Skip to main content

An Approach to the Applicability Evaluation of Moving Target Tracking Algorithm

  • Conference paper
  • First Online:
Book cover Pattern Recognition and Computer Vision (PRCV 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11859))

Included in the following conference series:

  • 1833 Accesses

Abstract

Objective and effective algorithm performance evaluation results are an important basis for the selection of tracking algorithms. Problems in the existing performance evaluation of moving target tracking algorithms include an enlarge number of trials, and in particular, failure to consider the influence of algorithm performance on the multifactor combination scenario. This study proposes a method based on the orthogonal test to evaluate algorithms. First, the factors and levels of the tracking algorithm are analyzed, and an orthogonal test dataset is constructed by using an orthogonal table. Second, the experiments of the performance evaluation are arranged with the dataset and the results are analyzed via range analysis. Finally, evaluation results show that the strong–weak sequence of factors affect the performance of the algorithm and the combination of levels form the factors that can achieve enhanced algorithm performance. Experimental results show that the proposed method can evaluate algorithms comprehensively, objectively, and effectively with decreased test and data volume.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li, Y., Zhu, J., Hoi, S.C.H., Song, W., Wang, Z., Liu, H.: Robust estimation of similarity transformation for visual object tracking. In: AAAI (2019)

    Google Scholar 

  2. Li, B., Wu, W., Wang, Q., Zhang, F., Xing, J., Yan, J.: SiamRPN++: evolution of siamese visual tracking with very deep networks. In: CVPR (2019)

    Google Scholar 

  3. Fan, H., Ling, H.: Siamese cascaded region proposal networks for real-time visual tracking. In: CVPR (2019)

    Google Scholar 

  4. Collins, R., Zhou, X., Seng, K.T.: An open source tracking Testbed and evaluation WebSite. In: IEEE International Workshop on Performance Evaluation of Tracking and Surveillance (2005)

    Google Scholar 

  5. Fisher, R.B.: The PETS04 surveillance ground-truth data sets. In: Proceedings of the IEEE International Workshop on Performance Evaluation of Tracking and Surveillance, pp. 1–5 (2004)

    Google Scholar 

  6. Ferryman, J., Shahrokni, A.: PETS2009: dataset and challenge. In: Twelfth IEEE International Workshop on PERFORMANCE Evaluation of Tracking and Surveillance, pp. 1–6. IEEE (2010)

    Google Scholar 

  7. Wu, Y., Lim, J., Yang, M.H.: Online object tracking: a benchmark. In: Computer Vision and Pattern Recognition, pp. 2411–2418. IEEE (2013)

    Google Scholar 

  8. Wu, Y., Lim, J., Yang, M.H.: Object tracking benchmark. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1834–1848 (2015)

    Article  Google Scholar 

  9. Kristan, Matej, et al.: The visual object tracking VOT2014 challenge results. In: Agapito, Lourdes, Bronstein, Michael M., Rother, Carsten (eds.) ECCV 2014. LNCS, vol. 8926, pp. 191–217. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16181-5_14

    Chapter  Google Scholar 

  10. Kristan, M., Pflugfelder, R., Matas, J., et al.: The visual object tracking VOT2015 challenge results. In: IEEE International Conference on Computer Vision Workshop, pp. 564–586. IEEE (2016)

    Google Scholar 

  11. Kristan, M., Leonardis, A., Matas, J., et al.: The visual object tracking VOT2016 challenge results. In: IEEE International Conference on Computer Vision Workshops, pp. 98–111. IEEE Computer Society (2016)

    Google Scholar 

  12. Kristan, M., Eldesokey, A., Xing, Y., et al.: The visual object tracking VOT2017 challenge results. In: IEEE International Conference on Computer Vision Workshop (2017)

    Google Scholar 

  13. Cheng, Y.C., Zhang, P., Jiao, Y.B., et al.: Grey correlation analysis method to analyze the influence factors of attenuated performance of asphalt mixture under water-temperature-radiation cycle action. Appl. Mech. Mater. 361–363, 1857–1860 (2013)

    Article  Google Scholar 

  14. Hare, S., Saffari, A., Torr, P.H.S.: Struck: structured output tracking with kernels. In: International Conference on Computer Vision, pp. 263–270. IEEE Computer Society (2011)

    Google Scholar 

  15. Dinh, T.B., Vo, N., Medioni, G.: Context tracker: exploring supporters and distracters in unconstrained environments. In: Computer Vision & Pattern Recognition. IEEE (2011)

    Google Scholar 

  16. Brox, T., Deriche, R., Weickert, J.: Colour, texture, and motion in level set based segmentation and tracking. Image Vis. Comput. 28(3), 376–390 (2010)

    Article  Google Scholar 

  17. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988)

    Article  Google Scholar 

  18. Xing, G.: Research on behavior detection and tracking algorithms for moving targets in intelligent monitoring. Chongqing University of Posts and Telecommunications (2013)

    Google Scholar 

  19. Liu, C., Shui, P., Li, S.: Unscented extended Kalman filter for target tracking. J. Syst. Eng. Electron. 22(2), 188–192 (2011)

    Article  Google Scholar 

  20. Sherrah, J., Ristic, B., Redding, N.J.: Particle filter to track multiple people for visual surveillance. IET Comput. Vis. 5(4), 192–200 (2011)

    Article  MathSciNet  Google Scholar 

  21. Yu, Z.G.: A construction method of orthogonal table L (p~2) (p_(p−1))). J. Huazhong Norm. Univ. Nat. Sci. Ed.) 1982(2), 35–49 (1982)

    Google Scholar 

  22. Na, L., Dan, W.: Image synthesis algorithm based on sampling matting and self-adaption color. Chin. J. Liq. Cryst. Displays 33(2), 156–164 (2018)

    Article  Google Scholar 

  23. Lei, L.M.: Analysis of variance in orthogonal experimental design. Northeast Forestry University (2011)

    Google Scholar 

  24. Fawcett, T.: An introduction to ROC analysis. Pattern Recognit. Lett. 27(8), 861–874 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

This work is supported by the National Natural Science Foundation of China (No. 61572405) and the National High Technology Research and Development Program of China (863 Program) (No. 2015AA016402).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Runping Xi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xi, R., Xue, S., Han, Q., Chen, J. (2019). An Approach to the Applicability Evaluation of Moving Target Tracking Algorithm. In: Lin, Z., et al. Pattern Recognition and Computer Vision. PRCV 2019. Lecture Notes in Computer Science(), vol 11859. Springer, Cham. https://doi.org/10.1007/978-3-030-31726-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31726-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31725-6

  • Online ISBN: 978-3-030-31726-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics