Skip to main content

Scalable Receptive Field GAN: An End-to-End Adversarial Learning Framework for Crowd Counting

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11858))

Abstract

Crowd counting is challenging for unrestricted open outdoor and diverse scenes. To address large variety of perspective, density distribution and clutter problems, a novel end-to-end deep generative adversarial framework with scalable receptive field (SRFGAN) is proposed for obtaining high quality density estimation in this paper. Specifically, our generator adopts an encoder-decoder network with residual blocks to achieve multi-scale features due to scalable receptive fields which adapts to different scale crowd distribution. We also explore a spatial global pooling layer to acquire image-level prior representation which helps to tackle severe perspective distortion and background clutter. Besides, feature matching loss and adversarial loss are combined via a joint training scheme, which helps to improve the quality of generated density map. Experiment results on ShanghaiTech and UCF_CC_50 datasets illustrate the superior effectiveness.

The first author is a student.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein GAN. arXiv preprint arXiv:1701.07875 (2017)

  2. Chan, A.B., Vasconcelos, N.: Bayesian Poisson regression for crowd counting. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 545–551. IEEE (2009)

    Google Scholar 

  3. Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587 (2017)

  4. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  5. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  6. Idrees, H., Saleemi, I., Seibert, C., Shah, M.: Multi-source multi-scale counting in extremely dense crowd images. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2547–2554. IEEE (2013)

    Google Scholar 

  7. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: CVPR (2017)

    Google Scholar 

  8. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  9. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. arXiv preprint (2016)

    Google Scholar 

  10. Lempitsky, V., Zisserman, A.: Learning to count objects in images. In: Advances in Neural Information Processing Systems, pp. 1324–1332 (2010)

    Google Scholar 

  11. Li, Y., Zhang, X., Chen, D.: CSRNet: dilated convolutional neural networks for understanding the highly congested scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1091–1100 (2018)

    Google Scholar 

  12. Lin, Z., Davis, L.S.: Shape-based human detection and segmentation via hierarchical part-template matching. IEEE Trans. Pattern Anal. Mach. Intell. 32(4), 604–618 (2010)

    Article  Google Scholar 

  13. Liu, W., Rabinovich, A., Berg, A.C.: ParseNet: looking wider to see better. arXiv preprint arXiv:1506.04579 (2015)

  14. Mao, X., Li, Q., Xie, H., Lau, R.Y., Wang, Z., Smolley, S.P.: Least squares generative adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2813–2821. IEEE (2017)

    Google Scholar 

  15. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434 (2015)

  16. Ryan, D., Denman, S., Fookes, C., Sridharan, S.: Crowd counting using multiple local features. In: Digital Image Computing: Techniques and Applications, DICTA 2009, pp. 81–88. IEEE (2009)

    Google Scholar 

  17. Sam, D.B., Surya, S., Babu, R.V.: Switching convolutional neural network for crowd counting. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, p. 6 (2017)

    Google Scholar 

  18. Shang, C., Ai, H., Bai, B.: End-to-end crowd counting via joint learning local and global count. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 1215–1219. IEEE (2016)

    Google Scholar 

  19. Shen, Z., Xu, Y., Ni, B., Wang, M., Hu, J., Yang, X.: Crowd counting via adversarial cross-scale consistency pursuit. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5245–5254 (2018)

    Google Scholar 

  20. Sindagi, V.A., Patel, V.M.: Generating high-quality crowd density maps using contextual pyramid cnns. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 1879–1888. IEEE (2017)

    Google Scholar 

  21. Szegedy, C., et al.: Going deeper with convolutions. In: CVPR (2015)

    Google Scholar 

  22. Veit, A., Wilber, M.J., Belongie, S.: Residual networks behave like ensembles of relatively shallow networks. In: Advances in Neural Information Processing Systems, pp. 550–558 (2016)

    Google Scholar 

  23. Wang, M., Wang, X.: Automatic adaptation of a generic pedestrian detector to a specific traffic scene. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3401–3408. IEEE (2011)

    Google Scholar 

  24. Zhang, C., Li, H., Wang, X., Yang, X.: Cross-scene crowd counting via deep convolutional neural networks. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 833–841. IEEE (2015)

    Google Scholar 

  25. Zhang, Y., Zhou, D., Chen, S., Gao, S., Ma, Y.: Single-image crowd counting via multi-column convolutional neural network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 589–597 (2016)

    Google Scholar 

  26. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2881–2890 (2017)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Natural Science Foundation of China (NSFC, Grant No. 61771303 and 61671289), Science and Technology Commission of Shanghai Municipality (STCSM, Grant Nos. 17DZ1205602, 18DZ1200-102, 18DZ2270700), SJTUYitu/Thinkforce Joint laboratory for visual computing and application, and National Engineering Laboratory for Public Safety Risk Perception and Control by Big Data (PSRPC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gao, Y., Yang, H. (2019). Scalable Receptive Field GAN: An End-to-End Adversarial Learning Framework for Crowd Counting. In: Lin, Z., et al. Pattern Recognition and Computer Vision. PRCV 2019. Lecture Notes in Computer Science(), vol 11858. Springer, Cham. https://doi.org/10.1007/978-3-030-31723-2_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31723-2_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31722-5

  • Online ISBN: 978-3-030-31723-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics