Skip to main content

Recurrent Deconvolutional Generative Adversarial Networks with Application to Video Generation

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11858))

Abstract

This paper proposes a novel model for video generation and especially makes the attempt to deal with the problem of video generation from text descriptions, i.e., synthesizing realistic videos conditioned on given texts. Existing video generation methods cannot be easily adapted to handle this task well, due to the frame discontinuity issue and their text-free generation schemes. To address these problems, we propose a recurrent deconvolutional generative adversarial network (RD-GAN), which includes a recurrent deconvolutional network (RDN) as the generator and a 3D convolutional neural network (3D-CNN) as the discriminator. The RDN is a deconvolutional version of conventional recurrent neural network, which can well model the long-range temporal dependency of generated video frames and make good use of conditional information. The proposed model can be jointly trained by pushing the RDN to generate realistic videos so that the 3D-CNN cannot distinguish them from real ones. We apply the proposed RD-GAN to a series of tasks including conventional video generation, conditional video generation, video prediction and video classification, and demonstrate its effectiveness by achieving well performance.

Student first author.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bin, H., Weihai, C., Xingming, W., Chun-Liang, L.: High-quality face image SR using conditional generative adversarial networks. arXiv preprint arXiv:1707.00737 (2017)

  2. Dosovitskiy, A., Tobias Springenberg, J., Brox, T.: Learning to generate chairs with convolutional neural networks. In: CVPR (2015)

    Google Scholar 

  3. Goodfellow, I., et al.: Generative adversarial nets. In: NeurIPS (2014)

    Google Scholar 

  4. Gregor, K., Danihelka, I., Graves, A., Rezende, D., Wierstra, D.: Draw: a recurrent neural network for image generation. In: ICML (2015)

    Google Scholar 

  5. Hadsell, R., Chopra, S., LeCun, Y.: Dimensionality reduction by learning an invariant mapping. In: CVPR (2006)

    Google Scholar 

  6. Kalchbrenner, N., et al.: Video pixel networks. arXiv:1610.00527 (2016)

  7. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv:1312.6114 (2013)

  8. Kiros, R., et al.: Skip-thought vectors. In: NeurIPS (2015)

    Google Scholar 

  9. Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv:1411.1784 (2014)

  10. Misra, I., Zitnick, C.L., Hebert, M.: Shuffle and learn: unsupervised learning using temporal order verification. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 527–544. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_32

    Chapter  Google Scholar 

  11. Nemirovski, A., Yudin, D.: On Cezari’s convergence of the steepest descent method for approximating saddle point of convex-concave functions. In: Soviet Math. Dokl (1978)

    Google Scholar 

  12. van den Oord, A., Kalchbrenner, N., Espeholt, L., Vinyals, O., Graves, A., et al.: Conditional image generation with PixelCNN decoders. In: NeurIPS (2016)

    Google Scholar 

  13. Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., Lee, H.: Generative adversarial text to image synthesis. In: ICML (2016)

    Google Scholar 

  14. Reed, S., van den Oord, A., Kalchbrenner, N., Bapst, V., Botvinick, M., deFreitas, N.: Generating interpretable images with controllable structure. Technical report (2016)

    Google Scholar 

  15. Reed, S.E., Zhang, Y., Zhang, Y., Lee, H.: Deep visual analogy-making. In: NeurIPS (2015)

    Google Scholar 

  16. Saito, M., Matsumoto, E., Saito, S.: Temporal generative adversarial nets with singular value clipping. In: ICCV (2017)

    Google Scholar 

  17. Soomro, K., Zamir, A.R., Shah, M.: UCF101: a dataset of 101 human actions classes from videos in the wild. arXiv:1212.0402 (2012)

  18. Tan, W.R., Chan, C.S., Aguirre, H., Tanaka, K.: Improved ArtGAN for conditional synthesis of natural image and artwork. arXiv preprint arXiv:1708.09533 (2017)

  19. Tieleman, T.: Optimizing neural networks that generate images. Ph.D. thesis (2014)

    Google Scholar 

  20. Tulyakov, S., Liu, M.Y., Yang, X., Kautz, J.: MoCoGAN: decomposing motion and content for video generation. In: CVPR (2018)

    Google Scholar 

  21. Van DenOord, A., Kalchbrenner, N., Kavukcuoglu, K.: Pixel recurrent neural networks. In: ICML (2016)

    Google Scholar 

  22. Vondrick, C., Pirsiavash, H., Torralba, A.: Generating videos with scene dynamics. In: NeurIPS (2016)

    Google Scholar 

  23. Wang, L., Xiong, Y., Wang, Z., Qiao, Y.: Towards good practices for very deep two-stream ConvNets. arXiv:1507.02159 (2015)

  24. Wang, X., Gupta, A.: Generative image modeling using style and structure adversarial networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 318–335. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_20

    Chapter  Google Scholar 

  25. Wu, H., Zheng, S., Zhang, J., Huang, K.: GP-GAN: towards realistic high-resolution image blending. arXiv preprint arXiv:1703.07195 (2017)

  26. Yang, J., Reed, S.E., Yang, M.H., Lee, H.: Weakly-supervised disentangling with recurrent transformations for 3D view synthesis. In: NeurIPS (2015)

    Google Scholar 

  27. Zhang, H., et al.: StackGAN: text to photo-realistic image synthesis with stacked generative adversarial networks. In: ICCV (2017)

    Google Scholar 

  28. Zhou, Y., Berg, T.L.: Learning temporal transformations from time-lapse videos. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 262–277. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_16

    Chapter  Google Scholar 

Download references

Acknowledgments

This work is jointly supported by National Key Research and Development Program of China (2016YFB1001000), National Natural Science Foundation of China (61525306, 61633021, 61721004, 61420106015, 61806194), Capital Science and Technology Leading Talent Training Project (Z181100006318030), Beijing Science and Technology Project (Z181100008918010) and CAS-AIR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yu, H., Huang, Y., Pi, L., Wang, L. (2019). Recurrent Deconvolutional Generative Adversarial Networks with Application to Video Generation. In: Lin, Z., et al. Pattern Recognition and Computer Vision. PRCV 2019. Lecture Notes in Computer Science(), vol 11858. Springer, Cham. https://doi.org/10.1007/978-3-030-31723-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31723-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31722-5

  • Online ISBN: 978-3-030-31723-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics