environment after all events
in the InnerQueue have been consumed and events in the OutputQueue have
been sent to the environment.

Fig. 2. Architecture of a monitor network

The pseudocode for the global wrapper is shown in Algorithm 1, parame-
terized by the architecture description. monTypeList is the list of all monitors
used for checking the property. Initially, an imported event e is sent from the
environment into InnerQueue to trigger the execution of the global wrapper.
The global wrapper pulls out the event (denoted as curE) at the frontend of
InnerQueue. curE is mapped to the event in m (denoted as ev) in matchIn-
ComingEvent by looking up the architecture description. Monitors that cannot
handle curE are filtered out before traversing monTypeList. Process consume
dispatches ev to all compatible instances of m. The set of raised events ies and

Runtime verification of parametric properties using SMEDL 5

oes are then put into the InnerQueue and OutputQueue based on whether they
are to be consumed within the monitor network. Note that all raised events carry
the parameter information of corresponding instances which have raised them.
If there is no compatible instance and ev is a creation event, an instance of m is
created from ev. After all events in the InnerQueue have been handled, events
in the OutputQueue will be sent to the environment or raised as alarms. It is
worth noting that consume is an abstract representation of monitor execution.
Moreover, we leave implementation flexibility in the algorithm. For instance, no
order is defined in monTypeList . In Section 3, we impose a specific order among
monitors in monTypeList to implement the trace slicing algorithm in MOP.

Algorithm 1 Global wrapper for parametric monitoring

1: InnerQueue ← {e},OutputQueue← {}
2: procedure globalStep(archDescription)
3: monTypeList← monitors declared in archDescription
4: while InnerQueue 6= ∅ do
5: curE ← retrieveFromQueue(InnerQueue)
6: for m ∈ filter(monTypeList , curE , archDescription) do
7: ev ← matchInComingEvent(curE ,m, archDescription)
8: (ies, oes)← consume(m, archDescription, ev)
9: enQueue(InnerQueue, ies)

10: enQueue(OutputQueue, oes)

11: sendEvents(OutputQueue)

2.2 Overview of MOP

MOP is a monitoring framework supporting description of properties by multiple
logical formalisms. In this paper, we only consider properties that are synthesized
into FSMs (Finite State Machines). One can specify different ways of reporting
verdicts and handling violations or validations of properties. A MOP monitor
Mmop〈Xmop〉 contains two parts. Xmop is the parameter set and Mmop is an
finite state machine (FSM).

MOP implements an efficient trace slicing algorithm [11] for parametric moni-
toring, which is independent of the base monitor for checking the non-parametric
property. The algorithm maintains a mapping ∆ from bindings to current states
in the base monitor. A binding is a partial function Xmop ⇁ Val from parameters
to values. Val represents the set of all possible values for Xmop. Parameters of
all parametric events are from Xmop. We denote e〈θ〉 as an event parameterized
by the binding θ.

When an event e〈θ〉 arrives, the algorithm will update states of all existing
bindings which has equal or more information than θ using e. If dom(θ1) (the
domain of θ1) is the subset of dom(θ2) and θ1(x) = θ2(x) for all x ∈ dom(θ1),
we say θ1 has equal or less information than θ2 , denoted as θ1 v θ2. If ∆(θ)

6 Teng Zhang et al.

is undefined (and e is defined as a creation event in MOP), the algorithm will
define ∆(θ) using the state updated from ∆(θ′) by e where θ′ is the largest
binding in dom(∆) that has less information than ∆(θ). New bindings can also
be created from extending existing bindings in ∆ that are compatible with θ.
Two bindings θ1 and θ2 are compatible with each other when θ1(x) is equal to
θ2(x) for all x ∈ dom(θ1)∩ dom(θ2). The combination between two bindings θ1
and θ2 is defined as follows: if θ1 and θ2 are compatible, θ1 t θ2(x) = θ1(x) if
x ∈ dom(θ1); θ1 t θ2(x) = θ2(x) if x ∈ dom(θ2); θ1 t θ2(x) is undefined if x is
undefined in θ1 and θ2. The algorithm will always extend the binding with more
information in e to generate the new binding. The detailed description for the
slicing algorithm is in [11]. The notations introduced here will be reused in the
rest of the paper.

SMEDL vs. MOP. In MOP, the mechanism for creating and updating pa-
rameter instances is controlled by the slicing algorithm which is independent
of the monitor specification. Partially instantiated monitor instances are main-
tained in the algorithm. By contrast, SMEDL realizes parametric monitoring at
the level of the semantics of monitor network. All monitor instances are created
with full instantiation. In section 3, we present a transformation from a MOP
specification to a set of SMEDL monitors connecting through events. The idea
is to analyze the structure of a parametric FSM in MOP and generate SMEDL
monitors that are to be fully instantiated by creation events. The information of
how to extend and update bindings is encoded in the single monitor specifica-
tions and the architecture description. The architecture description guarantees
that events are only sent to compatible monitor instances.

2.3 Overview of QEA

QEA (Quantified Event Automata) is a formalism for parametric monitoring. A
QEA is a pair 〈Λ,E〉 where E is an Event Automaton and Λ ∈ ({∀,∃}×vars(E)×
Guard)∗ is a list of quantifiers with guards. An Event Automaton (EA) is an
EFSM in which transitions are enriched with guard and assignments to variables;
vars(E) is the set of variable names appearing in E. In this paper, we focus on the
semantics of nested quantifiers [4, 27]. QEA also uses trace slicing to accomplish
parametric monitoring. The acceptance for a parametric property for QEA is
defined in [4], as illustrated below. In the terminology of QEA, a ground trace
contains events of which all parameters are bound to concrete values; Dom(τ)(x)
returns the derived domain for the parameter x in the trace τ ; θ1 † θ2 overrides
the value in θ1 by θ2; g(θ) is the guard condition over the quantified variable;
E(θ) is an event automaton E with its variables instantiated by θ; τ ↓E(θ) is the
projection of a trace τ over E(θ); L(E(θ)) is the set of traces accepted by E(θ).

Definition 1 (Acceptance in QEA). A QEA accepts a ground trace τ if τ
|=〈〉 Λ.E where |=θ is defined as

τ |=θ (∀x : g)Λ′.E iff ∀ d ∈ Dom(τ)(x), if g(θ†〈x → d〉) then τ |=θ†〈x→d〉
Λ′.E.

Runtime verification of parametric properties using SMEDL 7

τ |=θ (∃x : g)Λ′.E iff there exists d ∈ Dom(τ)(x), if g(θ † 〈x → d〉) then
τ |=θ†〈x→d〉 Λ

′.E.
τ |=θ ε.E iff τ ↓E(θ)∈ L(E(θ)).

Bindings are generated by inductively traversing the derived domain of each
variable in the nested quantifiers. When a full binding is created, the verdict is
retrieved from the corresponding event automaton. The aggregation of the result
is decided by which quantifier is used for a parameter variable. The interpretation
of nested quantifiers in QEA leads to one significance difference between QEA
and MOP in generating bindings: QEA records any binding that can be built
from the derived domain that has a non-empty projection. For example, if e(θ)
arrives where θ = 〈x→ x1, y → y1〉 and there is a binding θ1 = 〈y → y2, z → z1〉
(y1 6= y2), a new binding θ′ = 〈x→ x1, y → y2, z → z1〉 would be created with
e adding to its trace projection.

SMEDL vs. QEA. QEA has a uniform algorithm to handle the seman-
tics of nested quantifiers. However, if the property indicates relations between
quantified variables by events which cannot be described by the guard condition,
bindings that do not comply with the relations may be generated. In Section 4,
we will show that the semantics of nested quantifiers can be encoded through
hierarchical aggregation monitors in SMEDL. Moreover, we will demonstrate
that SMEDL can check the property involving the relation between quantified
variables by properly generating monitor instances.

3 Implementation of trace slicing in SMEDL

This section presents how to use SMEDL to implement the trace slicing algo-
rithm in MOP. Through an example, we first present a transformation from an
FSM-based MOP monitor into a set of SMEDL monitors. Then, we propose
the detailed design of the global wrapper mentioned in Section 2.1 and demon-
strate that a monitor network in SMEDL controlled by the global wrapper can
correctly monitor parametric properties.

We present a transformation from an FSM-based MOP monitor to a SMEDL
specification based on the Example 1 in Section 1. Recall that Example 1 states
a property UnsafeMapIter that an iterator of a collection must not be used af-
ter the corresponding map of that collection is updated. UnsafeMapIter has a
parameter set with three variables: map(m), collection(c) and iterator(i). The
FSM definition is illustrated in Fig 3. The shaded states are accepting states,
meaning there is no violation of the property. Note that the original FSM is
complete (which means for each event in the alphabet of the FSM, there ex-
ists at least one transition triggered by the event from all states of that FSM)
while self-looping transitions are omitted for clearer illustration. The process
of constructing a set of SMEDL monitors corresponding to UnsafeMapIter are
presented below.

Recall that when a SMEDL monitor instance is created, all its parameters
should be bound to a value. As a result, multiple monitors with different pa-
rameters are necessary. In UnsafeMapIter, there are four events, createC (m, c),

8 Teng Zhang et al.

Fig. 3. FSM definition of UnsafeMapIter

updateM (m), createI (c, i) and useI (i). All possible combinations of parameter
variables include 〈m〉, 〈i〉, 〈m, c〉, 〈c, i〉, 〈m, i〉 and 〈m, c, i〉. Generally, a SMEDL
monitor should be created for each combination. However, since createC (m, c)
is the only event that can start a trace [26], only two bindings 〈m, c〉 and 〈m, c, i〉
will be generated and maintained in MOP. Two SMEDL monitors, mc〈m, c〉 and
mci〈m, c, i〉 are to be constructed.

The specifications of mc and mci are illustrated in Fig 4. mc is responsible
for storing all seen value pairs of (m,c) carried by createC. When mc receives
createI (c, i), createM2 (i) is raised to trigger creation of a new instance of mci
carrying the value of (m,c,i). Note that createM2 (i) only carries i because mci
knows which instance of mc has raised it. mci then checks whether useI (i)
happens after updateM (m).

To construct SMEDL monitors from an FSM specification, the first step
is to map states in the FSM into states in the SMEDL specifications. In Un-
safeMapIter, m and c are bound in state 2 while i is further bound in state 3, 4
and 5. As a result, we map state 2 into mc and state 3, 4 and 5 into mci. In the
rest of the paper, we assume that corresponding states between the FSM and
the SMEDL specifications have the same name.

Then, the transitions in the FSM are mapped into SMEDL monitors. If the
source and target state of a transition in the FSM carry the same parameter
information, then it can be directly mapped to the corresponding SMEDL spec-
ification. For instance, transition 8 and 9 in mci are mapped from transition 3
and 4 in the FSM definition. If a transition tr : s1 → s2 by an event e has the
source and target state with different parameter information θ1 and θ2, there are
two cases. If θ1 is empty, a transition from the initial state s to s2 is generated
in the SMEDL monitor m〈θ2〉. For instance, transition 5 in mc is mapped from
transition 1 in the FSM. If θ1 is not empty, two transitions are generated. One is
in m〈θ1〉 from s1 to s1 triggered by e with raising an event re. Another one is in
m′〈θ2〉 from the initial state s to s2, triggered by re. For instance, transition 6
in mc and transition 7 mci are generated from transition 2 in the FSM. Omitted
transitions in the FSM are also mapped to mc and mci in the same way. We
could also further optimize mc and mci by removing unnecessary transitions.
For instance, mc does not need to receive useI or updateM while mci does not
need to receive createI and createC.

Finally, the communication is specified in the architecture description. The
communication betweenmc andmci is specified as: 〈mc, createM2,mci, createM2

Runtime verification of parametric properties using SMEDL 9

, ps〉 where ps is {〈0,mc, 0〉, 〈1,mc, 1〉, 〈2, createM2 , 0〉}. Note that the two cre-
ateM2 in the architecture description represent the exported event of mc and
the imported event of mci and ps specifies that m and c of mci are from the
first and second parameter of mc while i is from the first parameter of cre-
ateM2. The communication between mc and the environment is defined as: 1)
〈null, createC,mc, createC, ps1 〉 where ps1 is {〈0, createC, 0〉, 〈1, createC, 1〉}; 2)
〈null, createI,mc, createI, {〈1 ,createI , 0 〉}〉, respectively specifying how createC
and createI are sent to mc.

Fig. 4. SMEDL definition of UnsafeMapIter

The monitor design and connection specified in the architecture description
statically describe how bindings are created or extended by other bindings. To
fully implement the trace slicing algorithm, we need to impose an order to ele-
ments in monTypeList in Algorithm 1 according to the relation v over monitor
parameters: if θ2 v θ1, m〈θ1〉 is placed before m′〈θ2〉 in monTypeList. Note that
no two monitors in monTypeList will have identical parameter list. A monitor
with more parameter information (which means in the front of monTypeList)
will be executed before the one with less parameter information. Corresponding
raised events will also be placed in the InnerQueue following this order. This
ensures that an instance will be created by the creation event carrying the most
parameter information, complying with the slicing algorithm that always creates
a new binding by extending the most informative binding if possible.

We use an event trace τ : updateM〈m1〉, createC〈m1, c1〉, createC〈m2, c2〉,
createI〈c1, i1〉, useI〈i1〉 [26] to illustrate the execution of the global wrapper.
The state evolution of mc and mci is given in Table 1. Since updateM is not
the creation event of mc or mci, no instance is created. When createC〈m1, c1〉
and createC〈m2, c2〉 arrive, two instances of mc are created and transitioned to
state 2. createI〈c1, i1〉 triggers the creation of mci〈m1, c1, i1〉 by sending cre-
ateM2 (i1) to mci. mci〈m1, c1, i1〉 is in state 3 after creation. useI〈i1〉 is sent to
mci〈m1, c1, i1〉 and a self-looping transition is executed. It is worth noting that
no instance of mci〈m2, c2, i1〉 is created. This indicates that SMEDL can not
only implement the trace slicing but provide a flexible way for optimization.

In the more general case, one monitor may have more than one creation
event and a subset of them may be raised reacting to an incoming event. We
modify the property UnsafeMapIter, changing the parameters of createI to
〈m, c, i〉 and trying to catching the illegal behavior that createI arrives before

10 Teng Zhang et al.

Table 1. State update of SMEDL monitors given τ

updateM(m1) createC(m1,c1) createC(m2,c2) createI(c1,i1) useI(i1)

∅ mc〈m1, c1〉:2
mc〈m1, c1〉:2
mc〈m2, c2〉:2

mc〈m1, c1〉:2
mc〈m2, c2〉:2
mci〈m1, c1, i1〉:3

mc〈m1, c1〉:2
mc〈m2, c2〉:2
mci〈m1, c1, i1〉:3

createC. The SMEDL specification is illustrated in Fig. 5(a). Suppose a setting
in which there is an instance mc〈m1, c1〉 and no instance mci〈m1, c1, i1〉. When
createI〈m1, c1, i1〉 is sent to mc and mci, it will first trigger the execution of mci
before mc because it has more parameter information than mc, as presented be-
low. As a result, a new instance mci〈m1, c1, i1〉 is created and transitioned to
state 5. However, it is not consistent with the semantics of the slicing algo-
rithm, which would create mci〈m1, c1, i1〉 by createM2 raised from mc〈m1, c1〉
by createI〈m1, c1, i1〉. To achieve the desired result, the SMEDL specification
is modified as shown in Fig. 5(b), which removes createI as a creation event of
mci. Instead, createI is a creation event of mc, corresponding to transition 11.
This modification guarantees that an instance of mci can always be created by
the correct event.

Fig. 5. Modification of SMEDL definition of UnsafeMapIter

We test the SMEDL specification in Fig. 5(b) using two traces τ1 : createI〈m1,
c1, i1〉 and τ2 : createC〈m1, c1〉, createI〈m1, c1, i1〉. For τ1,mc〈m1, c1〉 andmci〈m1

, c1, i1〉 are created in state s and state 5. For τ2, mc〈m1, c1〉 and mci〈m1, c1, i1〉
are in state 2 and state 3.

Runtime verification of parametric properties using SMEDL 11

4 Expressing quantifiers in SMEDL

This section further explores expressing parametric properties with nested quan-
tifiers introduced in QEA. We first propose a methodology to implement aggre-
gation using a SMEDL monitor network through Example 2 below. Then we use
a modified version of Example 2 to illustrate the flexibility of SMEDL to imple-
ment aggregation when the relation between parameters needs to be considered.
The SMEDL specifications for Example 2 (also Example 4 below) are available
online1.

Example 2: candidateSelection [4]. For every voter there must exist a party
that the voter is a member of, and the voter must rank all candidates for that
party. The QEA specification is shown in Fig 6, which contains two parts, the
declaration of nested quantifiers and an event automaton (EA). There are three
quantified variables, v(voter), c(candidate) and p(party) and three parametric
events member, candidate and rank. The third parameter r of rank is an un-
quantified variable. The shaded circles in the EA represent accepting states.
Self-looping transitions are omitted. To simplify the presentation, we impose a
restriction on event order of traces: all candidate events always happen after all
member events and all rank events happen after all candidate events.

Fig. 6. QEA specification for candidate selection

The EA is transformed into a set of SMEDL monitors using the same process
proposed in Section 3, as illustrated in Fig 7. When fed with event trace τ3 :
member(tom, red),member(ali, blue), candidate(jim, red), candidate(flo,red),
candidate(don, blue), rank(tom, jim, 1), rank(ali, don, 1), corresponding state evo-
lution for the monitor network is shown in Table 2. Compared with bindings
generated by execution of QEA in [4], fewer instances are generated. For exam-
ple, there is a binding 〈v : a, p : r, c : j〉 : candidate(j, r) in QEA (all values are
abbreviated to the initial alphabet) but not in SMEDL. This binding does not
influence the verdict of the property for τ3 because ali is not a member of red
and the property only requires the existence of a party.

The architecture is illustrated in Fig 8. The high level idea is to use a hier-
archy of aggregation monitors to implement the semantics of nested quantifiers.

1 https://github.com/tengz2019/parametricSMEDL

12 Teng Zhang et al.

Fig. 7. SMEDL monitors for candidate selection

Table 2. State update of SMEDL monitors given τ3

member(t,r) member(a,b) candidate(j,r) candidate(f,r) candidate(d,b) rank(t,j,1) rank(a,d,1)

mvp〈t, r〉:2 mvp〈t, r〉:2
mvp〈a, b〉:2

mvp〈t, r〉:2
mvp〈a, b〉:2
mvcp〈t, j, r〉:3

mvp〈t, r〉:2
mvp〈a, b〉:2
mvcp〈t, j, r〉:3
mvcp〈t, f, r〉:3

mvp〈t, r〉:2
mvp〈a, b〉:2
mvcp〈t, j, r〉:3
mvcp〈t, f, r〉:3
mvcp〈a, d, b〉:3

mvp〈t, r〉:2
mvp〈a, b〉:2
mvcp〈t, j, r〉:4
mvcp〈t, f, r〉:3
mvcp〈a, d, b〉:3

mvp〈t, r〉:2
mvp〈a, b〉:2
mvcp〈t, j, r〉:4
mvcp〈t, f, r〉:3
mvcp〈a, d, b〉:4

For each quantified variable, an aggregation monitor is constructed which re-
ceives checking results from other monitor instances and aggregates them using
logical operations such as conjunction or disjunction. Each mvcp〈v, c, p〉 instance
checks whether the voter v belonging to the party p has ranked the candidate
c in the trace and sends the result in resultVCP to collectC . Moreover, when a
new instance of mvcp is created, a countC event is raised and sent to collectC .
collectC 〈v , p〉 is the conjunction of all verdicts from instances of mvcp matching
v and p to check whether all candidates of p have been ranked by v. By calcu-
lating disjunction on all verdicts from collectC matching v, collectP 〈v〉 further
checks whether there exists a party to which v belongs that all candidates of p
have been ranked by v. Finally, collectV 〈〉 is the conjunction of verdicts collected
from all instances of collectP to compute the verdict for the property. Event end
is used to trigger outputting verdicts from mvcp. It is also sent to collectV in
case the trace is empty. From mvcp to collectP , each monitor sends two types of
events to its downstream neighbor. One type is to count number of instances of
the upstream monitor while another type carries the verdict for each instance.
In this way, the downstream monitor knows whether it has already received all
verdicts from its upstream monitor.

To justify the correctness of the structure above, we need to prove that 1) the
generatedmvcp instances are sufficient to check the property and 2) the structure
of aggregation monitors correctly implement the semantics of nested quantifiers.
For 1), instances of mvcp only contains all tuples of 〈v, c, p〉 satisfying the relation
that v is a member of p and c is a candidate of p, which is sufficient for checking

Runtime verification of parametric properties using SMEDL 13

Fig. 8. Architecture for candidate selection

the property. For 2), collectC guarantees that given a voter and a party, the
verdicts for all candidates belonging to the party are aggregated by conjunction,
complying with the semantics of ∀c. Similarly, we could justify that collectP
implements ∃c. For each voter, if there exist candidates for a party to which the
voter belongs, collectV collects the verdict from the corresponding collectP . If
all parties to which the voter belongs do not have candidate, collectV does not
need to check that voter because no instance of mvcp is instantiated with the
voter and mvp only contains accepting states. As a result, collectV implements
∀v by conjunction over verdicts from all collectP . As mentioned above, fewer
bindings are generated by SMEDL monitors than QEA, which illustrates that
SMEDL has good efficiency in memory use.

Furthermore, by using the hierarchy structure, SMEDL can implement the
semantics of nested quantifiers where quantified variables are related to each
other using events. Two properties modified from candidateSelection are given
below.

Example 3. For each voter and for each party that the voter is a member of,
the voter must rank all candidates for that party.

Example 4. Each voter must belong to each party and he/she must rank all
candidates for that party.

The same architecture illustrated in Fig. 8 can be used to monitor Example
3, except that collectP is a conjunction over verdicts from collectC instead of
disjunction. Example 4 is different from Example 3 in the sense that the monitor
needs to check whether each voter is bound with all parties appearing in the
trace. The architecture for monitors checking Example 4 is shown in Fig. 9.
countPFront〈p〉 and countP〈〉 work together to count the domain of the party in
the trace and send it to collectPUniv〈v〉 (conjunction version of collectP) to check
whether v is the member of all parties. collectC is created using createVP because
the monitor needs to check whether member is received for all parties given each
voter. Moreover, end triggers the output of countP , which triggers collectC to

14 Teng Zhang et al.

send the verdict to collectPUniv . This order ensures that collectPUniv can get
the number of parties before receiving verdicts from collectC .

Recall that the binding 〈v : a, p : r, c : j〉 : candidate(j, r) is generated in
τ3 for the original QEA specification. This would lead to violation of Example
3 even if the voter ali does not belong to red. To monitor it using QEA, apart
from changing existential quantifier to universal one for p, we also need to add
restriction to p in the guard condition or modify EA by setting state 1 as an
accepting state.

Through examples presented above, we demonstrate that SMEDL is capable
of describing and checking parametric properties with nested quantifiers while
generating fewer bindings. Moreover, the hierarchy of aggregation monitors is
flexible to describe relation between quantified variables. As a future work, we
will propose a general process to generate aggregation monitors for parametric
properties.

Fig. 9. Modification of architecture for candidate selection

5 Related work

Apart from MOP and QEA, there have been a considerable number of studies
about handling data in RV. In [1], Allan et al. present Tracematches in As-
pectJ [24] to support event matching with values of parameters. RV-monitor [25]
and Movec [12] use the trace slicing algorithm proposed in [11] to support para-
metric monitoring. In [3], Ballarin presents a generalization of the slicing algo-
rithm in [11] to support slicing with patterns and constraints. Larva [14] and
its derived tool polyLarva [13] and Valour [2] support parametric monitoring
by dynamic creation of monitor instances. But all parameters are quantified by
universal quantifier.

Several formalisms of temporal logic have been proposed for parametric mon-
itoring such as JLO [30], LTL-FO+ [20], LTLFO [10], MFOTL [9], Monitor Mod-

Runtime verification of parametric properties using SMEDL 15

ulo Theories [16]. Rule-based RV technique is expressive to support data param-
eterization [5, 8], from which a lot of tools and techniques have been derived such
as LogScope [6], TraceContract [7], LogFire [22] and data automata [21]. There
are also more research on exploring the relation between specification techniques
for parametric monitoring. In [28] Reger et al. present a subset of syntactic frag-
ments in first-order temporal logic that are sliceable and transform them into
automata for slicing. In [29], a transformation from QEA to rule-based system
is presented and differences between these two techniques with respect to para-
metric monitoring are highlighted.

In [18], Goubault-Larrecq and Olivain present Orchids, an intrusion detection
tool. Monitors can by dynamically spawned reacting to possible beginnings of
attacks. In [19], TOPL automata is presented based on register automata [23]
for runtime verification of systems with unbounded resource generation. The key
features of TOPL automata are use of registers and non-determinism. In [31],
Yamagata et al. present a formalism CSPE for monitoring concurrent systems.
Parametric properties are expressed by recursive parametric processes. Lola [15]
is a stream-based language for monitoring of synchronous systems. In [17], Lola
2.0 is presented for complex security properties. Parameterized stream templates
and dynamic stream generation are added to the language to better support
parametric monitoring.

6 Discussion and conclusion

In this paper, we compared the approach to parametric monitoring adopted in
SMEDL with well established frameworks of MOP and QEA. Through a trans-
formation from MOP and QEA-inspired specification to SMEDL, we showed how
SMEDL can reproduce monitoring behavior of these frameworks. In addition,
SMEDL does not encode quantifiers in its semantics but rather implements them
as additional aggregator monitors. We note that the size of monitoring speci-
fications in SMEDL can grow as we avoid partial instantiations with multiple
monitors. We believe that we can resort to monitor templates and automatic
transformation to compensate for the increased specification size. In our future
work we will study whether this affects the usability of our approach. Also note
that communication between monitors is necessary in our approach, which may
affect the efficiency of monitoring. At the same time, communicating monitors
allow us to exploit the structure of the problem through distributed deployment
of monitors, improving efficiency when monitoring large-scale systems. Carefully
exploring this balance is also the subject of future work.

We are formalizing the transformation algorithm from MOP and QEA to
SMEDL with correctness proof. We will also formally compare the expressiveness
and parametric monitoring algorithm between SMEDL and MOP, QEA and
other techniques. A preliminary prototype of the method presented in this paper
has been completed. However, the work to implement the tools necessary to
automatically generate and deploy the monitors is still in progress.

16 Teng Zhang et al.

References

1. Allan, C., Avgustinov, P., Christensen, A.S., Hendren, L., Kuzins, S., Lhoták, O.,
De Moor, O., Sereni, D., Sittampalam, G., Tibble, J.: Adding trace matching with
free variables to AspectJ. In: ACM SIGPLAN Notices. vol. 40, pp. 345–364. ACM
(2005)

2. Azzopardi, S., Colombo, C., Ebejer, J.P., Mallia, E., Pace, G.J.: Runtime verifica-
tion using valour (2017)

3. Ballarin, C.: Two generalisations of roşu and chens trace slicing algorithm a. In:
International Conference on Runtime Verification. pp. 15–30. Springer (2014)

4. Barringer, H., Falcone, Y., Havelund, K., Reger, G., Rydeheard, D.: Quantified
event automata: Towards expressive and efficient runtime monitors. In: Interna-
tional Symposium on Formal Methods. pp. 68–84. Springer (2012)

5. Barringer, H., Goldberg, A., Havelund, K., Sen, K.: Rule-based runtime verifica-
tion. In: International Conference on Verification, Model Checking, and Abstract
Interpretation. pp. 44–57. Springer (2004)

6. Barringer, H., Groce, A., Havelund, K., Smith, M.: Formal analysis of log files.
Journal of aerospace computing, information, and communication 7(11), 365–390
(2010)

7. Barringer, H., Havelund, K.: Tracecontract: A scala dsl for trace analysis. In: In-
ternational Symposium on Formal Methods. pp. 57–72. Springer (2011)

8. Barringer, H., Rydeheard, D., Havelund, K.: Rule systems for run-time monitoring:
from Eagle to RuleR. Journal of Logic and Computation 20(3), 675–706 (2010)

9. Basin, D., Klaedtke, F., Müller, S., Zălinescu, E.: Monitoring metric first-order
temporal properties. Journal of the ACM (JACM) 62(2), 15 (2015)

10. Bauer, A., Küster, J.C., Vegliach, G.: From propositional to first-order monitoring.
In: International Conference on Runtime Verification. pp. 59–75. Springer (2013)

11. Chen, F., Roşu, G.: Parametric trace slicing and monitoring. In: International
Conference on Tools and Algorithms for the Construction and Analysis of Systems.
pp. 246–261. Springer (2009)

12. Chen, Z., Wang, Z., Zhu, Y., Xi, H., Yang, Z.: Parametric runtime verification of c
programs. In: International Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems. pp. 299–315. Springer (2016)

13. Colombo, C., Francalanza, A., Mizzi, R., Pace, G.J.: polylarva: runtime verifi-
cation with configurable resource-aware monitoring boundaries. In: International
Conference on Software Engineering and Formal Methods. pp. 218–232. Springer
(2012)

14. Colombo, C., Pace, G.J., Schneider, G.: Dynamic event-based runtime monitor-
ing of real-time and contextual properties. In: International Workshop on Formal
Methods for Industrial Critical Systems. pp. 135–149. Springer (2008)

15. d’Angelo, B., Sankaranarayanan, S., Sánchez, C., Robinson, W., Finkbeiner, B.,
Sipma, H.B., Mehrotra, S., Manna, Z.: Lola: Runtime monitoring of synchronous
systems. In: Temporal Representation and Reasoning, 2005. TIME 2005. 12th In-
ternational Symposium on. pp. 166–174. IEEE (2005)

16. Decker, N., Leucker, M., Thoma, D.: Monitoring modulo theories. International
Journal on Software Tools for Technology Transfer 18(2), 205–225 (2016)

17. Faymonville, P., Finkbeiner, B., Schirmer, S., Torfah, H.: A stream-based specifi-
cation language for network monitoring. In: International Conference on Runtime
Verification. pp. 152–168. Springer (2016)

Runtime verification of parametric properties using SMEDL 17

18. Goubault-Larrecq, J., Olivain, J.: A smell of orchids. In: International Workshop
on Runtime Verification. pp. 1–20. Springer (2008)

19. Grigore, R., Distefano, D., Petersen, R.L., Tzevelekos, N.: Runtime verification
based on register automata. In: International Conference on Tools and Algorithms
for the Construction and Analysis of Systems. pp. 260–276. Springer (2013)

20. Hallé, S., Villemaire, R.: Runtime enforcement of web service message contracts
with data. IEEE Transactions on Services Computing 5(2), 192–206 (2012)

21. Havelund, K.: Monitoring with data automata. In: International Symposium On
Leveraging Applications of Formal Methods, Verification and Validation. pp. 254–
273. Springer (2014)

22. Havelund, K.: Rule-based runtime verification revisited. International Journal on
Software Tools for Technology Transfer 17(2), 143–170 (2015)

23. Kaminski, M., Francez, N.: Finite-memory automata. Theoretical Computer Sci-
ence 134(2), 329–363 (1994)

24. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An
overview of AspectJ. In: European Conference on Object-Oriented Programming.
pp. 327–354. Springer (2001)

25. Luo, Q., Zhang, Y., Lee, C., Jin, D., Meredith, P.O., Şerbănuţă, T.F., Roşu, G.: Rv-
monitor: Efficient parametric runtime verification with simultaneous properties. In:
International Conference on Runtime Verification. pp. 285–300. Springer (2014)

26. Meredith, P.O., Jin, D., Griffith, D., Chen, F., Roşu, G.: An overview of the MOP
runtime verification framework. International Journal on Software Tools for Tech-
nology Transfer 14(3), 249–289 (2012)

27. Reger, G.: Automata based monitoring and mining of execution traces. Ph.D.
thesis, University of Manchester (2014)

28. Reger, G., Rydeheard, D.: From first-order temporal logic to parametric trace
slicing. In: Runtime Verification. pp. 216–232. Springer (2015)

29. Reger, G., Rydeheard, D.: From parametric trace slicing to rule systems. In: In-
ternational Conference on Runtime Verification. pp. 334–352. Springer (2018)

30. Stolz, V., Bodden, E.: Temporal assertions using AspectJ. Electronic Notes in
Theoretical Computer Science 144(4), 109–124 (2006)

31. Yamagata, Y., Artho, C., Hagiya, M., Inoue, J., Ma, L., Tanabe, Y., Yamamoto,
M.: Runtime monitoring for concurrent systems. In: International Conference on
Runtime Verification. pp. 386–403. Springer (2016)

32. Zhang, T., Eakman, G., Lee, I., Sokolsky, O.: Flexible monitor deployment for run-
time verification of large scale software. In: International Symposium on Leveraging
Applications of Formal Methods. pp. 42–50. Springer (2018)

33. Zhang, T., Gebhard, P., Sokolsky, O.: SMEDL: Combining synchronous and asyn-
chronous monitoring. In: International Conference on Runtime Verification. pp.
482–490. Springer (2016)

34. Zhang, T., Wiegley, J., Giannakopoulos, T., Eakman, G., Pit-Claudel, C., Lee, I.,
Sokolsky, O.: Correct-by-construction implementation of runtime monitors using
stepwise refinement. In: International Symposium on Dependable Software Engi-
neering: Theories, Tools, and Applications. pp. 31–49. Springer (2018)

