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Abstract In this chapter we offer an overview of microservices providing the intro-
ductory information that a reader should know before continuing reading this book.
We introduce the idea of microservices and we discuss some of the current research
challenges and real-life software applications where the microservice paradigm play
a key role. We have identified a set of areas where both researcher and developer can
propose new ideas and technical solutions.

1 The Shift Towards Distribution

History of programming languages, paradigms and software architectures have been
characterized in the last few decades by a progressive shift towards distribution,
modularization and loose coupling. The purpose is to increase code reuse and ro-
bustness [17, 29], ultimately a necessity dictated by the need of increasing soft-
ware quality, not only in safety and financial-critical applications [39], but also in
more common off-the-shelf software packages. The two directions of modulariza-
tion 1 (code reuse and solid design) and robustness (software quality and formal
methods: verification/correctness-by-construction) advanced to some extent inde-
pendently and pushed by different communities, although with a non-empty over-
lap.
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Object-oriented technologies are prominent in software development [53], with
specific instances of languages incorporating both the aspects aforementioned (mod-
ularity and correctness). A notable example is the Eiffel programming language
[47], incorporating solid principles of Object-Oriented-Programming (OOP) within
a programming framework coordinated by the idea of design-by-contract, which
aims at correctness-by-construction. None of these technologies can nevertheless
rule out the need for testing, which robustly remains a pillar of the software devel-
opment lifecycle.

Other examples exist of languages having a strong emphasis on correctness, both
from the architectural viewpoint and in terms of meeting functional requirements
[41]. However, until recently, not much attention was dedicated to integrating these
principles into a distributed setting winning out properties such as easiness of de-
ployment, a lightweight design and development phase, and minimal need for inte-
gration testing. The idea of Microservices [18, 29] and Devops [3, 5, 46] stem out
exactly from this widespread and recognized need.

Chapter Outline and Contribution. The contribution of the chapter is twofold,
and thus organized in two main sections. Section 2 overviews the essential con-
cepts characterizing the Microservices paradigm, thus serving as introduction for
the entire book. Section 3 instead highlights some key research areas in which Mi-
croservices applications have gained particular interest and showed some research
progress. Conclusions and future works are summed up in Section 4.

2 Microservices

Microservices [18, 24, 29, 49] is an architectural style stemming from Service-
Oriented Architectures (SOAs) [37, 55]. According to this architectural style, a
system is structured by small independent building blocks – the microservices –
communicating only via message passing. The main idea is to move in the small
(within an application) some of the concepts that worked in the large, i.e. for
cross-organization business-to-business workflow which makes use of orchestra-
tion engines such as WS-BPEL (in turn inheriting some of the functional principles
from concurrency theory [36]). The characteristic differentiating the new style from
monolithic architectures and classic service-oriented architectures is the emphasis
on scalability, independence, and semantic cohesiveness of each unit constituting
the system. In its fundamental essence, the Microservices architecture [19] is built
on a few very simple principles:

• Bounded Context. First introduced in [22], this concept captures one of the key
properties of Microservices architecture: focus on business capabilities. Related
functionalities are combined into a single business capability which is then im-
plemented as a service.

• Size. Size is a crucial concept for microservices and brings major benefits in
terms of service maintainability and extendability. Idiomatic use of microservices
architecture suggests that if a service is too large, it should be refined into two
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or more services, thus preserving granularity and maintaining focus on providing
only a single business capability.

• Independency. This concept encourages loose coupling and high cohesion by
stating that each service in Microservices architectures is operationally inde-
pendent from others, and the only form of communication between services is
through their published interfaces.

2.1 Microservices vs. Monolith

All the programming languages for development of server-side applications provide
abstractions to break down the complexity of programs into modules or components
[12, 27, 51]. However, these languages are designed for the creation of single exe-
cutable artifacts. In monolithic architectures, the modularization abstractions rely on
the sharing of resources such as memory, databases and files of the same machine.
The components are therefore not independently executable. Figure 1 (reproduced
from [45]) shows the classic monolithic organization: the different layers of the sys-
tem (interface/presentation, internal business logic, and persistence tools) are here
split in terms of responsibilities between different modules (the vertical split with
numbers from 1 to 4). In fact, each module may take part in the implementation of
functionalities related to each layer, the database is common, and so the access to
other resources such as memory.

Fig. 1 Monolith Architecture

Figure 2 (reproduced from [45]) shows the componentization in a Microservices
architecture. Each service has its own dedicated persistence tool and communication
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is via message passing. With this organization there is no vertical split through all
the system layers, and the deployment is independent. The complexity is moved to
the level of coordination of services (often called orchestration [44]). Moreover, a
number of additional problems need to be addressed due to the distributed nature of
the Microservices approach (e.g., trust and certification [15, 20]).

Fig. 2 Microservices Architecture

2.2 Microservices vs. SOA

In SOA, services are not required to be self-contained with data and User Interface,
and their own persistence tools, eg. database. SOA has no focus on independent
deployment units and related consequences, it is simply an approach for business-
to-business intercommunication. The idea of SOA was to enable business-level pro-
gramming through business processing engines and languages such as WS-BPEL
and BPMN that were built on top of the vast literature on business modelling [58].
Furthermore, the emphasis was all on service composition [35, 21] more than ser-
vice development and deployment.

2.3 Size Matters: The Organization of Teams

A microservice is not just a very small service. There is no predefined size limit
that defines whether a service is a microservice or not. From this angle, the term
“microservice” can somehow be misleading. Each microservice is expected to im-
plement a single business capability, in fact a very limited system functionality,
bringing benefits in terms of service maintainability and extendability. Since each
microservice represents a single business capability, which is delivered and updated
independently, discovering bugs or adding minor improvements do not have any im-
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pact on other services and on their releases. In common practice, it is also expected
that a single service can be developed and managed by a single team [18].

In order to build a system with a modular and loosely coupled design, it is neces-
sary to pay attention to the organization structure and the communication patterns.
These patterns directly impact the produced design (Conway’s Law [13]. If a struc-
ture is based on the idea that each team work on a single service, then the commu-
nication will be more efficient at the team level and in the entire organization. This
will lead to an improved design in terms of modularity. Microservices’ approach is
to keep teams small and communications efficient by creating small cross-functional
(DevOps) teams that are able to continuously work on the same service and to be
fully responsible for it (“you build it, you run it” principle [26]).

The teams are organized around services, which in turn are organized around
business capabilities [24]. The optimal team size for microservices is best described
by Jeff Bezos’ famous “two pizza team” rule, which suggests that the size of a team
should be no larger than what two pizzas can feed. The rule itself does not give an
exact number, however it is possible to estimate it to be around 6-8 people. The
drawback of such approach is that it is not always practical from the financial point
of view to maintain a dedicated team of developers for a single service as it may lead
to high development/maintenance costs [30]. Furthermore, one should be careful
when designing the high level structure of the organization using microservices -
increasing the number of services might negatively impact the overall organization
efficiency, if no further actions are taken.

3 Research and Applications

Microservices have recently seen a dramatic growth in popularity and in concrete
applications [49]. The shift towards microservices is seeing several companies in-
volved in a major refactoring of their back-end systems to accommodate the new
paradigm [6, 39]. Other companies just start their business model developing soft-
ware following the microservice paradigm since day one. We are in the middle of
a major change in the view in which software is intended, and in the way in which
capabilities are organized into components, and industrial systems are conceived.
In this section we describe recent research progress for what concern Microservices
applications [45]. It can be structured in the following areas:

• Programming Languages
• Type Checker
• Migration from Monoliths
• Education in DevOps
• Modeling and Self-adaptability
• Real-life software applications with Microservices
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3.1 Programming Languages

Microservice systems are currently developed using mostly general-purpose pro-
gramming languages that do not provide dedicated abstractions for service compo-
sition. Current practice is indeed focused on the deployment aspects of microser-
vices, in particular by using containerization. We investigated this issue and made
a case for a language-based approach to the engineering of Microservices architec-
tures. We believe that this approach is complementary to current practice. In [28]
we discussed the approach in general, and we instantiate it in terms of the Jolie pro-
gramming language; however the concept is independent from the specific technical
solution adopted. Four important concepts have been identified to be first class enti-
ties in the programming language in order to address the Microservices architecture:

1. Interfaces: to support modular programming, services has to be deployed as black
boxes. In order to compose services in larger systems, interfaces have to describe
the provided functionalities and those required from the environment.

2. Ports: since a microservice interacts with other services, a communication port
describes how its functionalities are made available to the network (interface,
communication technology, and data protocol). Ports should be specified sepa-
rately from the implementation of a service. Input ports describe the functionali-
ties that the service provides to the rest of the system, while output ports describe
the functionalities that the service requires from the rest of the system.

3. Workflows: structured protocols appear repeatedly in microservices and they are
not natively supported by mainstream languages. All possible operations are al-
ways enabled (for example in Object-Oriented programming). Causal dependen-
cies are programmed by using a book-keeping variable, which is error-prone, and
it does not scale when the number of causality links increases. A microservice
language should provide abstractions for programming workflows.

4. Processes: workflows define the blueprint of the behavior of a service. At runtime
a service may interact with multiple clients and other external services, therefore
there is need to support multiple concurrent executions of its workflow. A process
is a running instance of a workflow, and a service may include many processes
executing concurrently. Each process runs independently of the others, to avoid
interference, and has its own private state.

3.2 Type Checker

Static type checking is generally desirable for programming languages improving
software quality, lowering the number of bugs and preventing avoidable errors. The
idea is to allow compilers to identify as many issues as possible before actually run
the program, and therefore avoid a vast number of trivial bugs, catching them at a
very early stage. Despite the fact that, in the general case interesting properties of
programs are undecidable [52], static type checking, within its limits, is an effective
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and well established technique of program verification. If a compiler can prove that
a program is well-typed, then it does not need to perform dynamic safety checks,
allowing the resulting compiled binary to run faster.

In [16] we described and prototyped the Jolie Static Type Checker (JSTC), a
static type checker for the Jolie programming language which natively supports mi-
croservices. The static type system for the language was exhaustively and formally
defined on paper [50], but needed implementation. The type checker prototype con-
sists of a set of rules for the type system expressed in SMT Lib language. The actual
implementation covers operations such as assignments, logical statements, condi-
tions, literals and comparisons.

In [56] we integrated dynamic and static type checking with the introduction of
refinement types, verified via an SMT solver. The integration of the two aspects
allows a scenario where the static verification of internal services and the dynamic
verification of (potentially malicious) external services cooperate in order to reduce
testing effort and enhance security.

3.3 Migration from Monoliths

Several companies are evaluating pros and cons of a migrating to microservices. Fi-
nancial institutions are positioned in a difficult situation due to the economic climate
and the appearance of small players that grew big fast in recent times, such as alter-
native payment systems, that can also navigate in a more flexible (and less regulated)
legal framework and started their business since day one with more agile architec-
tures and without being bounded to outdated technological standard. We worked
closely with Danske Bank, the largest bank in Denmark and one of the leading fi-
nancial institutions in Northern Europe, to demonstrate how scalability is positively
affected by re-implementing a monolithic architecture into a Microservices one [6].

Evolution is necessary to stay competitive. When compared with companies
(such as Paypal) that started their activities using innovative technologies as a busi-
ness foundation, in order to scale and deliver value, old banking institutions appear
outdated with regards to technology standards. We worked on the FX Core system, a
mission critical system of Danske Bank’s software. A key outcome of our research
has been the identification of a repeatable migration process that can be used to
convert a real world Monolithic architecture into a Microservices one in the specific
setting of a financial system, which is typically characterized by legacy systems and
batch-based processing on heterogeneous data sources [39].

3.4 Education in DevOps

DevOps is a natural evolution of the Agile approaches [33, 4] from the software it-
self to the overall infrastructure and operations. This evolution was made possible by
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the spread of cloud-based technologies and the everything-as-a-service approaches.
Adopting the DevOps paradigm helps software teams to release applications faster
and with more quality. DevOps and Microservice Architecture appear to be an indi-
visible pair for organizations aiming at delivering applications and services at high
velocity. Investing in DevOps is a good idea in general, and after a migration to
microservices it is typically crucial.

As long as DevOps became a widespread philosophy, the necessity of education
in the field become more and more important, both from the technical and organisa-
tional point of view [11]. The DevOps philosophy may be introduced in companies
with adequate training, but only if certain technological, organizational and cultural
prerequisites are present. If not, the prerequisites should be developed. We have
been deeply involved in recent years in teaching both undergraduate and graduate
students at the university, and junior/senior professional developers in industry. We
have been also working often with management [46, 5].

3.5 Modeling and Self-Adaptability

Innovative engineering is always looking for adequate tools to model and verify
software systems, as well as support developers in deploying correct software. Mi-
croservices is an effective paradigm to cope with scalability; however, the paradigm
still misses a conceptual model able to support engineers since the early phases
of development. To make the engineering process of a microservices-based appli-
cation efficient, we need a uniform way to model autonomous and heterogeneous
microservices, at a level of abstraction that allows for easy interconnection through
dynamic relations. Each microservice must have a partial view on the surround-
ing operational environment (i.e., system knowledge) and at the same time must be
able to be specialized/refined and adapted to face different requirements, user needs,
context-changes, and missing functionalities.

To be robust, each microservice must be able to dynamically adapt its behaviour
and its goals to changes in the environment but also to collaborative interactions
with other microservice during their composition/orchestration. At the same time
the adaptation must not be controlled centrally and imposed by the system but must
be administrated in a decentralised fashion among the microservices.

An important feature of dynamic and context-aware service-based systems is the
possibility of handling at run-time extraordinary/improbable situations (e.g., context
changes, availability of functionalities, trust negotiation), instead of analyzing such
situations at design-time and pre-embedding the corresponding recovery activities.
The intrinsic characteristics of microservice architectures make possible to nicely
model run-time dependability concepts, such as “self-protecting” and “self-healing”
systems [20]. To make this feasible, we should enable microservices to monitor their
operational environment and trigger adaptation needs each time a specific system
property is violated. To cover the aforementioned research challenges, we already
started to define a roadmap [48] that includes an initial investigation on how Domain
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Objects [10] could be an adequate formalism both to capture the peculiarity of MSA,
and to support the software development since the early stages.

3.6 Real-life Software Applications with Microservices

3.6.1 Smart Buildings

Smart buildings represent a key example of application domain where properties
like scalability, minimality and cohesiveness play a key role. As a result, smart build-
ings are an ideal application scenario for the Microservices paradigm. This domain
has been investigated with an outlook on Internet-of-Things technologies (IoT) and
smart cities [43]. In [54] and [31] it has been shown how rooms of a building can be
equipped with devices and sensors in order to capture the fundamental parameters
determining well-being and livability of humans, such as temperature, humidity,
and illumination. This solution allows to monitor an equipped area and therefore
collect data that can be mined and analyzed for specific purposes. The nodes used in
this system consist of Raspberry Pi micro-computers [1], Texas Instruments Sensor
Tags [2], door sensor and a web camera. Currently, this system is able to collect
and analyze room temperature, pressure and illumination level. It is also able to
distinguish and count people, which are located in the covered area. The purpose
is to monitor and optimize working conditions. The software infrastructure, tightly
connected to the hardware, makes use of Microservices to achieve the desired level
of scalability, minimality and cohesiveness. Sensors and actuators are connected to
a central control panel that is responsible to manage them. At the same time, an
automatic Personal Assistant has been designed. It is capable to observe data, learn
about different users preferences, and adapt the room conditions accordingly for the
different phases of his/her work [32].

3.6.2 Smart Mobility

Organizing and managing the mobility services within a city, meeting traveler’s ex-
pectations and properly exploiting the available transport resources, is becoming a
more and more complex task. The inadequacy of traditional transportation models
is proven by the prolification of alternative, social and grassroots initiatives aim-
ing at a more flexible, customized and collective way of organizing transport (e.g.,
carpooling, ride and park sharing services, flexi-buses) [14, 23, 25]. Some of these
attempts have been very successful (e.g., Uber), even if in most cases these are seen
as isolated solutions targeting specific mobility target groups and are not part of the
city mobility ecosystem, mainly based on traditional public and private transport
facilities.

An attempt of re-thinking the way mobility is managed and offered is represented
by the Mobility as a Service (MaaS) model. MaaS solutions (e.g., MaaS Global:
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http://maas.global) aim at arranging the most suitable transport solution for their
customers thanks to cost effective integrated offer of different multi-modal means
of transportation. MaaS also foresees radical changes in the business landscape,
with a new generation of mobility operators emerging as key actors to manage the
increased flexibility and dynamism offered by this new concept of mobility.

People need to travel quickly and conveniently between locations at different
scales, ranging from a trip of a few blocks to a journey across town or further.
Each trip has its set of requirements. Time may be of the essence. Cost may be
paramount, and the convenience of door-to-door travel may be important. In each
case, the transportation infrastructure should seamlessy provide the best option. A
modern city needs to flexibly integrate transportation options including buses, trains,
taxis, autonomous vehicles, bicycles and private cars.

Before changing communities to support what is believed the future transporta-
tion will look like and behave, it is necessary to develop mechanisms that allow
planners of these localities to model, analyse, and present these possible configu-
rations in ways that the citizens of the communities can understand and participate
in.

Coordination for Mobility as a Service can be implemented on a spectrum,
ranging from independent services communicating exclusively through market ex-
changes to hybrid market/hierarchy approaches fixed hierarchical control systems.

Every transportation mean does not need to be a individual competing across
multiple markets, but neither should there only be one rigid hierarchy. "Diversity"
and “Distributed” selection of the appropriate mean (or a combination of them) is
the appropriate compromise respect to say that if one is better than the other, we
"kill" the other.

To realize such a "dynamic" and "emergent" behaviors in transportation systems,
needs a new way for developing their supporting software systems. In the last years,
Collective adaptive systems (CAS) have been introduced and studied by many re-
searchers in different application domains (i.e., Industry 4.0, Logistics, Smart Cities
and Mobility, Energy, Biology, etc..) 2. CAS consists of diverse heterogeneous enti-
ties composing a socio-technical system. Individual entities "opportunistically" en-
ter a system and self-adapt in order to leverage other entities’ resources and ser-
vices to perform their task more efficiently or effectively. At the same time, also
collections of entities, called Ensembles, must be able to self-adapt simultaneously
to preserve the collaboration and benefits of the system (or sub-system) they are
within.

In this very dynamic and rapidly evolving setting, microservices have the poten-
tial of offering the right concepts for modeling and for programming smart mobility
solutions. Coordination for Mobility as a Services (MaaS) is a mandatory require-
ment to maintain a certain level of city sustainability (i.e., less CO2 emission, more
citizen participation and satisfaction, etc..). It can be implemented on a spectrum,
ranging from independent agents communicating exclusively through market ex-
changes to hybrid market/hierarchy approaches fixed hierarchical control systems.

2 http://www.focas.eu/focas-manifesto.pdf

http://maas.global
http://www.focas.eu/focas-manifesto.pdf
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Our opinion is that instead to implement a selfish mobility we see the need to re-
alize a collective and cooperative mobility where each MaaS provider sees in each
single competitors a partner and not an enemy [9]. This domain open new chal-
lenges in how distributed microservices, provided by different mobility entities, can
be composed dynamically to provide real-time and continuous answers to citizens
in a Smart City.

4 Conclusions

The microservice architecture is a style that is increasingly gaining popularity, both
in academia and in the industry. Even though it is likely to conduct to a paradigm
shift and a dramatic change in perception, it does not build on vacuum, and instead
relates to well-established paradigms such as OO and SOA. In [19] a comprehensive
survey on recent developments of Microservices architecture is presented with focus
on the evolutionary aspects more than the revolutionary ones. The presentation there
is intended to help the reader in understanding the distinguishing characteristics of
microservices.

We have a long experience in the field of services and business processes [8,
34, 40, 57, 58], including workflows and their reconfiguration [7, 38, 42]. We built
on top of this expertise to focus on the active research field of Microservices, and
summarized our work in this chapter.

The future will see a growing attention regarding the matters discussed in this
chapter, and the development of new programming languages intended to address
the microservice paradigm [28]. Object-Oriented programming brought fresh ideas
in the last decades, and the expectation is that a comparable shift may be just ahead
of us. Holding on the optimism the future is certainly not challenge-free. Security
of the microservice paradigm is an issue almost fully untouched [19]. Commercial-
level quality packages for development are still far to come, despite the acceleration
in the interest regarding the matter. Fully-verified software is an open problem the
same way it is for more traditional development models. That said, several research
centers around the world have addressed and are addressing all these issues in the
attempt to ride the wave and make the new generation of distributed systems a real-
ity.

References

1. Raspberri pi official site. https://www.raspberrypi.org/, Last accessed June 2017.
2. Texas instruments sensor tag official site. http://www.ti.com/ww/en/wireless_

connectivity/sensortag/gettingStarted.html, Last accessed June 2017.
3. Len Bass, Ingo Weber, and Liming Zhu. DevOps: A Software Architect’s Perspective.

Addison-Wesley Professional, 2015.

https://www.raspberrypi.org/
http://www.ti.com/ww/en/wireless_connectivity/sensortag/gettingStarted.html
http://www.ti.com/ww/en/wireless_connectivity/sensortag/gettingStarted.html


12 Mazzara et al.

4. Len Bass, Ingo Weber, and Liming Zhu. DevOps: A Software Architect’s Perspective.
Addison-Wesley Professional, 1st edition, 2015.

5. Evgeny Bobrov, Antonio Bucchiarone, Alfredo Capozucca, Nicolas Guelfi, Manuel Mazzara,
and Sergey Masyagin. Teaching devops in academia and industry: reflections and vision. In
Software Engineering Aspects of Continuous Development and New Paradigms of Software
Production and Deployment - Second International Workshop, DEVOPS 2019, Chateau de
Villebrumier,, 2019.

6. Antonio Bucchiarone, Nicola Dragoni, Schahram Dustdar, Stephan Thordal Larsen, and
Manuel Mazzara. From monolithic to microservices: An experience report from the bank-
ing domain. IEEE Software, 35(3):50–55, 2018.

7. Antonio Bucchiarone, Annapaola Marconi, Marco Pistore, and Heorhi Raik. Dynamic adap-
tation of fragment-based and context-aware business processes. In ICWS, pages 33–41. IEEE
Computer Society, 2012.

8. Antonio Bucchiarone, Annapaola Marconi, Marco Pistore, and Heorhi Raik. A context-aware
framework for dynamic composition of process fragments in the internet of services. J. Inter-
net Services and Applications, 8(1):6:1–6:23, 2017.

9. Antonio Bucchiarone, Martina De Sanctis, and Annapaola Marconi. Decentralized dynamic
adaptation for service-based collective adaptive systems. In ICSOC Workshops, volume 10380
of Lecture Notes in Computer Science, pages 5–20. Springer, 2016.

10. Antonio Bucchiarone, Martina De Sanctis, Annapaola Marconi, Marco Pistore, and Paolo
Traverso. Incremental composition for adaptive by-design service based systems. In IEEE
ICWS 2016, San Francisco, CA, USA, June 27 - July 2, pages 236–243, 2016.

11. Ineta Bucena and Marite Kirikova. Simplifying the devops adoption process. In Joint Pro-
ceedings of the BIR 2017 pre-BIR Forum, Workshops and Doctoral Consortium co-located
with 16th International Conference on Perspectives in Business Informatics Research (BIR
2017), Copenhagen, Denmark, August 28 - 30, 2017., 2017.

12. Clark J., Clarke C., De Panfilis S., De Panfilis S., Sillitti A., Succi G., and Vernazza T. Se-
lecting components in large COTS repositories. Journal of Systems and Software, pages 323
– 331, 2004.

13. Melvin E Conway. How do committees invent. Datamation, 14(4):28–31, 1968.
14. Oussama Dakroub, Carl Michael Boukhater, Fayez Lahoud, Mariette Awad, and Hassan Ar-

tail. An intelligent carpooling app for a green social solution to traffic and parking congestions.
In 16th International IEEE Conference on Intelligent Transportation Systems, ITSC 2013, The
Hague, The Netherlands, October 6-9, 2013, pages 2401–2408, 2013.

15. Damiani E., El Ioini N., Sillitti A., and Succi G. WS-certificate. In 2009 IEEE International
Workshop on Web Services Security Management. IEEE, 2009.

16. Bogdan Mingela Larisa Safina Alexander Tchitchigin Nikolay Troshkov Daniel de Carvalho,
Manuel Mazzara. Jolie static type checker: a prototype. Modeling and Analysis of Information
Systems, 24(6):704–717, 2017.

17. Eduardo Santana de Almeida, Alexandre Alvaro, Daniel Lucrédio, Vinicius Cardoso Garcia,
and Silvio Romero de Lemos Meira. Rise project: Towards a robust framework for software
reuse. In Proceedings of the 2004 IEEE International Conference on Information Reuse and
Integration, IRI - 2004, November 8-10, 2004, Las Vegas Hilton, Las Vegas, NV, USA, pages
48–53, 2004.

18. N. Dragoni, S. Giallorenzo, A. Lluch-Lafuente, M. Mazzara, F. Montesi, R. Mustafin, and
L. Safina. Microservices: yesterday, today, and tomorrow. In Present and Ulterior Software
Engineering. Springer, 2017.

19. Nicola Dragoni, Saverio Giallorenzo, Alberto Lluch-Lafuente, Manuel Mazzara, Fabrizio
Montesi, Ruslan Mustafin, and Larisa Safina. Microservices: Yesterday, today, and tomor-
row. In Present and Ulterior Software Engineering., pages 195–216. 2017.

20. Nicola Dragoni, Fabio Massacci, and Ayda Saidane. A self-protecting and self-healing frame-
work for negotiating services and trust in autonomic communication systems. Computer Net-
works, 53(10):1628 – 1648, 2009.

21. Schahram Dustdar and Wolfgang Schreiner. A survey on web services composition. IJWGS,
1(1):1–30, 2005.



Size Matters: Microservices Research and Applications 13

22. Eric Evans. Domain-driven design: tackling complexity in the heart of software. Addison-
Wesley Professional, 2004.

23. Daniel Fagnant and Kara Kockelman. Dynamic ride-sharing and fleet sizing for a system of
shared autonomous vehicles in austin, texas. Transportation, 45:28–46, 08 2016.

24. M. Fowler and J. Lewis. Microservices. ThoughtWorks, 2014.
25. Masabumi Furuhata, Maged Dessouky, Fernando Ordóñez, Marc-Etienne Brunet, Xiaoqing

Wang, and Sven Koenig. Ridesharing: The state-of-the-art and future directions. Transporta-
tion Research Part B: Methodological, 57:28–46, 11 2013.

26. Jim Gray. A conversation with werner vogels. ACM Queue, 4(4):14–22, 2006.
27. Gross H.G., Melideo M., and Sillitti A. Self certification and trust in component procurement.

Journal of Science of Computer Programming, pages 141 – 156, 2005.
28. Claudio Guidi, Ivan Lanese, Manuel Mazzara, and Fabrizio Montesi. Microservices: A

Language-Based Approach, pages 217–225. Springer International Publishing, Cham, 2017.
29. Pooyan Jamshidi, Claus Pahl, Nabor C. Mendonça, James Lewis, and Stefan Tilkov. Microser-

vices: The journey so far and challenges ahead. IEEE Software, 35(3):24–35, 2018.
30. Steve Jones. Microservices is soa, for those who know what soa is.

http://service-architecture.blogspot.co.uk/2014/03/
microservices-is-soa-for-those-who-know.html, 2014.

31. K. Khanda, D. Salikhov, K. Gusmanov, M. Mazzara, and N. Mavridis. Microservice-based
iot for smart buildings. In 2017 31st International Conference on Advanced Information Net-
working and Applications Workshops (WAINA), pages 302–308, March 2017.

32. Azat Khusnutdinov, Denis Usachev, Manuel Mazzara, Adil Khan, and Ivan Panchenko. Open
source platform digital personal assistant. In 32nd International Conference on Advanced In-
formation Networking and Applications Workshops, AINA 2018 workshops, Krakow, Poland,
May 16-18, 2018, pages 45–50, 2018.

33. Gene Kim, Patrick Debois, John Willis, and Jez Humble. The DevOps Handbook: How to Cre-
ate World-Class Agility, Reliability, and Security in Technology Organizations. IT Revolution
Press, 2016.

34. Stephen Lane, Antonio Bucchiarone, and Ita Richardson. Soadapt: A process reference model
for developing adaptable service-based applications. Information & Software Technology,
54(3):299–316, 2012.

35. Angel Lagares Lemos, Florian Daniel, and Boualem Benatallah. Web service composition: A
survey of techniques and tools. ACM Comput. Surv., 48(3):33:1–33:41, 2016.

36. Roberto Lucchi and Manuel Mazzara. A pi-calculus based semantics for WS-BPEL. J. Log.
Algebr. Program., 70(1):96–118, 2007.

37. M.C. MacKenzie et al. Reference model for service oriented architecture 1.0. OASIS Standard,
12, 2006.

38. Dragoni Nicola Zhou Mu. Mazzara, Manuel. Dependable workflow reconfiguration in WS-
BPEL. In Proceedings of the 5th Nordic Workshop on Dependability and Security, 2011.

39. M. Mazzara, N. Dragoni, A. Bucchiarone, A. Giaretta, S. T. Larsen, and S. Dustdar. Microser-
vices: Migration of a mission critical system. IEEE Transactions on Services Computing,
pages 1–1, 2018.

40. Manuel Mazzara. Towards Abstractions for Web Services Composition. PhD thesis, University
of Bologna, 2006.

41. Manuel Mazzara. Deriving specifications of dependable systems: toward a method. CoRR,
abs/1009.3911, 2010.

42. Manuel Mazzara, Faisal Abouzaid, Nicola Dragoni, and Anirban Bhattacharyya. Toward de-
sign, modelling and analysis of dynamic workflow reconfigurations - A process algebra per-
spective. In Web Services and Formal Methods - 8th International Workshop, WS-FM, pages
64–78, 2011.

43. Manuel Mazzara, Ilya Afanasyev, Smruti R. Sarangi, Salvatore Distefano, and Vivek Kumar.
A reference architecture for smart and software-defined buildings. CoRR, abs/1902.09464,
2019.

44. Manuel Mazzara and Sergio Govoni. A Case Study of Web Services Orchestration, pages
1–16. Springer Berlin Heidelberg, 2005.

http://service-architecture.blogspot.co.uk/2014/03/microservices-is-soa-for-those-who-know.html
http://service-architecture.blogspot.co.uk/2014/03/microservices-is-soa-for-those-who-know.html


14 Mazzara et al.

45. Manuel Mazzara, Kevin Khanda, Ruslan Mustafin, Victor Rivera, Larisa Safina, and Alberto
Sillitti. Microservices science and engineering. In Paolo Ciancarini, Stanislav Litvinov, An-
gelo Messina, Alberto Sillitti, and Giancarlo Succi, editors, Proceedings of 5th International
Conference in Software Engineering for Defence Applications, pages 11–20, Cham, 2018.
Springer International Publishing.

46. Manuel Mazzara, Alexandr Naumchev, Larisa Safina, Alberto Sillitti, and Konstantin Urysov.
Teaching devops in corporate environments - an experience report. In Software Engineering
Aspects of Continuous Development and New Paradigms of Software Production and Deploy-
ment - First International Workshop, DEVOPS 2018, Chateau de Villebrumier, France, March
5-6, 2018, Revised Selected Papers, pages 100–111, 2018.

47. Bertrand Meyer. Object-Oriented Software Construction. Prentice-Hall, Inc., 1st edition,
1988.

48. Kizilov Mikhail, Antonio Bucchiarone, Manuel Mazzara, Larisa Safina, and Víctor Rivera.
Domain objects and microservices for systems development: a roadmap. In Proceedings of
5th International Conference in Software Engineering for Defence Applications, 2017.

49. S. Newman. Building microservices. O’Reilly Media, Inc., 2015.
50. Julie Meinicke Nielsen. A Type System for the Jolie Language. Master’s thesis, Technical

University of Denmark, 2013.
51. Predonzani P., Sillitti A., and Vernazza T. Components and data-flow applied to the integration

of web services. In The 27th Annual Conference of the IEEE Industrial Electronics Society
(IECON01), 2001.

52. Henry Gordon Rice. Classes of recursively enumerable sets and their decision problems.
Trans. Amer. Math. Soc., 74:358–366, 1953.

53. James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy, William E. Lorensen,
et al. Object-oriented modeling and design, volume 199. Prentice-hall Englewood Cliffs, NJ,
1991.

54. D. Salikhov, K. Khanda, K. Gusmanov, M. Mazzara, and N. Mavridis. Jolie good buildings:
Internet of things for smart building infrastructure supporting concurrent apps utilizing dis-
tributed microservices. In Proceedings of the 1st International conference on Convergent
Cognitive Information Technologies, pages 48–53, 2016.

55. Sillitti A., Vernazza T., and Succi G. Service oriented programming: a new paradigm of soft-
ware reuse. In 7th International Conference on Software Reuse, Lecture Notes in Computer
Science 2319, pages 269–280. Springer Berlin Heidelberg, 2002.

56. Alexander Tchitchigin, Larisa Safina, Manuel Mazzara, Mohamed Elwakil, Fabrizio Montesi,
and Victor Rivera. Refinement types in jolie. Proceedings of the Institute for System Program-
ming, 28:33–44, 2016.

57. Zhixian Yan, Emilia Cimpian, Michal Zaremba, and Manuel Mazzara. BPMO: semantic busi-
ness process modeling and WSMO extension. In 2007 IEEE International Conference on Web
Services (ICWS 2007), July 9-13, 2007, Salt Lake City, Utah, USA, pages 1185–1186, 2007.

58. Zhixian Yan, Manuel Mazzara, Emilia Cimpian, and Alexander Urbanec. Business process
modeling: Classifications and perspectives. In Business Process and Services Computing: 1st
International Working Conference on Business Process and Services Computing, BPSC 2007,
September 25-26, 2007, Leipzig, Germany., page 222, 2007.


	Size Matters: Microservices Research and Applications
	Manuel Mazzara, Antonio Bucchiarone, Nicola Dragoni, Victor Rivera
	1 The Shift Towards Distribution
	2 Microservices
	2.1 Microservices vs. Monolith
	2.2 Microservices vs. SOA
	2.3 Size Matters: The Organization of Teams

	3 Research and Applications
	3.1 Programming Languages
	3.2 Type Checker
	3.3 Migration from Monoliths
	3.4 Education in DevOps
	3.5 Modeling and Self-Adaptability
	3.6 Real-life Software Applications with Microservices

	4 Conclusions
	References



