Skip to main content

Lightweight Video Object Segmentation Based on ConvGRU

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11858))

Included in the following conference series:

  • 2551 Accesses

Abstract

As one of the key tasks of video processing, video object segmentation technology is the foundation of high-level computer vision application. The spatio-temporal context information in the video is of great significance for video object segmentation. Existing algorithms usually introduce spatio-temporal context information with pre-trained models such as optical flow for segmentation, which will result in sub-optimal solution and huge computational resource consumption. To address the above problem, this paper proposes an end-to-end lightweight video object segmentation model based on ConvGRU. A convolutional neural network is used to extract the visual features of each frame, and recursive neural network is used to extract the spatio-temporal context information of the whole video. The ConvGRU is used to achieve the deep fusion of visual features and spatial-temporal context information. The MobileNet-based lightweight algorithm can meet the demand for practical application and solve the problem of high consumption for computing resources. Experiments on DAVIS2016 dataset show that our method is competitive with similar state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang, Z., Liu, S., Zhang, J., Chen, S., Guan, Q.: A spatio-temporal CRF for human interaction understanding. IEEE Trans. Circuits Syst. Video Technol. 27, 1647–1660 (2017)

    Article  Google Scholar 

  2. Wang, Z., et al.: Understanding human activities in videos: a joint action and interaction learning approach. Neurocomputing 321, 216–226 (2018)

    Article  Google Scholar 

  3. Perazzi, F., Pont-Tuset, J., McWilliams, B., Van Gool, L., Gross, M., Sorkine-Hornung, A.: A benchmark dataset and evaluation methodology for video object segmentation. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 724–732 (2016)

    Google Scholar 

  4. Caelles, S., Maninis, K.K., Pont-Tuset, J., Leal-Taixe, L., Cremers, D., Van Gool, L.: One-shot video object segmentation. In: 30th IEEE Conference on Computer Vision and Pattern Recognition, pp. 5320–5329 (2017)

    Google Scholar 

  5. Caelles, S., Chen, Y., Pont-Tuset, J., Van Gool, L.: Semantically-guided video object segmentation. arXiv preprint arXiv:1704.01926 (2017)

  6. Yang, L., Wang, Y., Xiong, X., Yang, J., Katsaggelos, A.K.: Efficient video object segmentation via network modulation. In: 31st IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6499–6507 (2018)

    Google Scholar 

  7. Perazzi, F., Khoreva, A., Benenson, R., Schiele, B., Sorkine-Hornung, A.: Learning video object segmentation from static images. In: 30th IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3491–3500 (2016)

    Google Scholar 

  8. Li, X., et al.: Video object segmentation with re-identification. arXiv preprint arXiv:1708.00197 (2017)

  9. Wang, W., Shen, J., Porikli, F., Yang, R.: Semi-supervised video object segmentation with super-trajectories. IEEE Trans. Pattern Anal. Mach. Intell. 41, 985–998 (2019)

    Article  Google Scholar 

  10. Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilitieS. Proc. Natl. Acad. Sci. U.S.A. Biol. Sci. 79, 2554–2558 (1982)

    Article  MathSciNet  Google Scholar 

  11. Shi, X., Chen, Z., Wang, H., Yeung, D.-Y., Wong, W., Woo, W.: Convolutional LSTM network: a machine learning approach for precipitation nowcasting. In: Advances in Neural Information Processing Systems 28 (Nips 2015) 28 (2015)

    Google Scholar 

  12. Howard, A.G., et al.: Mobilenets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

  13. Xu, N., et al.: YouTube-VOS: sequence-to-sequence video object segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11209, pp. 603–619. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01228-1_36

    Chapter  Google Scholar 

  14. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  15. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.-C.: MobileNetV2: inverted residuals and linear bottlenecks. In: 31st IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4510–4520 (2018)

    Google Scholar 

  16. Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., Keutzer, K.: SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model size. arXiv preprint arXiv:1602.07360 (2016)

  17. Huang, G., Liu, S., van der Maaten, L., Weinberger, K.Q.: CondenseNet: an efficient DenseNet using learned group convolutions. In: 31st IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2752–2761 (2018)

    Google Scholar 

  18. Ma, N., Zhang, X., Zheng, H.T., Sun, J.: ShuffleNet V2: practical guidelines for efficient CNN architecture design. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11218, pp. 122–138. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_8

    Chapter  Google Scholar 

  19. Zhang, X., Zhou, X., Lin, M., Sun, J.: ShuffleNet: an extremely efficient convolutional neural network for mobile devices. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6848–6856 (2018)

    Google Scholar 

  20. Xie, G., Wang, J., Zhang, T., Lai, J., Hong, R., Qi, G.-J.: Interleaved structured sparse convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8847–8856 (2018)

    Google Scholar 

  21. Valipour, S., Siam, M., Jagersand, M., Ray, N.: Recurrent fully convolutional networks for video segmentation. In: 17th IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 29–36 (2016)

    Google Scholar 

  22. Tokmakov, P., Inria, K.A., Schmid, C.: Learning video object segmentation with visual memory. In: 16th IEEE International Conference on Computer Vision (ICCV), pp. 4491–4500. (2017)

    Google Scholar 

  23. Zhang, Y., Yao, R., Jiang, Q., Zhang, C., Wang, S.: Video object segmentation with weakly temporal information. KSII Trans. Internet Inf. Syst. 13, 1434–1449 (2019)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grant 61772530, 61572505, U1610124, and 61806206, in part by the State’s Key Project of Research and Development Plan of China under Grant 2016YFC0600900, in part by the Six Talent Peaks Project in Jiangsu Province under Grant 2018-XYDXX-044 and 2015-DZXX-010, in part by the Natural Science Foundation of Jiangsu Province under Grant BK20171192, BK20180639.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Yao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yao, R., Zhang, Y., Gao, C., Zhou, Y., Zhao, J., Liang, L. (2019). Lightweight Video Object Segmentation Based on ConvGRU. In: Lin, Z., et al. Pattern Recognition and Computer Vision. PRCV 2019. Lecture Notes in Computer Science(), vol 11858. Springer, Cham. https://doi.org/10.1007/978-3-030-31723-2_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31723-2_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31722-5

  • Online ISBN: 978-3-030-31723-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics