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Abstract. The recent years have witnessed great advances for semantic
segmentation using deep convolutional neural networks (DCNNs). How-
ever, a large number of convolutional layers and feature channels lead to
semantic segmentation as a computationally heavy task, which is disad-
vantage to the scenario with limited resources. In this paper, we design
an efficient symmetric network, called (ESNet), to address this problem.
The whole network has nearly symmetric architecture, which is mainly
composed of a series of factorized convolution unit (FCU) and its parallel
counterparts. On one hand, the FCU adopts a widely-used 1D factorized
convolution in residual layers. On the other hand, the parallel version
employs a transform-split-transform-merge strategy in the designment
of residual module, where the split branch adopts dilated convolutions
with different rate to enlarge receptive field. Our model has nearly 1.6M
parameters, and is able to be performed over 62 FPS on a single GTX
1080Ti GPU. The experiments demonstrate that our approach achieves
state-of-the-art results in terms of speed and accuracy trade-off for real-
time semantic segmentation on CityScapes dataset.

Keywords: Real-time Semantic Segmentation · DCNNs · Factorized
Convolution.

1 Introduction

Semantic segmentation plays a significant role in image understanding [1,2,3].
From the perspective of computer vision, the task here is to assign a semantic
label for each image pixel, which thus can be also considered as a dense pre-
diction problem. Unlike conventional approaches that handle this challenge task
by designing hand-craft features, deep convolutional neural networks (DCNNs)
have shown their impressive capabilities in terms of end-to-end segmentation
with full image resolution. The first prominent work in this field is fully con-
volutional networks (FCNs)[4], which are composed by a series of convolutional
and max-pooling layers. After that, vast number of FCN-based network architec-
tures [5,6,7] have been proposed and the remarkable progress have been achieved
within segmentation accuracy. However, multiple stages of spatial pooling and
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Fig. 1. Overall symmetric architecture of the proposed ESNet. The entire network
is composed by four components: down-sampling unit, upsampling unit, factorized
convolution unit and its parallel version. (Best viewed in color)

convolution stride significantly reduce the dimension of feature representation,
thereby losing much of the finer image structure. In order to address this prob-
lem, a more deeper architecture, named encoder-decoder network [8,9,10], has
become a trend, where the encoder network is utilized to abstract image features
and the decoder counterpart is employed to sequentially recover image details.
In the designment of network architecture, the residual network (ResNet) [2] has
been commonly adopted in recent years, where the residual layer allows to stack
large amounts of convolutional layers, leading to the great improvement for both
image classification [1,2,11] and semantic segmentation [12,13,14].

In spite of achieving impressive results, these accurate DCNNs neglect the im-
plementing efficiency, which is a significant factor in limited resources scenarios.
Considering running DCNNs on the mobile platforms (e.g., drones, robots, and
smartphones), the designed networks are not only required to perform reliably
(stability), but also required to conduct fast (real-time), suitable for embed-
ded devices with space and memory constraints (compactness), and have low
power consumption due to limited energy overhead (energy-saving). With this
in mind, some preliminary research work [15,16,17,18] have been proposed to de-
sign lightweight networks that aim to develop efficient architectures for real-time
semantic segmentation. However, these approaches usually focus on accelerating
inference speed by aggressively reducing network parameters, which highly detri-
ments segmentation performance. Therefore, pursuing the best performance with
a good trade-off between accuracy and efficiency still remains an open research
issue for the task of real-time semantic segmentation.

In this paper, we design a novel lightweight network called ESNet, adopting
a nearly symmetric encoder-decoder architecture to address above problems. As
shown in Fig. 1, our ESNet is based on ResNet [2], which consists of four basic
components, including down-sampling unit, upsampling unit, factorized convo-
lution unit (FCU) and its parallel version. The core element of our architecture
is parallel factorized convolution unit (PFCU), where a novel transform-split-
transform-merge strategy is employed in the designment of residual layer, ap-
proaching the representational power of large and dense layers, but at a consider-
ably lower computational complexity. More specifically, the PFCU leverages the
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identity mappings and multi-path factorized convolutions with 1D filter kernels.
While the identity mappings allow the convolutions to learn residual functions
that facilitate training, the multi-path factorized convolutions allow a signifi-
cant reduction of the convolutional layers. On the other hand, in contrast to
previous lightweight networks [8,17,19] that abstract feature representation with
fixed filter kernel size, the FCUs adopt the 1D factorized convolutions with
different kernel size, where the receptive fields are adaptive to capture object
instances with different scales. The FCUs and PFCUs are symmetrically stacked
to construct our encoder-decoder architecture, producing semantic segmenta-
tion output end-to-end in the same resolution as the input image. Although the
focus of this paper is the task of semantic segmentation, the proposed FCUs
and PFCUs is directly transferable to any existing network that makes use of
residual layers, including both classification and segmentation architectures. In
summary, our contributions are three-folds: (1) The symmetrical architecture
of ESNet leads to the great reduction of network complexity, accelerating the
entire inference process; (2) Using multiple branch parallel convolutions in the
residual layer leverages network size and powerful feature representation, still
resulting in the whole network can be trained end-to-end. (3) We evaluate the
performance of ESNet on CityScapes dataset [20], and the experimental results
show that compared with recent mainstream lightweight networks, it achieves
the best available trade-off in terms of accuracy and efficiency.

The remainder of this paper is organized as follows. After a brief discussion
of related work in Section 2, a fast and compact architecture named ESNet is
proposed in Section 3. The proposed network has been evaluated on CityScapes
dataset, where the benchmark is constructed on a single NVIDIA GTX 1080Ti
GPU. These experiments can be found in Section 4. Finally, the conclusion
remarks and future work are given in Section 5.

2 Related Work

Recent success in DCNNs has brought significant progress on semantic segmen-
tation in the past few years [3,4,5,6]. As a pioneer work, Farabet et. al [21]
utilized DCNNs to abstract hierarchical feature representation for semantic seg-
mentation. In [4], Long et. al first proposed an end-to-end segmentation based
on VGG-16 network, where the fully connected layers in traditional DCNNs
are replaced by convolutional layers to upsample feature maps. So far, a large
amount of FCN-based networks [5,6,7,22,23] have been designed to deal with
semantic segmentation challenge. To enlarge receptive fields, the dilated con-
volution [24] or atrous convolution [5,23] is also employed in FCN to capture
large scale context. Due to continuous pooling, however, the resolution of fea-
ture maps are significant reduced and directly adapting FCNs always leads to the
poor estimation outputs. To refine predict results, the encoder-decoder networks
[8,9,10,12] are commonly-used to develop FCN architecture by sequentially re-
covering fine image details. For instance, Noh et al. employ deconvolution to
upsample low resolution feature responses [10]. SegNet [8] reuses the recorded
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pooling indices to upsample feature maps, and learns extra deconvolutional lay-
ers to densify the feature responses. Through adding skip connections, U-Net
[25] designs an elegant symmetric network architecture, which stacks convolu-
tional features from the encoder to the decoder activations. More recently, more
attention have been paid to RefineNets [9,12,26,27], which adopt ResNet [2] in
encoder-decoder structure, and have been demonstrated very effective on several
semantic segmentation benchmarks [20,28].

In spite of achieving promising performance, these advances are at the sac-
rifice of running time and speed. In order to overcome this problem, many
lightweight networks, initially designed for image classification task [29,30,31,32,33],
have been designed to balance the segmentation accuracy and implementing effi-
ciency [15,16,17,18,34,35]. ENet [17] is the first work that considers the efficiency
issue, where the point-wise convolution is adopted in the residual layer. Apart
from this initial designment, some recent work always employ convolution factor-
ization principle [11,29,36] in their network architecture, where the 2D standard
convolution is replaced by depthwise separable convolution. For example, Zhao
et al. [35] investigate the high-level label cues to improve performance. ERFNet
[19] leverages skip connections and 1D convolutions in residual block designment,
greatly reducing network parameters while maintaining high efficiency. In [18],
Mehta et al. design an efficient spatial pyramid convolution network for semantic
segmentation. Some similar networks also use symmetrical encoder-decoder ar-
chitecture [8,18,19,37], while the other approaches take the contextual clues into
account [15,34] to balance performance and efficiency. Unlike these lightweight
networks, our ESNet utilizes multiple branch parallel factorized convolution,
achieving real-time inference and higher accuracy.

3 ESNet

In this section, we first introduce the whole architecture of ESNet, and then
elaborate on the designed details of each unit.

3.1 Network Overview

As shown in Table 1 and illustrated in Figure 1, our ESNet has a symmetric
encoder-decoder architecture, where an encoder produces downsampled feature
maps, and a decoder upsamples the feature maps to match input resolution. The
entire network is composed of 18 convolution layers, where the residual module is
adopted as our core element. As shown in Table 1, the encoder and decoder has
nearly same number of convolution layers, and utilize similar convolution type.
For instance, both Block 1 and Block 5 employ FCU with K = 3, while Block 2
and Block 4 also employ FCU with K = 5. As illustrated in Figure 1, the input
image first undergoes a down-sampling unit to form initial feature maps, which
are fed into the subsequent residual layers. Downsampling enables more deeper
network to gather context, while at the same time helps to reduce computation.
Additionally, two types of residual convolution module, called FCU and PFCU
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Table 1. The architecture of ESNet. “Size” denotes the dimension of output feature
maps, C is the number of classes.

Stage Name Layer Type Size
E

n
co

d
er

Block 1
1 Down-sampling Unit 512× 256× 16

2-4 3× FCU (K = 3) 512× 256× 16

Block 2
5 Down-sampling Unit 256× 128× 64

6-7 2× FCU (K = 5) 256× 128× 64

Block 3
8 Down-sampling Unit 128× 64× 128

9-11 3× PFCU (dilated r1 = 2, r2 = 5, r3 = 9) 128× 64× 128

D
ec

o
d
er Block 4

12 Up-sampling Unit 256× 128× 64
13-14 2× FCU (K = 5) 256× 128× 64

Block 5
15 Up-sampling Unit 512× 256× 16

15-17 2× FCU (K = 3) 512× 256× 16
Full Conv 18 Up-sampling Unit 1024× 512× C
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BN ReLU
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1×1 Conv
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Add
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Fig. 2. Comparison of different residual layer modules. From left to right are (a) Non-
bottleneck [2], (b) Bottleneck [17], (c) Non-bottleneck-1D [19], (d) FCU and (e) PFCU
module. “DConv” denotes the dilated convolution, where r1, r2, and r3 are dilated
rates for each split branch, respectively.

are employed, where the first one uses factorized convolution to extract low-level
features, and the second one utilizes multi-branch dilated convolution to enlarge
receptive fields to capture high-level semantics. In [17,19,37], the designed net-
works are began with sustained downsampling, however, such kind of operation
may be harmful to feature abstraction, which highly detriment segmentation
accuracy. In order to address this problem, our ESNet postpones downsampling
oepration in encoder, with the similar spirit of [36]. In the following, we will
describe how to design FCU and PFCU, which focus on solving the efficiency
limitation that is essentially present in the residual layer.

3.2 FCU Module

To reduce computation budget, the pointwise convolutions [17,31,33] and fac-
torized convolutions [19,37] are widely used to take place of traditional stan-
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dard convolution in residual layer. Essentially, pointwise convolution (e.g., 1×1)
speeds up computation by reducing the number of convolutional channels, which
thus can be also considered as dimensionality reduction of feature maps. On the
other hand, factorized convolution attempts to perform convolution with smaller
filter kernel size. As a result, the recent years have witnessed multiple successful
instances of lightweight residual layer [17,29], such as Non-bottleneck (Figure
2 (a)), Bottleneck (Figure 2 (b)), and Non-bottleneck-1D (Figure 2 (c)). More
specifically, the Bottleneck module comes from the standard residual layer of
ResNet [2], which requires less computational resources with respect to Non-
bottleneck module. Although it is commonly adopted in state-of-the-art net-
works [17,18,29], the performance descend drastically when network goes deeper.
Another outstanding residual module is Non-bottleneck-1D [19], which can be
considered as a special case of our FCU with K = 3. In this module, a standard
3×3 convolution in the bottleneck is decomposed into two 1D convolutions (e.g.,
3 × 1 and 1 × 3), yet the fixed kernel size of factorized convolution limits the
field-of-view, leading to the decrease of performance.

As shown in Figure 2 (d), we again employ Non-bottleneck-1D module [19,37]
to design our FCU, as this is helpful for greatly reducing the number of pa-
rameters and accelerating the training and inference process. Unlike previous
approaches [19,37], however, the size of convolutional kernel is unfixed, allowing
FCU to adaptively broaden receptive fields. For example, in the encoder, the
shallow layers (Block 1 in Table 1) prefer to use smaller kernel size (K = 3)
to abstract low-level image features, while deeper layers (Block 2 in Table 1)
resort to larger kernel size (K = 5) for capturing wide-scale context. Conversely,
in the decoder, the shallow layers (Block 4 in Table 1) utilize a larger kernel
size (K = 5) to gather long-ranged information to enhance prediction accuracy,
while deeper layers (Block 5 in Table 1) symmetrically employ smaller kernel size
(K = 3) to recover image details by smoothing filter responses of short-ranged
neighborhood pixels.

3.3 PFCU Module

We focus on solving the accuracy and efficiency trade-off as a whole, without
sitting on only one of its sides. To this end, this section introduces PFCU, as
depicted in Figure 2(e). Motivated from [30,36], a transform-split-transform-
merge strategy is employed in the designment of our PFCU, where each branch
employs dilated convolution with different rate to broaden receptive fields. The
dilated convolutions with parallel multiple branch are adaptive to capture objects
within different scales, approaching the representational power of large and dense
layers, but at a considerably lower computational complexity. At the beginning
of each PFCU, the input is first transferred by a set of specialized 1D filters (e.g.,
1×3 and 3×1), and the convolutional outputs pass through three parallel dilated
convolution with rates r1 = 2, r2 = 5, and r3 = 9, respectively. To facilitate
training, finally, the outputs of three convolutional branches are added with
input through the branch of identity mapping. After merging, the next PFCU
begins. It is clear that our PFCU is not only efficient, but also accurate. Firstly,
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Table 2. Comparison of weights used in different type of residue blocks. Three pa-
rameters of “Size” are number of layers, feature channels and convolutional kernels in
corresponding residue block, respectively.

Method Encoder Decoder #Para

ERFNet[19]
Type Non-bt-1D - Non-bt-1D Non-bt-1D Non-bt-1D

17,688
Size 5× 64× 12 - 8× 128× 12 2× 64× 12 2× 16× 12

ESNet
Type FCU(K=3) FCU(K=5) PFCU FCU(K=5) FCU(K=3)

15,296
Size 3× 16× 12 2× 64× 20 3× 128× 24 2× 64× 20 2× 16× 12

the powerful representation ability of PFCU allows us to use less convolution
layers. Secondly, in PFCU, each branch shares the same convolutional feature
maps. This can be regarded as a kind of feature reuse, which to some extent
enlarges network capacity without significantly increasing complexity.

3.4 Comparison of Network Complexity

In this section, we analyze the network complexity of our ESNet and compare
with recent state-of-the-art ERFNet [19]. In addition, we also compare our new
implementation of the residual layer that makes use of the parallel 1D factor-
ization to accelerate and reduce the parameters. Table 2 summarizes the total
dimensions of the weights on the convolutions of every residual block. As shown
in Figure 2, Non-Bottleneck-1D has the simplest structure and fewest parame-
ters. Since the standard 3 × 3 convolution has been decomposed into 1 × 3 and
3×1 convolution, the number of convolutional kernels is only 12 in each residual
layer. As our FCU (K =3) module also adopts 1D factorized convolution, it has
the same number of kernels with respect to Non-Bottleneck-1D. On the other
hand, FCU (K = 5) and PFCU involve larger kernel size or more factorized
convolution, leading to the increase of convolutional kernels (20 for FCU (K =
5), and 24 for PFCU) used in corresponding residual layers. However, the total
weights are not only decided by filter kernel size, but also depend on the number
of feature channels and convolution layers. Due to the parallel design of PFCU
that facilitates the reduction of convolution layers, the entire size of ESNet is
still smaller than ERFNet [19]. For example, in contrast to ERFNet [19] that
contains 8 layers of dilated convolution (8× 128× 12 = 12, 288), our ESNet only
has 3 layers of PFCU, resulting in more fewer parameters (3×128×24 = 9, 216)
while achieving higher accuracy. As for the total parameters, our ESNet design
is clearly more benefited, by receiving a direct 13.5% reduction, and thus greatly
accelerates its execution. This is also consistent with the results of Table 3.

4 Experiments

In this section, we carry on the experiments to demonstrate the potential of our
segmentation architecture in terms of accuracy and efficiency trade-off.
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Table 3. Comparison with the state-of-the-art approaches in terms of segmentation
accuracy and implementing efficiency.

Method Cla(%) Cat(%) Time(ms) Speed(Fps) Para(M)

SegNet[8] 57.0 79.1 67 15 29.5
ENet[17] 58.3 80.4 13 77 0.36

ESPNet[18] 60.3 82.2 18 54 0.40
CGNet[15] 64.8 85.7 20 50 0.50

ERFNet [19] 66.3 86.5 21 48 2.10
ICNet [35] 69.5 86.4 33 30 7.80

Ours 70.7 87.4 16 63 1.66

4.1 Dataset

The widely-used CityScapes dataset [20], including 19 object classes and one
additional background, is selected to evaluate our ESNet. Beside the images
with fine pixel-level annotations that contain 2,975 training, 500 validation and
1,525 testing images, we also use the 20K coarsely annotated images for training.

4.2 Implementation Details

To show the advantages of ESNet, we selected 6 state-of-the-art lightweight net-
works as baselines, including SegNet [8], ENet [17], ERFNet [19], ICNet [35],
CGNet [15], and ESPNet [18]. We adopt mean intersection-over-union (mIOU)
averaged across all classes and categories to evaluate segmentation accuracy,
while running time, inference speed (FPS), and model size (number of param-
eters) to measure implementing efficiency. For fair comparison, all the methods
are conducted on the same hardware platform of DELL workstation with a single
GTX 1080Ti GPU. We favor a large minibatch size (set as 4) to make full use
of the GPU memory, where the initial learning rate is 5 × 10−4 and the ‘poly’
learning rate policy is adopted with power 0.9, together with momentum and
weight decay are set to 0.9 and 10−4, respectively.

4.3 Evaluation Results

In Table 3 and Table 4, we have reported the quantitative results compared with
state-of-the-art baselines. The results demonstrate that ESNet achieves the best
available trade-off in terms of accuracy and efficiency. Without data augmen-
tation, our ESNet obtains comparable results with respect to ICNet [35] (only
slight 0.4% drop of class mIOU, but 0.4% improvement of category mIOU). After
augmented with 20K additional data with coarse annotations, our ESNet yields
70.7% class mIOU and 87.4% category mIOU, respectively, where 16 out of the
19 categories obtains best scores. Regarding to the efficiency, ESNet is nearly 4×
faster and 18× smaller than SegNet [8]. Although ENet [17], an anther efficient
network, is nearly 1.2× efficient, and has 5× less parameters than our ESNet,
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Table 4. Individual category results on the CityScapes test set in terms of class and
category mIOU scores. Methods trained using both fine and coarse data are marked
with superscript ‘†’. The best performance for each individual class is marked with
bold-face number.

Method Roa Sid Bui Wal Fen Pol TLi TSi Veg Ter Cla

SegNet [8] 96.4 73.2 84.0 28.4 29.0 35.7 39.8 45.1 87.0 63.8 57.0
ENet [17] 96.3 74.2 75.0 32.2 33.2 43.4 34.1 44.0 88.6 61.4 58.3

ESPNet [18] 97.0 77.5 76.2 35.0 36.1 45.0 35.6 46.3 90.8 63.2 60.3
CGNet [15] 95.5 78.7 88.1 40.0 43.0 54.1 59.8 63.9 89.6 67.6 64.8

ERFNet [19] 97.2 80.0 89.5 41.6 45.3 56.4 60.5 64.6 91.4 68.7 66.3
ICNet [35] 97.1 79.2 89.7 43.2 48.9 61.5 60.4 63.4 91.5 68.3 69.5

Ours 97.1 78.5 90.4 46.5 48.1 60.1 60.4 70.9 91.1 59.9 69.1

Ours† 98.1 80.4 92.4 48.3 49.2 61.5 62.5 72.3 92.5 61.5 70.7

Method Sky Ped Rid Car Tru Bus Tra Mot Bic Cat

SegNet [8] 91.8 62.8 42.8 89.3 38.1 43.1 44.1 35.8 51.9 79.1
ENet [17] 90.6 65.5 38.4 90.6 36.9 50.5 48.1 38.8 55.4 80.4

ESPNet [18] 92.6 67.0 40.9 92.3 38.1 52.5 50.1 41.8 57.2 82.2
CGNet [15] 92.9 74.9 54.9 90.2 44.1 59.5 25.2 47.3 60.2 85.7

ERFNet [19] 94.2 76.1 56.4 92.4 45.7 60.6 27.0 48.7 61.8 86.5
ICNet [35] 93.5 74.6 56.1 92.6 51.3 72.7 51.3 53.6 70.5 86.4

Ours 93.2 74.3 51.8 92.3 61.0 72.3 51.0 43.3 70.2 86.8

Ours† 94.4 76.6 53.2 94.4 62.5 74.3 52.4 45.5 71.4 87.4

but delivers poor segmentation accuracy of 12.4% and 7% drops in terms of class
and category mIOU, respectively. Another interesting results is the comparison
with CGNet [15] in Table 3, where it has 3× fewer parameters, while performs
slightly slower than our ESNet. This is probably because that ESNet has more
simpler architecture and less convolution layers, yielding more efficient in infer-
ence process. Figure 3 shows some visual examples of segmentation outputs on
the CityScapes validation set. It is demonstrated that, compared with baselines,
our ESNet not only correctly classifies object with different scales (especially for
very small object instance, such as “traffic sign” and “traffic light”), but also
produces consistent qualitative results for all classes.

5 Conclusion Remark and Future Work

This paper has proposed an architecture that achieves accurate and fast pixel-
wise semantic segmentation. In contrast to top-accurate networks that are com-
putationally expensive with complex and deep architectures, our ESNet focuses
more on developing the core elements of network architecture: the convolutional
blocks. The transform-split-transform-merge scheme is adopted to redesign the
commonly-used residual layers, leading to the multi-branch parallel 1D decom-
posed convolution, which is more efficient while retaining a similar learning
performance. As this design can be directly used in existing encoder-decoder
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Fig. 3. The visual comparison on CityScapes val dataset. From left to right are input
images, ground truth, segmentation outputs from our ESNet, SegNet [8], ENet [17],
ERFNet [19], ESPNet [18], ICNet [35], and CGNet [15]. (Best viewed in color)

networks, we propose an ESNet that completely leverages its benefits to reach
state-of-the-art segmentation accuracy and efficiency. The experimental results
show that our ESNet achieves best available trade-off on CityScapes dataset in
terms of segmentation accuracy and implementing efficiency. The future work
includes incorporating contextual branch, as well as [15,34] does, to further im-
prove performance while remaining few parameters.
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