Skip to main content

Anonymous Asynchronous Payment Channel from k-Time Accountable Assertion

  • Conference paper
  • First Online:
Book cover Cryptology and Network Security (CANS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11829))

Included in the following conference series:

  • 867 Accesses

Abstract

Accountable assertion enables a payer to make off-chain payments to a payee, and at the same time, the payer’s secret credentials can be revealed if she equivocates (i.e., makes conflicting statements to others). In this paper, we introduce a new construction of accountable assertion that allows an assertion to be accountable for k times. We also present a new construction of anonymous payment channels for the cryptocurrency Bitcoin that allows a payer with k-time accountable assertions to anonymously make off-chain payments to the payee. In particular, we define formal security models for the new constructions, we also prove that the k-time assertion can achieve strong secrecy, and the asynchronous payment channel can achieve anonymity and untraceability. The proposed anonymous payment channel with k-time accountable assertions ensures that: (1) the payee can anonymously receive funds at asynchronous points of sale, and (2) the payee can trace the real identities of payers when they equivocate, and penalize them afterward.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chainalysis. https://www.chainalysis.com

  2. Raiden Network. https://raiden.network

  3. Bender, A., Katz, J., Morselli, R.: Ring signatures: stronger definitions, and constructions without random oracles. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 60–79. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_4

    Chapter  Google Scholar 

  4. Brands, S.: Untraceable off-line cash in wallet with observers. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 302–318. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2_26

    Chapter  MATH  Google Scholar 

  5. Camenisch, J., Hohenberger, S., Lysyanskaya, A.: Compact e-cash. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 302–321. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639_18

    Chapter  Google Scholar 

  6. Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 61–76. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9_5

    Chapter  Google Scholar 

  7. Chiesa, A., Green, M., Liu, J., Miao, P., Miers, I., Mishra, P.: Decentralized anonymous micropayments. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10211, pp. 609–642. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56614-6_21

    Chapter  Google Scholar 

  8. Fujisaki, E., Suzuki, K.: Traceable ring signature. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 181–200. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71677-8_13

    Chapter  Google Scholar 

  9. Green, M., Miers, I.: Bolt: anonymous payment channels for decentralized currencies. In: CCS, pp. 473–489 (2017)

    Google Scholar 

  10. Krawczyk, H., Rabin, T.: Chameleon signatures. In: NDSS (2000)

    Google Scholar 

  11. Liu, J.K., Wei, V.K., Wong, D.S.: Linkable spontaneous anonymous group signature for ad hoc groups. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 325–335. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27800-9_28

    Chapter  Google Scholar 

  12. Miers, I., Garman, C., Green, M., Rubin, A.D.: Zerocoin: anonymous distributed e-cash from bitcoin. In: 2013 IEEE Symposium on Security and Privacy, pp. 397–411 (2013)

    Google Scholar 

  13. Nakamoto, S. : Bitcoin: a peer-to-peer electronic cash system (2008)

    Google Scholar 

  14. Noether, S.: Review of cryptonote white paper (2014)

    Google Scholar 

  15. Noether, S.: Ring signature confidential transactions for monero. IACR Cryptol. ePrint Arch. 2015, 1098 (2015)

    Google Scholar 

  16. Noether, S., Mackenzie, A., et al.: Ring confidential transactions. Ledger 1, 1–18 (2016)

    Article  Google Scholar 

  17. Pass, R., Shelat, A.: Micropayments for decentralized currencies. In: CCS, pp. 207–218 (2015)

    Google Scholar 

  18. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1_9

    Chapter  Google Scholar 

  19. Poon, J., Dryja, T.: The bitcoin lightning network: scalable off-chain instant payments (2016)

    Google Scholar 

  20. Rivest, R.L.: Electronic lottery tickets as micropayments. In: Hirschfeld, R. (ed.) FC 1997. LNCS, vol. 1318, pp. 307–314. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63594-7_87

    Chapter  Google Scholar 

  21. Ruffing, T., Kate, A., Schröder, D.: Liar, liar, coins on fire!: penalizing equivocation by loss of bitcoins. In: CCS, pp. 219–230 (2015)

    Google Scholar 

  22. E.B. Sasson, et al.: Decentralized anonymous payments from bitcoin. In: 2014 IEEE Symposium on Security and Privacy, pp. 459–474 (2014)

    Google Scholar 

  23. Schnorr, C.-P.: Efficient signature generation by smart cards. J. Cryptol. 4(3), 161–174 (1991)

    Article  Google Scholar 

  24. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

    Article  MathSciNet  Google Scholar 

  25. Sun, S.-F., Au, M.H., Liu, J.K., Yuen, T.H.: RingCT 2.0: a compact accumulator-based (linkable ring signature) protocol for blockchain cryptocurrency monero. In: Foley, S.N., Gollmann, D., Snekkenes, E. (eds.) ESORICS 2017. LNCS, vol. 10493, pp. 456–474. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66399-9_25

    Chapter  Google Scholar 

  26. Van Saberhagen, N.: Cryptonote v 2.0 (2013)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the Singapore National Research Foundation under NCR Award Number NRF2014NCR-NCR001-012, National Natural Science Foundation of China (Grant No. 61872229 and 61872264), National Cryptography Development Fund during the 13th Five-year Plan Period (MMJJ20170216) and Fundamental Research Funds for the Central Universities (GK201702004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yangguang Tian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tian, Y., Li, Y., Sengupta, B., Li, N., Yu, Y. (2019). Anonymous Asynchronous Payment Channel from k-Time Accountable Assertion. In: Mu, Y., Deng, R., Huang, X. (eds) Cryptology and Network Security. CANS 2019. Lecture Notes in Computer Science(), vol 11829. Springer, Cham. https://doi.org/10.1007/978-3-030-31578-8_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31578-8_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31577-1

  • Online ISBN: 978-3-030-31578-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics