
ar
X

iv
:1

90
8.

09
03

2v
4

 [
cs

.C
R

]
 2

1
A

ug
 2

02
0

Bi-Homomorphic Lattice-Based PRFs

and Unidirectional Updatable Encryption⋆

Vipin Singh Sehrawat1, Yvo Desmedt1,2

1 Department of Computer Science, The University of Texas at Dallas, USA
2 Department of Computer Science, University College London, UK

Abstract. We define a pseudorandom function (PRF) F : K × X → Y to be bi-homomorphic

when it is fully Key homomorphic and partially Input Homomorphic (KIH), i.e., given F (k1, x1)

and F (k2, x2), there is an efficient algorithm to compute F (k1 ⊕ k2, x1 ⊖ x2), where ⊕ and ⊖
are (binary) group operations. The homomorphism on the input is restricted to a fixed subset

of the input bits, i.e., ⊖ operates on some pre-decided m-out-of-n bits, where |x1| = |x2| = n,

and the remaining n −m bits are identical in both inputs. In addition, the output length, ℓ, of

the operator ⊖ is not fixed and is defined as n ≤ ℓ ≤ 2n, hence leading to Homomorphically

induced Variable input Length (HVL) as n ≤ |x1 ⊖ x2| ≤ 2n. We present a learning with errors

(LWE) based construction for a HVL-KIH-PRF family. Our construction is inspired by the key

homomorphic PRF construction due to Banerjee and Peikert (Crypto 2014).

An updatable encryption scheme allows rotations of the encryption key, i.e., moving existing

ciphertexts from old to new key. These updates are carried out via update tokens, which can

be used by an untrusted party since the update procedure does not involve decryption of the

ciphertext. We use our novel PRF family to construct an updatable encryption scheme, named

QPC-UE-UU, which is quantum-safe, post-compromise secure and supports unidirectional ci-

phertext updates, i.e., the update tokens can be used to perform ciphertext updates but they

cannot be used to undo already completed updates. Our PRF family also leads to the first

left/right key homomorphic constrained-PRF family with HVL.

Keywords: Bi-Homomorphic PRF, Constrained-PRF, LWE, LWR, Updatable Encryption, Uni-

directional Updates, Post-Compromise Security.

1 Introduction

In a PRF family [26], each function is specified by a short, random key, and can be easily computed given

the key. Yet the function behaves like a random one, in the sense that if you are not given the key, and are

⋆ This is the full version of the paper that appears in Y. Mu et al. (Eds.): CANS 2019, LNCS 11829, pp. 1–21. DOI: 10.1007/978-

3-030-31578-8_1 [53].

http://arxiv.org/abs/1908.09032v4

2 V. S. Sehrawat and Y. Desmedt

computationally bounded, then the input-output behavior of the function looks like that of a random func-

tion. Since their introduction, PRFs have been one of the most fundamental building blocks in cryptography.

For a PRF Fs, the index s is called its key or seed. Many variants of PRFs with additional properties have

been introduced and have found a plethora of applications in cryptography.

Key Homomorphic (KH) PRFs: A PRF family F is KH-PRF if the set of keys has a group structure

and if there is an efficient algorithm that, given Fs(x) and Ft(x), outputs Fs+t(x) [44]. Multiple KH-PRF

constructions have been proposed via varying approaches [44, 13, 7, 46]. These functions have many applica-

tions in cryptography, such as, symmetric-key proxy re-encryption, updatable encryption, and securing PRFs

against related-key attacks [13]. But, lack of input homomorphism limits the privacy preserving applications

of KH-PRFs. For instance, while designing solutions for searchable symmetric encryption [21], it is highly

desirable to hide the search patterns, which can be achieved by issuing random queries for each search. But,

this feature cannot be supported if the search index is built by using a KH-PRF family, since it would require

identical query (i.e., function input) in order to perform the same search.

Constrained PRFs (CPRFs): Constrained PRFs (also called delegatable PRFs) are another extension of

PRFs. They enable a proxy to evaluate a PRF on a strict subset of its domain using a trapdoor derived from

the CPRF secret key. A trapdoor is constructed with respect to a certain policy predicate that determines

the subset of the input values for which the proxy is allowed to evaluate the PRF. Introduced independently

by Kiayias et al. [35], Boneh et al. [14] and Boyle et al. [15] (termed functional PRFs), CPRFs have multiple

interesting applications, including broadcast encryption, identify-based key exchange, batch query support-

ing searchable symmetric encryption and RFID. Banerjee et al. [6], and Brakerski and Vaikuntanathan [18]

independently introduced KH-CPRFs.

Variable Input Length (VIL) PRFs: VIL-PRFs [9] serve an important role in constructing variable

length block ciphers [10] and authentication codes [9], and are employed in prevalent protocols like Internet

Key Exchange (IKEv2). No known CPRF or KH-CPRF construction supports variable input length.

Updatable Encryption (UE): In data storage, key rotation refers to the process of (periodically) exchang-

ing the cryptographic key material that is used to protect the data. Key rotation is a desirable feature for

cloud storage providers as it can be used to revoke old keys, that might have been comprised, or to enforce

data access revocation. All major cloud storage providers (eg. Amazon’s Key Management Service [4], Google

Cloud Platform [28]) implement some variants of data-at-rest encryption and hybrid encryption techniques

to perform key rotation [23], which although efficient, do not support full key rotation as the procedures are

designed to only update the key encapsulation but not the long-term key. Symmetric updatable encryption,

introduced by Boneh et al. [13] (BLMR henceforth), supports full key rotation without performing decryp-

tion, i.e., the ciphertexts created under one key can be securely updated to ciphertexts generated via another

key, with the help of a re-encryption/update token.

Bi-Homomorphic Lattice-Based PRFs and Unidirectional Updatable Encryption 3

Everspaugh et al. [23] pointed out that the UE scheme from BLMR addresses relatively weak confiden-

tiality goals and does not even consider integrity. They proposed a new security notion, named re-encryption

indistinguishability, to better capture the idea of fully refreshing the keys upon rotation. They also presented

an authenticated encryption based UE scheme, that satisfies the requirements of their new security model.

Recently, Lehmann and Tackmann [38] observed that the previous security models/definitions (from BLMR

and Everspaugh et al.) do not capture post-compromise security, i.e., the security guarantees after a key

compromise. They also proved that neither of the two schemes is post-compromise secure under adaptive

attacks. In the same paper, they presented the first UE scheme with post-compromise security. However, the

security of that scheme is based on the Decisional Diffie Hellman (DDH) assumption, rendering it vulnerable

to quantum computers [55]. It is important to note that all existing UE schemes only support bidirectional

updates, i.e., the update token used to refresh the ciphertext for the current epoch can also be used to re-

vert back to the previous epoch’s ciphertext. Naturally, this is an undesirable feature. Hence, unidirectional

updates [38], where the update tokens cannot be used to undo the ciphertext updates, is a highly desirable

feature for UE schemes. But as mentioned earlier, no existing UE scheme achieves unidirectional updates.

1.1 Our Contributions

Our contributions can be classified into the following two broad classes.

1. Novel PRF Classes and Constructions. We introduce fully Key homomorphic and partially Input

Homomorphic (KIH) PRFs with Homomorphically induced Variable input Length (HVL). A PRF, F ,

from such function family satisfies the condition that given Fk1
(x1) and Fk2

(x2), there exists an efficient

algorithm to compute Fk1⊕k2
(x1⊖x2), where |x1⊖x2| ≥ |x1| (= |x2|) and the input homomorphism effects

only some fixed m-out-of-n bits. We present a Learning with Errors (LWE) [51] based construction for such

a PRF family. Our construction is inspired by the KH-PRF construction from Banerjee and Peikert [7].

A restricted case of our PRF family leads to another novel PRF class, namely left/right KH-CPRF with

HVL.

2. Quantum-Safe Post-Compromise Secure UE Scheme with Unidirectional Updates. We use

our HVL-KIH-PRF family to construct the first quantum-safe, post-compromise secure updatable en-

cryption scheme with unidirectional updates. We know that the KH-PRF based UE scheme from BLMR

is not post-compromise secure because it never updates the nonce [38]. Since our HVL-KIH-PRF family

supports input homomorphism, in addition to key homomorphism, it allows updates to the nonce (i.e.,

the PRF input). Hence, we turn the BLMR UE scheme post-compromise secure by replacing their KH-

PRF by our HVL-KIH-PRF, and introducing randomly sampled nonces for the cihpertext updates. The

bi-homomorphism of our PRF family also allows us to enforce unidirectional updates. Since our PRF

construction is based on the learning with errors (LWE) problem [51], our UE scheme is also quantum-safe.

4 V. S. Sehrawat and Y. Desmedt

1.2 Organization

Section 2 recalls the necessary background for the rest of the paper. Section 3 introduces and defines KIH-

PRF, HVL-KIH-PRF and HVL-KH-CPRF. In Section 4, we present a LWE-based construction for a HVL-

KIH-PRF family, provide its proof of correctness and discuss the different types of input homomorphisms

that it supports. Section 5 gives the security proof for our HVL-KIH-PRF construction, while Section 6

analyzes its time complexity. Section 7 presents the construction of left/right HVL-KH-CPRF, that follows

from a restricted case of our HVL-KIH-PRF family. In Section 8, we use of our HVL-KIH-PRF family to

construct the first quantum-safe, post-compromise secure updatable encryption scheme with unidirectional

updates. Section 9 discusses an interesting open problem, solving which would lead to a novel, search pattern

hiding searchable encryption scheme. Section 10 gives the conclusion.

2 Background

This section recalls the necessary definitions required for the rest of the paper.

Definition 1 (Negligible Function). For security parameter ω, a function ǫ(ω) is called negligible if for

all c > 0 there exists a ω0 such that ǫ(ω) < 1/ωc for all ω > ω0.

2.1 Learning with Errors

The learning with errors (LWE) problem requires to recover a secret s given a sequence of ‘approximate’

random linear equations on it. LWE is known to be hard based on certain assumptions regarding the worst-

case hardness of standard lattice problems such as GapSVP (decision version of the Shortest Vector Problem)

and SIVP (Shortest Independent Vectors Problem) [51, 47]. Many cryptosystems have been constructed

whose security can be proven under the LWE problem, including (identity-based, leakage-resilient, fully

homomorphic, functional) encryption [51, 24, 2, 42, 1, 17, 27], oblivious transfer [49], (blind) signatures [24,

40, 52, 41], PRFs [8], KH-PRFs [13, 7], KH-CPRFs [6, 18], hash functions [34, 48], etc.

Definition 2 (Decision-LWE [51]). For positive integers n and q ≥ 2, and an error (probability) distri-

bution χ = χ(n) over Zq, the decision-LWEn,q,χ problem is to distinguish between the following pairs of

distributions:

(A, AT s + e) and (A, u),

where m = poly(n), A
$←− Z

n×m
q , s

$←− Z
n
q , e

$←− χm, and u
$←− Z

m
q .

Definition 3 (Search-LWE [51]). For positive integers n and q ≥ 2, and an error (probability) distribution

χ = χ(n) over Zq, the search-LWEn,q,χ problem is to recover s ∈ Z
n
q , given m(= poly(n)) independent samples

of (A, AT s + e), where A
$←− Z

n×m
q , s

$←− Z
n
q , and e

$←− χm.

Bi-Homomorphic Lattice-Based PRFs and Unidirectional Updatable Encryption 5

Regev [51] showed that for a certain noise distribution χ and a sufficiently large q, the LWE problem is as

hard as the worst-case SIVP (Shortest Independent Vectors Problem) and GapSVP (decision version of the

Shortest Vector Problem) under a quantum reduction (see also [47, 16]). These results have been extended

to show that s can be sampled from a low norm distribution (in particular, from the noise distribution χ)

and the resulting problem is as hard as the basic LWE problem [5]. Similarly, the noise distribution χ can be

a simple low-norm distribution [43]. Note that the seed and error vectors in the definitions can be replaced

by matrices of appropriate dimensions, that are sampled from the same distributions as the vectors. Such

interchange does not affect the hardness of LWE [50].

2.2 Learning with Rounding

Based on a conjectured hard-to-learn function, Naor and Reingold [45] proposed synthesizers as a foundation

to construct PRFs. At first glance, using LWE as the hard learning problem looks a valid option but Naor

and Reingold’s synthesizer requires a deterministic hard-to-learn function, whereas LWE’s hardness depends

the random, independent errors that are deliberately added to every output. In fact, without any error, LWE

becomes trivially easy to learn. So, the main obstacle in constructing efficient lattice/LWE-based PRFs was

finding a way to introduce (sufficiently independent) error terms into each of the exponentially many function

outputs, while still keeping the function deterministic.

Banerjee et al. [8] introduced the LWR problem, in which instead of adding a small random error as done

in LWE, a deterministically rounded version of the sample is released. In particular, for some p < q, the

elements of Zq are divided into p contiguous intervals of roughly q/p elements each. The rounding function

is defined as: ⌊·⌉p : Zq → Zp, that maps x ∈ Zq into the index of the interval that x belongs to. Note that

the error is introduced only when q > p, with “absolute” error being roughly equal to q/p, resulting in the

“error rate” (relative to q) to be on the order of 1/p. For a security parameter λ, they defined the rounding

function ⌊·⌉ : Zq → Zp, where q ≥ p ≥ 2, as:

⌊x⌉p =

⌊
p

q
· x

⌉

.

That is, if ⌊x⌉p = i, then i · ⌊q/p⌉ is the integer multiple of ⌊q/p⌉ that is nearest to x. So, x is deter-

ministically rounded to the nearest element of a sufficiently “coarse” public subset of p ≪ q, well-separated

values in Zq (e.g., a subgroup). Thus, the “error term” comes solely from deterministically rounding x to

a relatively nearby value in Zp. The problem of distinguishing such rounded products from uniform sam-

ples is called the decision-learning with rounding problem, abbreviated as decision-LWRn,q,p. Banerjee et al.

proved decision-LWRn,q,p to be as hard as decision-LWE for a setting of parameters where the modulus and

modulus-to-error ratio are super-polynomial.

Definition 4. Let n ≥ 1 be the security parameter and moduli q ≥ p ≥ 2 be integers.

6 V. S. Sehrawat and Y. Desmedt

– For a vector s ∈ Z
n
q , define the LWR distribution Ls to be the distribution over Z

n
q × Zp obtained by

choosing a vector a← Z
n
q uniformly at random, and outputting (a, b = ⌊〈a, s〉⌉p).

For a given distribution over s ∈ Z
n
q (e.g., the uniform distribution), the decision-LWRn,q,p problem is

to distinguish (with advantage non-negligible in n) between any desired number of independent samples

(ai, bi)← Ls, and the same number of samples drawn uniformly and independently from Z
n
q × Zp.

Theorem 1 ([8]). Let χ be any efficiently sampleable B-bounded distribution over Z, and let q ≥ p ·B ·λ(1),

with λ being the security parameter. Then for any distribution over the secret s ∈ Z
n
q , solving the decision-

LWRn,q,p problem is at least as hard as solving decision-LWEn,q,χ for the same distribution over s.

Alwen et al. [3] gave a new reduction that works for a larger range of parameters, allowing for a polynomial

modulus and modulus-to-error ratio. Bogdanov et al. [12] gave a more relaxed and general version of the

theorem proved in [3]. LWR has been used to construct efficient pseudorandom generators and functions [8, 7].

Prior to the introduction of LWR, all constructions of weaker primitives such as symmetric authentication

protocols [29, 30, 33], randomized weak PRFs [5], and message-authentication codes [36, 50] from noisy-

learning problems were inherently randomized functions, where security relies on introducing fresh noise at

every invocation. Due to its ease of use and efficiency, several schemes, such as Saber [22] and Round5 [11],

along with some homomorphic encryption solutions [20], have based their hardness on LWR.

2.3 LWE-Based KH-PRFs

Due to small error being involved, LWE based KH-PRF constructions [13, 7] only achieve ‘almost homomor-

phism’, which is defined as:

Definition 5 ([13]). Let F : K×X → Z
m
p be an efficiently computable function such that (K,⊕) is a group.

We say that the tuple (F,⊕) is a γ-almost key homomorphic PRF if the following two properties hold:

1. F is a secure pseudorandom function.

2. For every k1, k2 ∈ K and every x ∈ X , there exists a vector e ∈ [0, γ]m such that: Fk1
(x) + Fk2

(x) =

Fk1⊕k2
(x) + e mod p.

Boneh et al. [13] gave the first standard-model constructions of KH-PRFs using lattices/LWE. They proved

their PRF to be secure under the m-dimensional (over an m-dimensional lattice) LWE assumption, for error

rates α = m−Ω(l). Later, Banerjee and Peikert [7] gave KH PRFs from substantially weaker LWE assumptions,

e.g., error rates α = m−Ω(log l), yielding improved performance.

3 Novel PRF Classes: Definitions

In this section, we formally define KIH-PRF, HVL-KIH-PRF and HVL-KH-CPRF. For convenience, our

definitions assume seed and error matrices instead of vectors. Note that such interchange does not affect the

Bi-Homomorphic Lattice-Based PRFs and Unidirectional Updatable Encryption 7

hardness of LWE [50].

Notations. We begin by defining the important notations.

1. x = xℓ||xr, where 1 ≤ |xℓ| ≤ ⌊|x|/2⌋ and |xr| = |x| − |xℓ|.
2. xa = xa.ℓ||xa.r, where 1 ≤ |xa.ℓ| ≤ ⌊|xa|/2⌋ and |xa.r| = |xa| − |xa.ℓ|.
Assumption. Since the new PRF classes exhibit partial input homomorphism, without loss the generality,

we assume xr to be the homomorphic portion of the input x, with xℓ being the static/fixed portion. Obviously,

the definitions remain valid if these are swapped, i.e., if xℓ is taken to be the homomorphic portion of the

input with fixed/static xr.

3.1 KIH-PRF

Definition 6. Let F : K × X ′ ×X → Z
m×m
p be a PRF family, such that (K,⊕) and (X ,⊖) are groups. We

say that the tuple (F,⊖,⊕) is a γ-almost fully key and partially input homomorphic PRF if the following

condition holds:

– For every k1, k2 ∈ K, with x1.r, x2.r ∈ X and x1.ℓ, x2.ℓ ∈ X ′, such that x1.ℓ = x2.ℓ = xℓ, there exists a

vector E ∈ [0, γ]m×m such that:

Fk1
(x1.ℓ||x1.r) + Fk2

(x2.ℓ||x2.r) + E = Fk1⊕k2
(xℓ||xr) mod p,

where xr = x1.r ⊖ x2.r.

3.2 HVL-KIH-PRF

Definition 7. Let X ⊂ Y, with ⊖ defining the surjective mapping: X⊖X → Y. Let F : K×X ′×X → Z
m×m
p

and F ′ : K×X ′×Y → Z
m×m
p be two PRF families, where (K,⊕) is a group. We say that the tuple (F,⊖,⊕)

is a γ-almost fully key and partially input homomorphic PRF with homomorphically induced variable input

length, if the following condition holds:

– For every k1, k2 ∈ K, and with x1.r, x2.r ∈ X and x1.ℓ, x2.ℓ ∈ X ′, such that x1.ℓ = x2.ℓ = xℓ, there exists a

vector E ∈ [0, γ]m×m such that:

Fk1
(x1.ℓ||x1.r) + Fk2

(x2.ℓ||x2.r) + E = F ′
k1⊕k2

(xℓ, y) mod p,

where y = x1.r ⊖ x2.r.

3.3 Left/Right KH-CPRF with HVL

Definition 8. (Left KH-CPRF with HVL:) Let X ⊂ Y, with ⊖ defining the surjective mapping: X⊖X → Y.

Let F : K ×W ×X → Z
m×m
p and F ′ : K ×W × Y → Z

m×m
p be two PRF families, where (K,⊕) is a group.

8 V. S. Sehrawat and Y. Desmedt

We say that the tuple (F,⊖,⊕) is a left key homomorphic constrained-PRF with homomorphically induced

variable input length, if for any k0 ∈ K and a fixed w ∈ W, given Fk0
(w||x) ∈ F , where x ∈ X , there exists

an efficient algorithm to compute F ′
k0⊕k1

(w, y) ∈ F ′, for all k1 ∈ K and y ∈ Y.

(Right KH-CPRF with HVL:) Let X ⊂ Y, with ⊖ defining the surjective mapping: X ⊖ X → Y. Let

F : K × X ×W → Z
m×m
p and F ′ : K × Y ×W → Z

m×m
p be two PRF families, where (K,⊕) is a group. We

say that the tuple (F,⊖,⊕) is a right key homomorphic constrained-PRF with homomorphically induced

variable input length, if for any k0 ∈ K and a fixed w ∈ W, given Fk0
(x||w) ∈ F , where x ∈ X , there exists

an efficient algorithm to compute F ′
k0⊕k1

(y, w) ∈ F ′, for all k1 ∈ K and y ∈ Y.

4 LWE-Based HVL-KIH-PRF Construction

In this section, we present the first construction for a HVL-KIH-PRF family. Our construction is based on

the LWE problem, and is inspired from the KH-PRF construction by Banerjee and Peikert [7].

4.1 Rounding Function

Let λ be the security parameter. Define a rounding function, ⌊·⌉ : Zq → Zp, where q ≥ p ≥ 2, as:

⌊x⌉p =

⌊
p

q
· x

⌉

.

That is, if ⌊x⌉p = i, then i ·⌊q/p⌉ is the integer multiple of ⌊q/p⌉ that is nearest to x. So, x is deterministically

rounded to the nearest element of a sufficiently “coarse” public subset of p ≪ q, well-separated values in

Zq (e.g., a subgroup). Thus, the “error term” comes solely from deterministically rounding x to a relatively

nearby value in Zp. As described in Section 2.2, the problem of distinguishing such rounded products from

uniform samples is called the decision-learning with rounding (LWRn,q,p) problem. The rounding function is

extended component wise to vectors and matrices over Zq.

4.2 Definitions

Let l = ⌈log q⌉ and d = l + 1. Define a gadget vector as:

g = (0, 1, 2, 4, . . . , 2l−1) ∈ Z
d
q .

Define a deterministic decomposition function g−1 : Zq → {0, 1}d, such that g−1(a) is a “short” vector and

∀a ∈ Zq, it holds that: 〈g, g−1(a)〉 = a, where 〈·〉 denotes the inner product. The function g−1 is defined as:

g−1(a) = (x′, x0, x1, . . . , xl−1) ∈ {0, 1}d,

where x′ = 0, and a =
l−1∑

i=0
xi2

i is the binary representation of a. The gadget vector is used to define the

gadget matrix G as:

G = In ⊗ g = diag(g, . . . , g) ∈ Z
n×nd
q ,

Bi-Homomorphic Lattice-Based PRFs and Unidirectional Updatable Encryption 9

where In is the n × n identity matrix and ⊗ denotes the Kronecker product. The binary decomposition

function, g−1, is applied entry-wise to vectors and matrices over Zq. Thus, g−1 is extended to get another

deterministic decomposition function G−1 : Zn×m
q → {0, 1}nd×m, such that, G ·G−1(A) = A. The addition

operations inside the binary decomposition functions g−1 and G−1 are performed as simple integer operations

(over all integers Z), and not done in Zq.

4.3 Main Construction

The following notations are frequently used throughout this section.

– xℓh: left half of x, such that |xℓh| = ⌊|x|/2⌋,
– xrh: right half of x, such that |xrh| = ⌈|x|/2⌉,
– x[i]: ith bit of bit-string x.

Let T be a full binary tree with at least one node, with T.r and T.ℓ denoting its right and left subtree,

respectively. For random matrices A0, A1 ∈ Z
n×nd
q , define function AT : {0, 1}|T | → Z

n×nd
q recursively as:

AT (x) =

Ax if |T | = 1

AT.ℓ(xℓ) + Ax[0]G
−1(AT.r(xr)) otherwise,

where x = xℓ||xr, xℓ ∈ {0, 1}|T.ℓ|, xr ∈ {0, 1}|T.r|, and |T | denotes the number of leaves in T . Based on the

random seed S ∈ Z
n×nd
q , the KIH-PRF family, F(A0,A1,T,p), is defined as:

F(A0,A1,T,p) =
{

FS : {0, 1}2|T | −→ Z
nd×nd
p

}

.

Two seed dependent matrices, B0, B1 ∈ Z
n×nd
q , are defined as:

B0 = A0 + S; B1 = A1 + S,

Using the seed dependent matrices, a function BS

T (x) is defined recursively as:

BS

T (x) =

Bx if |T | = 1

BS
T.ℓ(xℓ) + Ax[0]G

−1(BS
T.r(xr)) otherwise,

Let R : {0, 1}|T | → Z
nd×n
q be a pseudorandom generator. Let y = yℓh||yrh, where yℓh, yrh ∈ {0, 1}|T |. In order

to keep the length the equations in check, we represent the product R(yℓh) ·Ay[0] by the notation: R0(yℓh).

A member of the KIH-PRF family is indexed by the seed S as:

FS(y) := ⌊ST ·AT (yℓh) + R0(yℓh) ·G−1(BS

T (yrh))⌉p. (1)

Let 0̄ = 00, i.e., it represents two consecutive 0 bits. We define the following function family:

F ′
(A,T,p) =

{

F ′
S : {0, 1}|T | × {0, 1, 0̄}|T | −→ Z

nd×nd
p

}

,

10 V. S. Sehrawat and Y. Desmedt

where A = {A0, A1, B0, B1, C0, C1, C0}, and the matrices C1, C0, C0 are defined by the seed S ∈ Z
n×nd
q as:

C1 = A0 + B1; C0 = A0 + B0; C0 = A1 + B1.

Define a function CT : {0, 1}|T | × {0, 1, 0̄}|T | → Z
n×nd
q recursively as:

CS

T (x) =

Cx if |T | = 1

C0 if |T | > 1
∧

x[i] = x[i + 1] = 0

CS

T.ℓ(xℓ) + Ax[0]G
−1(CS

T.r(xr)) otherwise,

i.e., C0 denotes two bits. Hence, during the evaluation of CS

T (x), a leaf in T may represent one bit or two

bits. Let z = z0||z1, where z0 ∈ {0, 1}|T | and z1 ∈ {0, 1, 0̄}|T |. A member of the function family F ′
(A,T,p) is

defined as:

F ′
S(z0, z1) := ⌊ST ·AT (z0) + R0(z0) ·G−1(CS

T (z1))⌉p, (2)

where R0(z0) = R(z0) ·Az0[0]. Similar to the KH-PRF construction from [7], bulk of the computation per-

formed while evaluating the PRFs, FS(x) and F ′
S
(x0, x1), is in computing the functions AT (x), BS

T (x), CS
T (x).

While computing these functions on an input x, if all the intermediate matrices are saved, then AT (x′),

BS

T (x′), CS

T (x′) can be incrementally computed for a x′ that differs from x in a single bit. Specifically, one

only needs to recompute the matrices for those internal nodes of T which appear on the path from the leaf

representing the changed bit to the root. Hence, saving the intermediate matrices, that are generated while

evaluating the functions on an input x can speed up successive evaluations on the related inputs x′.

4.4 Proof of Correctness

The homomorphically induced variable length (HVL) for our function family follows from the fact that

{0, 1}|T | ⊂ {0, 1, 0̄}|T |. So, we move on to defining and proving the fully key and partially input homomorphic

property for our function family. We begin by introducing a commutative binary operation, called ‘almost

XOR’, which is denoted by ⊕̄ and defined by the truth table given in Table 1.

1 ⊕̄ 1 = 0

0 ⊕̄ 0 = 00

0 ⊕̄ 1 = 1

Table 1: Truth Table for ‘almost XOR’ operation, ⊕̄

Theorem 2. For any inputs x, y ∈ {0, 1}|T | and a full binary tree |T | such that: xℓh = yℓh = z0 and

xrh⊕̄yrh = z1, where z0 ∈ {0, 1}|T |, and z1 ∈ {0, 1, 0̄}|T |, the following holds:

F ′
(S1+S2)(z0, z1) = FS1

(x) + FS2
(y) + E, (3)

where ||E||∞ ≤ 1.

Bi-Homomorphic Lattice-Based PRFs and Unidirectional Updatable Encryption 11

Proof. We begin by making an important observation, and arguing about its correctness.

Observation 1 The HVL-KIH-PRF family, defined in Equation. 1, requires both addition and multipli-

cation operations for each function evaluation. Hence, adding the outputs of two functions, FS1
and FS2

,

from the function family F translates into adding the outputs per node of the tree T . As a result, the

decomposition function G−1 for each node in T takes one of the following three forms:

1. G−1(Ab + Ax[0] ·G−1(·)),
2. G−1(Ab + Ax[0] ·G−1(·) + · · ·+ Ax0

·G−1(·)),
3. G−1(Ab), b ∈ {0, 1},

where G−1(·) denotes possibly nested G−1. Note that each term Ax[0] ·G−1(·) or a summation of such terms,

i.e., Ax[0] ·G−1(·) + · · ·+ Ax[0] ·G−1(·), yields some matrix Ă ∈ Z
n×nd
q . Hence, each decomposition function

G−1 in the recursively unwound function F ′
(s1+s2)(z0, z1) has at most two “direct” inputs/arguments (i.e.,

Ab and Ă).

Recall from Section 4.2 that for the “direct” arguments of G−1, addition operations are performed as

simple integer operations (over all integers Z) instead of being done in Zq. We know from Observation 1, that

unwinding of the recursive function F ′
S
(z0, z1) yields each binary decomposition function G−1 with at most

two “direct” inputs. We also know that binary decomposition functions (g−1 and G−1) are linear, provided

there is no carry bit or there is an additional bit to accommodate the possible carry. Hence, by virtue of

the extra bit, d − l (where l = ⌈log q⌉, and d = l + 1), each G−1 behaves as a linear function during the

evaluation of our function families, i.e., the following holds:

G−1(Ai + Aj) = G−1(Ai) + G−1(Aj), (4)

where G−1(Ai)+G−1(Aj) is component-wise vector addition of the n, d bits long bit vectors of the columns,

[v1, . . . , vnd] ∈ Z
1×nd, of G−1(Ai) with the n, d bits long bit vectors of the columns, [w1, . . . , wnd] ∈ Z

1×nd
q ,

of G−1(Aj). We are now ready to prove Equation 3. Since yℓh = xℓh, we use xℓh to represent both, as

that helps clarity. Let S = S1 + S2, then by using Equation 2, we can write the LHS of Equation 3 as:

⌊ST ·AT (z0) + R0(z0) ·G−1(CS

T (z1))⌉p.

Similarly, from Equation 1, we get RHS of Equation 3 equal to:

⌊ST
1 ·AT (xℓh) + R0(xℓh) ·G−1(BS1

T (xrh))⌉p + ⌊ST
2 ·AT (xℓh) + R0(xℓh) ·G−1(BS2

T (yrh))⌉p + E.

We know that ⌊a + b⌉p = ⌊a⌉p + ⌊b⌉p + e. We further know that xℓh = z0, and R0(xℓh) = R0(z0). Thus, from

Equation 4, the RHS can be written as:

⌊(S1 + S2)T ·AT (z0) + R0(z0) ·G−1(BS1

T (xrh) + BS2

T (yrh))⌉p
= ⌊ST ·AT (z0) + R0(z0) ·G−1(CS

T (xrh⊕̄yrh))⌉p
= ⌊ST ·AT (z0) + R0(z0) ·G−1(CS

T (z1)⌉p = LHS. ⊓⊔

12 V. S. Sehrawat and Y. Desmedt

5 Security Proof

The security proofs as well as the time complexity analysis of our construction depend on the tree T . Left

and right depth of T are respectively defined as the maximum left and right depths over all leaves in T . The

modulus q, the underlying LWE error rate, and the dimension n needed to obtain a desired level of provable

security, are largely determined by two parameters of T . The first one, called expansion e(T) [7], is defined

as:

e(T) =

0 if |T | = 1

max{e(T.ℓ) + 1, e(T.r)} otherwise.

For our construction, e(T) is the maximum number of terms of the form G−1(·) that get consecutively

added together when we unwind the recursive definition of the function AT . The second parameter is called

sequentiality [7], which gives the maximum number of nested G−1 functions, and is defined as:

s(T) =

0 if |T | = 1

max{s(T.ℓ), s(T.r) + 1} otherwise.

For our function families, over the uniformly random and independent choice of A0, A1, S ∈ Z
n×nd
q , and with

the secret key chosen uniformly from Z
n
q , the modulus-to-noise ratio for the underlying LWE problem is:

q/r ≈ (n log q)e(T). Known reductions [51, 47, 16] (for r ≥ 3
√

n) guarantee that such a LWE instantiation is

at least as hard as approximating hard lattice problems like GapSVP and SIVP, in the worst case to within

≈ q/r factors on n-dimensional lattices. Known algorithms for achieving such factors take time exponential

in n/ log(q/r) = Ω̃(n/e(T)). Hence, in order to obtain provable 2λ (where λ is the input length) security

against the best known lattice algorithms, the best parameter values are the same as defined for the KH-PRF

construction from [7], which are:

n = e(T) · Θ̃(λ) and log q = e(T) · Θ̃(1). (5)

5.1 Overview of KH-PRF from [7]

As mentioned earlier, our construction is inspired by the KH-PRF construction from [7]. Our security proofs

rely on the security of that construction. Therefore, before moving to the security proofs, it is necessary

that we briefly recall the KH-PRF construction from [7]. Although that scheme differs from our KIH PRF

construction, certain parameters and their properties are identical. The rounding function ⌊·⌉p, binary tree

T , gadget vector/matrix g/G, the binary decomposition functions g−1/G−1 and the base matrices D0, D1

in that scheme are defined similarly to our construction. There is a difference in the definitions of the

decomposition functions, which for our construction are defined as (see Section 4.2): g−1 : Zq → {0, 1}d and

G−1 : Z
n×m
q → {0, 1}nd×m, i.e., the dimensions of the output space for our decomposition functions has

d(= l + 1) instead of l = ⌈log q⌉ as in [7]. Recall that the extra (carry) bit ensures that Equation 4 holds.

Bi-Homomorphic Lattice-Based PRFs and Unidirectional Updatable Encryption 13

KH-PRF Construction from [7] Given two uniformly selected matrices, D0, D1 ∈ Z
n×nl
q , define function

DT (x) : {0, 1}|T | → Z
n×nl
q as:

DT (x) =

Dx if |T | = 1

DT.ℓ(xℓt) ·G−1(DT.r(xrt)) otherwise,
(6)

where x = xℓt||xrt, for xℓt ∈ {0, 1}|T.ℓ|, xrt ∈ {0, 1}|T.r|. The KH-PRF function family is defined as:

HD0,D1,T,p =
{

Hs : {0, 1}|T | → Z
nl
p

}

,

where p ≤ q is the modulus. A member of the function family H is indexed by the seed s ∈ Z
n
q as: Hs(x) =

⌊s ·DT (x)⌉p.

For the sake of completeness, we recall the main security theorem from [7].

Theorem 3 ([7]). Let T be any full binary tree, χ be some distribution over Z that is subgaussian with

parameter r > 0 (e.g., a bounded or discrete Gaussian distribution with expectation zero), and

q ≥ p · r
√

|T | · (nl)e(T) · λω(1),

where λ is the input size. Then over the uniformly random and independent choice of D0, D1 ∈ Z
n×nl
q , the

family HD0,D1,T,p with secret key chosen uniformly from Z
n
q is a secure PRF family, under the decision-

LWEn,q,χ assumption.

5.2 Security Proof of Our Construction

The dimensions and bounds for the parameters r, q, p, n, m and χ in our construction are the same as in [7].

We begin by defining the necessary terminology.

1. Reverse-LWE: is an LWE instance ST A + E with secret lattice-basis A and public seed matrix S.

2. Reverse-LWR: is defined similarly, i.e., ⌊ST A⌉p with secret A and public S.

3. If H represents the binary entropy function, then we know that for uniformly random A ∈ Z
n×nd
q and a

random seed S ∈ Z
n×nd
q , it holds that: H(A) = H(S). Hence, it follows from elementary linear algebra that

reverse-LWRn,q,p and reverse-LWEn,q,χ are at least as hard as decision-LWRn,q,p and decision-LWEn,q,χ,

respectively.

Observation 2 Consider the function family F(A0,A1,T,p). We know that a member of the function family

is defined by a random seed S ∈ Z
n×nd
q as:

FS(x) = ⌊ST ·AT (xℓh) + R0(xℓh) ·G−1(BS

T (xrh))⌉p = ⌊ST ·AT (xℓh)⌉p
︸ ︷︷ ︸

LT (xℓh)

+ ⌊R0(xℓh) ·G−1(BS

T (xrh))⌉p
︸ ︷︷ ︸

RT (xrh)

+E.

Observation 3 For |T | ≥ 1 and x ∈ {0, 1}2|T |, each LT (xℓh) is the sum of the following three types of terms:

14 V. S. Sehrawat and Y. Desmedt

1. Exactly one term of the form: ⌊ST ·Ax[0]⌉p, corresponding to the leftmost child of the full binary tree T

and the most significant bit, x[0], of x.

2. At least one term of the following form:

⌊ST ·Ax[0] ·G−1(Ax[i])⌉p; (1 ≤ i ≤ 2|T |),

corresponding to the right child at level 1 of the full binary tree T .

3. Zero or more terms with nested G−1 functions of the form:

⌊ST ·Ax[0] ·G−1(Ax[i] + Ax[0] ·G−1(·) + . . .)⌉p; (1 ≤ i ≤ 2|T |).

We prove that for appropriate parameters and input length, each one of the aforementioned terms is a

pseudorandom function on its own.

Lemma 1. Let n be a positive integer, q ≥ 2 be the modulus, χ be a probability distribution over Z, and m be

polynomially bounded (i.e. m = poly(n)). For a uniformly random and independent choice of A0, A1 ∈ Z
n×nd
q

and a random seed vector S ∈ Z
n×nd
q , the function family ⌊ST ·Ax[i]⌉p for the single bit input x[i] (1 ≤ i ≤ 2|T |)

is a secure PRF family under the decision-LWEn,q,χ assumption.

Proof. We know from [8] that ⌊ST ·Ax[i]⌉p is a secure PRF under the decision-LWRn,q,p assumption, which

is at least as hard as solving the decision-LWEn,q,χ problem. ⊓⊔

Corollary 1 (To Theorem 3) Let n be a positive integer, q ≥ 2 be the modulus, χ be a probability distri-

bution over Z, and m = poly(n). For uniformly random and independent matrices A0, A1 ∈ Z
n×nd
q with a

random seed S ∈ Z
n×nd
q , the function ⌊ST ·Ax[0] ·G−1(Ax[i])⌉p for the two bit input: x[0]||x[i], is a secure

PRF family, under the decision-LWEn,q,χ assumption.

Proof. For the two bit input x[0]||x[i], the expression ⌊ST ·Ax[0] ·G−1(Ax[i])⌉p is an instance of the function

HA0,A1,T,p (see Section 5.1). Hence, it follows from Theorem 3 that ⌊ST ·Ax[0] ·G−1(Ax[i])⌉p is a secure PRF

family under the decision-LWEn,q,χ assumption. ⊓⊔

Corollary 2 (To Theorem 3) Let n be a positive integer, q ≥ 2 be the modulus, χ be a probability distri-

bution over Z, and m = poly(n). Given uniformly random and independent A0, A1 ∈ Z
n×nd
q , and a random

seed S ∈ Z
n×nd
q , the function: ⌊ST ·Ax[0] ·G−1(Ax[i] + Ax[0] ·G−1(·) + . . .)⌉p is a secure PRF family under

the decision-LWEn,q,χ assumption.

Proof. Since, A0, A1 ∈ Z
n×nd
q are random and independent, Ax[0] ·G−1(·) is statistically indistinguishable

from Ax[i] · G−1(·), as defined by the function BT (x) (see Equation 6), where G−1(·) represents possibly

nested G−1. Hence, it follows from Theorem 3 that for the “right spine” (with leaves for all the left children)

full binary tree T, ⌊ST · Ax[0] · G−1(Ax[i] + Ax[0] · G−1(·) + . . .)⌉p defines a secure PRF family under the

decision-LWEn,q,χ assumption. ⊓⊔

Bi-Homomorphic Lattice-Based PRFs and Unidirectional Updatable Encryption 15

Corollary 3 (To Theorem 3) Let n be a positive integer, q ≥ 2 be the modulus, χ be a probability distri-

bution over Z, and m = poly(n). For uniformly random and independent matrices A0, A1 ∈ Z
n×nd
q , and a

random seed S ∈ Z
n×nd
q , the function RT (xrh) = ⌊R0(xℓh) ·G−1(BS

T (xrh))⌉p is a secure PRF family under

the decision-LWEn,q,χ assumption.

Proof. We know that A0, A1, S ∈ Z
n×nd
q are generated uniformly and independently. Therefore, the secret

matrices, B0, B1, defined as: B0 = A0 + S and B1 = A1 + S, have the same distribution as A0, A1. As

R : {0, 1}|T | → Z
nd×n
q is a PRG, R(xℓh) is a valid seed matrix for decision-LWE, making RT (xrh) an instance

of reverse-LWRn,q,p, which we know is as hard as the decision-LWRn,q,p problem. Hence, it follows from

Theorem 3 that RT (xrh) defines a secure PRF family for secret R(xℓh). ⊓⊔

Theorem 4. Let T be any full binary tree, χ be some distribution over Z that is subgaussian with parameter

r > 0 (e.g., a bounded or discrete Gaussian distribution with expectation zero), R : {0, 1}|T | → Z
nd×n
q be a

PRG, and

q ≥ p · r
√

|T | · (nd)e(T) · λω(1).

Then over the uniformly random and independent choice of A0, A1 ∈ Z
n×nd
q and a random seed S ∈ Z

n×nd
q ,

the family F(A0,A1,T,p) is a secure PRF under the decision-LWEn,q,χ assumption.

Proof. From Observations 2 and 3, we know that each member FS of the function family F(A0,A1,T,p) is

defined by the random seed S, and can be written as:

FS(x) = ⌊ST ·Ax[0]⌉p + d1 · ⌊ST ·Ax[0] ·G−1(Ax[i])⌉p+

d2 · ⌊ST ·Ax[0] ·G−1(Ax[i] + Ax[0] ·G−1(·) + . . .)⌉p+

d3 · ⌊R(xℓh) ·Ax[0] ·G−1(BS

T (xrh))⌉p + E,

where d1, d2, d3 ∈ Z, such that, 1 ≤ d1, d3 ≤ |T | and 0 ≤ d2 ≤ |T |. From Lemma 1, and Corollaries 1, 2

and 3, we know that the following are secure PRFs under the decision-LWEn,q,χ assumption:

1. ⌊ST ·Ax[0]⌉p, ⌊ST ·Ax[0] ·G−1(Ax[i])⌉p,

2. ⌊ST ·Ax[0] ·G−1(Ax[i] + Ax[0] ·G−1(·) + . . .)⌉p,

3. ⌊R(xℓh) ·Ax[0] ·G−1(BS

T (xrh))⌉p.

Hence, it follows that the function family F(A0,A1,T,p) is a secure PRF under the decision-LWEn,q,χ assump-

tion.

Corollary 4 (To Theorem 4) Let T be any full binary tree, χ be some distribution over Z that is sub-

gaussian with parameter r > 0 (e.g., a bounded or discrete Gaussian distribution with expectation zero),

R : {0, 1}|T | → Z
nd×n
q be a PRG, and

q ≥ p · r
√

|T | · (nd)e(T) · λω(1).

Then over the uniformly random and independent choice of A0, A1 ∈ Z
n×nd
q and random seed S ∈ Z

n×nd
q ,

the family F ′
(A,T,p) is a secure PRF under the decision-LWEn,q,χ assumption.

16 V. S. Sehrawat and Y. Desmedt

6 Time Complexity Analysis

In this section, we analyze the asymptotic time complexity of evaluating a function from our HVL-KIH-PRF

family. We know that the time complexity of the binary decomposition function g−1 is O(log q), and that

G−1 is simply g−1 applied entry-wise. The size of the public matrices, A0, A1 ∈ Z
n×nd
q , is Θ(n2 log q), which

by Equation 5 is e(T)4 · Θ̃(λ2) bits. The secret matrix, S ∈ Z
n×nd
q , also has the same size, i.e., e(T)4 · Θ̃(λ2).

Computing AT (x), BT (x) or CT (x) requires one decomposition with G−1, one (n×nd)-by-(nd×nd) matrix

multiplication and one (n×nd)-by-(n×nd) matrix addition over Zq, per internal node of T . Hence, the total

time complexity comes out to be Ω(|T | · nω log2 q) operations in Zq, where ω ≥ 2 is the exponent of matrix

multiplication.

7 Left/Right HVL-KH-CPRFs

In this section, we present the construction of another novel PRF class, namely left/right HVL-KH-CPRFs,

as a special case of our HVL-KIH-PRF family. Let F ′ : K×X ×Y → Z be the PRF defined by Equation 2.

The goal is to derive a constrained key PRF, kx,left or kx,right for every x ∈ X and k0 ∈ K, such that

kx,left = Fk0
(x||·) (where F : K × X × X → Z is the PRF family defined by Equation 1) enables the

evaluation of the PRF function F ′
k(x, y) for the key k = k0 + k1, where k1 ∈ K, and the subset of points

{(x, y) : y ∈ Y}, i.e., all the points where the left portion of the input is x. Similarly, the constrained key

kx,right = Fk0
(·||x) enables the evaluation of the PRF function F ′

k(x, y) for the key k = k0 +k1, where k1 ∈ K,

and the subset of points {(y, x) : y ∈ Y}, i.e., all the points where the right side of the input is x.

KH-CPRF Construction. We begin by giving a construction for left KH-CPRF, without HVL, and then

turn it into a HVL-KH-CPRF construction. Our HVL-KIH-PRF function, defined in Equation 1, is itself a

left KH-CPRF when evaluated as: Fk0
(x0||1), i.e., the key is k0 ∈ K, the left side of the input is x0 ∈ X ,

and the right half is an all one vector, 1 = {1}log |X |. Now, to evaluate F ′
k(x0, x1) at a key k = k0 + k1,

and any right input x1 ∈ Y, first evaluate Fk1
(x0||x′

1) and add its output with that of the given constrained

function, Fk0
(x0||1), i.e., compute: F ′

k(x0, x1) = Fk1
(x0||x′

1) + Fk0
(x0||1), where x′

1 ∈ X , and x1 = x′
1⊕̄1,

with k = k0 + k1. Recall from Table 1 that ‘almost XOR’, ⊕̄, differs from XOR only for the case when both

inputs are zero. Hence, having 1 as the right half effectively turns ⊕̄ into ⊕, and ensures that all possible

right halves x1 ∈ X can be realized via x′
1 ∈ X .

Similarly, right KH-CPRF can be realized by provisioning the constrained function Fk0
(1||x0), where

1 = {1}| log X | is an all ones vector and x0 ∈ X . This interchange allows one to evaluate a different version

of our HVL-KIH-PRF function, where the left portion of the input exhibits homomorphism (see Section 3).

Hence, for all k1 ∈ K and x1 ∈ X , it supports evaluation of F ′
k0+k1

(x1||x0).

Achieving HVL. Wlog, we demonstrate left In order to achieve HVL for the left/right KH-CPRF given

above, simply replace the all ones vector, 1, with an all zeros vector, 0, of the same dimension. Hence, the

new constrained functions become: kleft = Fk0
(x0||0) and kright = Fk0

(0||x0). This enables us to evaluate

Bi-Homomorphic Lattice-Based PRFs and Unidirectional Updatable Encryption 17

F ′
k(x0, x1) ∈ F ′ at key k = k0 + k1, for any k1 ∈ K and input x1 ∈ Y as the input homomorphism of

the PRF family F ∈ F allows us to compute: F ′
k(x0||x1) = Fk1

(x0||x′
1) + Fk0

(x0||0), where x′
1 ∈ X . The

pseudorandomness and security follow from that of our HVL-KIH-PRF family.

8 QPC-UE-UU

In this section, we present the first quantum-safe (Q) post-compromise (PC) secure updatable encryption

(UE) scheme with unidirectional updates (UU) as an example application of our KIH-HVL-PRF family. An

updatable encryption scheme, UE, contains algorithms for a data owner and a host. We begin by recalling the

definitions of these algorithms. The owner encrypts the data using a secure encryption algorithm, UE.enc,

and then outsources the ciphertexts to some host. To this end, the data owner initially runs a key generation

algorithm, UE.setup, to sample an encryption key. This key evolves with epochs and the data is encrypted

with respect to a specific epoch e, starting with e = 0. When moving from epoch e to epoch e + 1, the

owner invokes the update token algorithm UE.next to generate the key material ke+1 for the new epoch

and calculate the corresponding update token ∆e+1. The owner then sends ∆e+1 to the host, deletes ke and

∆e+1 immediately, and uses ke+1 for encryption from now on. Definition 9 gives a formal description of the

procedures and algorithms.

Definition 9 ([38]). An updatable encryption scheme UE for message spaceM consists of a set of polynomial-

time algorithms UE.setup, UE.next, UE.enc, UE.dec, and UE.upd satisfying the following conditions:

UE.setup: The algorithm UE:setup is a probabilistic algorithm run by the owner. On input a security pa-

rameter λ, it returns a secret key k0
$←− UE.setup(λ).

UE.next: This probabilistic algorithm is also run by the owner. On input a secret key ke for epoch e, it out-

puts the secret key, ke+1, and an update token, ∆e+1, for epoch e+1. That is, (ke+1, ∆e+1)
$←− UE.next(ke).

UE.enc: This probabilistic algorithm is run by the owner, on input a message m ∈ M and key ke of some

epoch e returns a ciphertext Ce ← $ UE.enc(ke, m).

UE.dec: This deterministic algorithm is run by the owner, on input a ciphertext Ce and key ke of some epoch

e returns {m′,⊥} ← UE.dec(ke, Ce).

UE.upd: This probabilistic algorithm is run by the host. Given ciphertext Ce from epoch e and the update

token ∆e+1, it returns the updated ciphertext Ce+1 ← UE.upd(∆e+1, Ce). After receiving ∆e+1, the host first

deletes ∆e. Hence, during some epoch e + 1, the update token ∆e+1 is available at the host, but the tokens

from earlier epochs have been deleted.

8.1 Settings and Notations

Let i
$←− X be the identifier for data block di. Let F : K × X × X → Z and F ′ : K × X × Y → Z be the

functions defined in Equation 1 and Equation 2, respectively. Let KeyGen(λ) be the key generation algorithm

18 V. S. Sehrawat and Y. Desmedt

• QPC-UE-UU.setup(λ): Generate a random encryption key k0
$
←− F.KeyGen(λ), and sample a random nonce N0

$
←− X . Set

e← 0, and return the key for epoch e = 0 as: ki0 = (k0, N0).

• QPC-UE-UU.enc(kie , m): Let i
$
←− X be randomly sampled element that is shared by the host and the owner. Parse kie =

(ke, Ne), and return the ciphertext for epoch e as: Ce = (F ′

ke
(i, Ne) + m). Note that the random nonce ensures that the

encryption is not deterministic.

• QPC-UE-UU.dec(kie , Ce): Parse kie = (ke, Ne). Return m← Ce − F ′

ke
(i, Ne).

• QPC-UE-UU.next(kie):

1. Sample a random nonce Ne+1
$
←− X . Parse kie as (ke, Ne).

2. For epoch e + 1, generate a random encryption key ke+1
$
←− F.KeyGen(λ), and return ∆e+1 = (∆k

e+1, ∆N
e+1), where ∆N

e+1 =

Ne⊕̄Ne+1 is the nonce update token, and ∆k
e+1 = ke+1 − ke is the encryption key update token. The key for epoch e + 1 is

kie+1 = (2ke − ke+1, Ne+1), where 2ke − ke+1 is the encryption key.

• QPC-UE-UU.upd(∆e+1 , Ce): Update the ciphertext as: Ce+1 = Ce − F ′

∆k

e+1

(i, ∆N
e+1)

= F ′

ke
(i, Ne) + m− F ′

ke+1−ke
(i, Ne⊕̄Ne+1)

= F ′

−ke+1+2ke
(i, Ne − (Ne⊕̄Ne+1)) + m = F ′

2ke−ke+1
(i, Ne+1) + m.

Fig. 1: Quantum-safe, post-compromise secure updatable encryption scheme with unidirectional updates,

(QPC-UE-UU).

for F , where λ is the security parameter. Figure 1 gives our QPC-UE-UU scheme, wherein a random nonce

is generated per key rotation, hence ensuring that the encryption remains probabilistic, despite our PRF

family being deterministic.

8.2 Proof of Unidirectional Updates

As explained in Section 8.1, the random nonce ensures that the encryption in our scheme is probabilistic.

Hence, the security of our QPC-UE-UU scheme follows from the pseudorandomness of our HVL-KIH-PRF

family. We move on to proving that the ciphertext updates performed by our scheme are indeed unidirec-

tional. Recall that in schemes with unidirectional updates, an update token ∆e+1 can only be used to move

ciphertexts from epoch e into epoch e + 1, but not vice versa. The notations used in the proof are the same

as given in Figure 1.

Lemma 2. For the HVL-KIH-PRF family, F ′ : K × X × Y → Z, as defined in Corollary 4,z with X =

{0, 1}|T |,Y = {0, 1, 0̄}|T | and Z = Z
nd×nd
p : given ciphertext, Ce+1 and update token ∆e+1 = (ke+1 −

ke, Ne⊕̄Ne+1) for epoch e + 1, the following holds for a polynomial adversary A, randomly sampled Q
$←− Z

and security parameter λ:
Pr[Ce] = Pr[Q]± ǫ(λ),

where ǫ(λ) is a negligible function.

Proof. The main idea of the proof is that due to the bi-homomorphic property of our HVL-KIH-PRF family,

F ′, the adversary, A, can only revert back to either the key ke or the nonce Ne, but not both. In other

Bi-Homomorphic Lattice-Based PRFs and Unidirectional Updatable Encryption 19

words, A cannot recover Ce = F ′
ke

(i, Ne) + m. We split the proof into two portions, one concentrating on

reverting back to ke as the function key, and the other one focusing on moving back to Ne as the function

input. We prove that these two goals are mutually exclusive for our scheme, i.e., both of them cannot be

achieved together.

Case 1: Reverting to ke. Recall from Table 1 that the only well-defined operation for the operand 0̄ is

0̄ = 0 + 0. We know that the ciphertext update for epoch e + 1 is performed as: Ce+1 = Ce−F ′
∆k

e+1

(i, ∆N
e+1).

Since F ′ is a PRF family, the only way to revert back to F ′
ke
∈ F ′ via Ce+1 and ∆e+1 is by computing:

Ce+1 + F ′
∆k

e+1

(i, ∆N
e+1) = F ′

2ke−ke+1
(i, Ne+1) + m + F ′

ke+1−ke
(i, Ne⊕̄Ne+1)

= F ′
ke

(i, Ne+1⊕̄(Ne⊕̄Ne+1)).

Due to the key homomorphism exhibited by F ′, no other computations would lead to the target key ke. We

know that ∆N
e+1(= Ne⊕̄Ne+1) ∈ Y, and that Ne+1, Ne ∈ X . Therefore, the output of the above computation

is not well-defined since it leads to ∆N
e ⊕̄Ne+1 /∈ Y as being the input to F ′

ke
(i, ·) ∈ F ′. Hence, when A

successfully reverts back to the target key ke, the nonce deviates from Ne (and the domain Y itself).

Case 2: Reverting to Ne. Given Ce+1 and ∆e+1, A can revert back to (i, Ne) as the function input by

computing: Ce+1 − F ′
∆k

e+1

(i, ∆N
e+1) = F ′

3ke−2ke+1
(i, Ne) + m. By virtue of the almost XOR operation and the

operand 0̄, the only way to revert back to Ne ∈ X from ∆N
e+1(= Ne⊕̄Ne+1) ∈ Y is via subtraction. But, as

shown above, subtraction leads to F ′
3ke−2ke+1

(i, Ne) instead of F ′
ke

(i, Ne). Hence, the computation that allows

A to successfully revert back to Ne as the function input, also leads the function’s key to deviate from ke.

Considering the aforementioned arguments, it follows from Corollary 4 that ∀Q $←− Z, it holds that:

Pr[Ce] = Pr[Q]± ǫ(λ). ⊓⊔

9 Open Problem: Novel Searchable Encryption Schemes

Searchable symmetric encryption (SSE) [21] allows one to store data at an untrusted server, and later search

the data for records (or documents) matching a given keyword. Multiple works [5, 19, 21, 25, 32, 31, 37, 56, 39]

have studied SSE and provided solutions with varying trade-offs between security, efficiency, and the ability

to securely update the data after it has been encrypted and uploaded. A search pattern [21] is defined as

any information that can be derived or inferred about the keywords being searched from the issued search

queries. In a setting with multiple servers hosting unique shares of the data (generated via threshold secret

sharing [54]), our HVL-KIH-PRF family may be useful in realizing SSE scheme that hides search patterns.

For instance, if there are n servers S1, S2, . . . , Sn, then n random keys k1, k2, . . . , kn can be distributed among

them in a manner such that any t-out-of-n servers can combine their respective keys to generate k =
∑n

j=1 kj .

If the search index is generated via our HVL-KIH-PRF function F ′
k(i, ·) ∈ F ′, where i is a fixed database

identifier, then to search for a keyword x, the data owner can generate a unique, random query xj for each

server Sj (1 ≤ j ≤ n). Similar to the key distribution, the data owner sends the queries to the servers

20 V. S. Sehrawat and Y. Desmedt

such that any t of them can compute x =
n

⊕

j=1
xj . On receiving search query xj , server Sj uses its key kj to

evaluate F ′
kj

(i, xj). If at least t servers reply, the data owner can compute
t∑

j=1
F ′

kj
(i, xj) = F ′

k(i, x). Designing

a compact search index that does not leak any more information than what is revealed by the PRF evaluation

is an interesting open problem, solving which would complete this SSE solution.

10 Conclusion

Key-homomorphic PRFs have found a multitude of interesting applications in cryptography. In this paper,

we further expanded the domain of PRFs by introducing bi-homomorphic PRFs, which exhibit full homomor-

phism over the key and partial homomorphism over the input, which also leads to homomorphically-induced

variable input length. We presented a LWE-based construction for such a PRF family, which is inspired by

the key-homomorphic PRF construction given by Banerjee and Peikert [7].

We use our novel PRF family to develop the first quantum-safe, post-compromise secure updatable en-

cryption scheme with unidirectional updates. The homomorphically-induced variable input length of our

PRF family allowed us to address the open problem of achieving unidirectional updates for updatable

encryption. As a special case of our PRF family, we introduced key-homomorphic constrained-PRF with

homomorphically-induced variable input length. We leave as an open problem the question of using our PRF

family to design search pattern hiding searchable symmetric encryption schemes. With appropriately de-

signed search index, the bi-homomorphism property of our PRF family should allow random search queries,

hence leading to private search patterns.

References

1. Shweta Agrawal, David Mandell Freeman, and Vinod Vaikuntanathan. Functional Encryption for Inner Product Predicates

from Learning with Errors. In ASIACRYPT, pages 21–40, 2011.

2. Adi Akavia, Shafi Goldwasser, and Vinod Vaikuntanathan. Simultaneous hardcore bits and cryptography against memory

attacks. In TCC, pages 474–495, 2009.

3. Joël Alwen, Stephan Krenn, Krzysztof Pietrzak, and Daniel Wichs. Learning with Rounding, Revisited. In CRYPTO, pages

57–74, 2013.

4. Amazon. Protecting data using client-side encryption, 2006.

5. Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast Cryptographic Primitives and Circular-Secure En-

cryption Based on Hard Learning Problems. In CRYPTO, pages 595–618, 2009.

6. Abhishek Banerjee, Georg Fuchsbauer, Chris Peikert, Krzysztof Pietrzak, and Sophie Stevens. Key-homomorphic constrained

pseudorandom functions. In TCC, pages 31–60, 2015.

7. Abhishek Banerjee and Chris Peikert. New and Improved Key-Homomorphic Pseudorandom Functions. In CRYPTO, pages

353–370, 2014.

8. Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom functions and lattices. In EUROCRYPT, pages 719–737,

2012.

Bi-Homomorphic Lattice-Based PRFs and Unidirectional Updatable Encryption 21

9. M. Bellare, R. Canetti, and H. Krawczyk. Pseudorandom functions revisited: the cascade construction and its concrete

security. In FOCS, pages 514–523, 1996.

10. Mihir Bellare and Phillip Rogaway. On the construction of variable-input-length ciphers. In FSE, pages 231–244, 1999.

11. Hayo BaanSauvik Bhattacharya, Scott Fluhrer, Oscar Garcia-Morchon, Thijs Laarhoven, Ronald Rietman, Markku-

Juhani O. Saarinen, Ludo Tolhuizen, and Zhenfei Zhang. Round5: Compact and fast post-quantum public-key encryption.

In PQCrypto, pages 83–102, 2019.

12. Andrej Bogdanov, Siyao Guo, Daniel Masny, Silas Richelson, and Alon Rosen. On the Hardness of Learning with Rounding

over Small Modulus. In TCC, pages 209–224, 2016.

13. Dan Boneh, Kevin Lewi, Hart Montgomery, and Ananth Raghunathan. Key homomorphic PRFs and their applications. In

CRYPTO, pages 410–428, 2013.

14. Dan Boneh and Brent Waters. Constrained pseudorandom functions and their applications. In ASIACRYPT, pages 280–300,

2013.

15. Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional Signatures and Pseudorandom Functions. In PKC, pages

501–519, 2014.

16. Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé. Classical hardness of learning with errors.

STOC, pages 575–584, 2013.

17. Zvika Brakerski and Vinod Vaikuntanathan. Fully Homomorphic Encryption from Ring-LWE and Security for Key Depen-

dent Messages. In CRYPTO, pages 505–524, 2011.

18. Zvika Brakerski and Vinod Vaikuntanathan. Constrained Key-Homomorphic PRFs from Standard Lattice Assumptions –

or: How to Secretly Embed a Circuit in Your PRF. In TCC, pages 1–30, 2015.

19. Yan-Cheng Chang and Michael Mitzenmacher. Privacy preserving keyword searches on remote encrypted data. In Applied

Cryptography and Network Security, pages 442–455, 2005.

20. Anamaria Costache and Nigel P. Smart. Homomorphic encryption without gaussian noise. IACR Cryptology ePrint Archive,

163, 2017.

21. Reza Curtmola, Juan Garay, Seny Kamara, and Rafail Ostrovsky. Searchable symmetric encryption: improved definitions

and efficient constructions. In ACM conference on Computer and communications security, pages 79–88, 2006.

22. Jan-Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha Roy, and Frederik Vercauteren. Saber: Module-LWR based key

exchange, CPA-secure encryption and CCA-secure kem. In AFRICACRYPT, pages 282–305, 2018.

23. A. Everspaugh, K.G. Paterson, T. Ristenpart, and S. Scott. Key rotation for authenticated encryptionkey rotation for

authenticated encryption. In CRYPTO, pages 98–129, 2017.

24. Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan Craig Gentry. Trapdoors for hard lattices and new cryptographic

constructions. In STOC, pages 197–206, 2008.

25. Eu-Jin Goh. Secure indexes. Cryptology ePrint Archive, Report 2003/216, 2003.

26. Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions. Journal of the ACM (JACM),

33:792–807, Oct. 1986.

27. Shafi Goldwasser, Yael Kalai, Raluca Ada Popa, Vinod Vaikuntanathan, and Nickolai Zeldovich. Reusable garbled circuits

and succinct functional encryption. In STOC, pages 555–564, 2013.

28. Google. Managing data encryption, 2019.

29. N. J. Hopper and M. Blum. Secure human identification protocols. In ASIACRYPT, pages 52–66, 2001.

30. A. Juels and S. A. Weis. Authenticating pervasive devices with human protocols. In CRYPTO, pages 293–308, 2005.

31. Seny Kamara and Charalampos Papamanthou. Parallel and Dynamic Searchable Symmetric Encryption. In Financial

Cryptography and Data Security, pages 258–274, 2013.

32. Seny Kamara, Charalampos Papamanthou, and Tom Roeder. Dynamic searchable symmetric encryption. In CCS, pages

965–976, 2012.

33. J. Katz, J.S. Shin, and A. Smith. Parallel and concurrent security of the HB and hb+ protocols. Journal of Cryptology,

2010.

22 V. S. Sehrawat and Y. Desmedt

34. Jonathan Katz and Vinod Vaikuntanathan. Smooth projective hashing and password-based authenticated key exchange

from lattices. In ASIACRYPT, pages 636–652, 2009.

35. Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias. Delegatable pseudorandom functions

and applications. In CCS, pages 669–684, 2013.

36. E. Kiltz, K. Pietrzak, D. Cash, A. Jain, and D. Venturi. Efficient authentication from hard learning problems. In EURO-

CRYPT, pages 7–26, 2011.

37. Kaoru Kurosawa and Yasuhiro Ohtaki. UC-Secure searchable symmetric encryption. In Financial Cryptography and Data

Security, pages 285–298, 2012.

38. Anja Lehmann and Björn Tackmann. Updatable encryption with post-compromise security. In EUROCRYPT, pages

685–716, 2018.

39. Peter Van Liesdonk, Saeed Sedghi, Jeroen Doumen, Pieter Hartel, and Willem Jonker. Computationally Efficient Searchable

Symmetric Encryption. In Workshop on Secure Data Management, pages 87–100, 2010.

40. Vadim Lyubashevsky. Fiat-shamir with aborts: Applications to lattice and factoring-based signatures. In ASIACRYPT,

pages 598–616, 2009.

41. Vadim Lyubashevsky. Lattice Signatures without Trapdoors. In EUROCRYPT, pages 738–755, 2012.

42. Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with errors over rings. In EUROCRYPT,

2010.

43. Daniele Micciancio and Chris Peikert. Hardness of sis and lwe with small parameters. In CRYPTO, pages 21–39, 2013.

44. Moni Naor, Benny Pinkas, and Omer Reingold. Distributed Pseudo-random Functions and KDCs. In EUROCRYPT, pages

327–346, 1999.

45. Moni Naor and Omer Reingold. Synthesizers and their application to the parallel construction of pseudo-random functions.

Journal of Computer and System Sciences, pages 336–375, 1999.

46. Jhordany Rodriguez Parra, Terence Chan, and Siu-Wai Ho. A noiseless key-homomorphic prf: Application on distributed

storage systems. In Australasian Conference on Information Security and Privacy, pages 505–513, 2016.

47. Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem. STOC, pages 333–342, 2009.

48. Chris Peikert and Alon Rosen. Efficient collision-resistant hashing from worst-case assumptions on cyclic lattices. In TCC,

pages 145–166, 2006.

49. Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A Framework for Efficient and Composable Oblivious Transfer.

In CRYPTO, pages 554–571, 2008.

50. K. Pietrzak. Subspace LWE. In TCC, pages 548–563, 2012.

51. Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In STOC, pages 84–93, 2005.

52. Markus Rückert. Lattice-based blind signatures. In ASIACRYPT, pages 413–430, 2010.

53. Vipin Singh Sehrawat and Yvo Desmedt. Bi-Homomorphic Lattice-Based PRFs and Unidirectional Updatable Encryption.

In CANS, volume 11829, pages 3–23. LNCS, Springer, 2019.

54. Adi Shamir. How to share a secret. Communications of the ACM, 22:612–613, Nov. 1979.

55. P. W. Shor. Algorithms for quantum computation: discrete logarithms and factoring. In FOCS, pages 124–134, 1994.

56. Dawn Xiaodong Song, David Wagner, and Adrian Perrig. Practical techniques for searches on encrypted data. In IEEE

Symposium on Security and Privacy, pages 44–55, 2000.

	Bi-Homomorphic Lattice-Based PRFs and Unidirectional Updatable Encryption

