
ar
X

iv
:1

91
1.

01
75

9v
1

 [
cs

.F
L

]
 5

 N
ov

 2
01

9

New Optimizations and Heuristics for

Determinization of Büchi Automata ⋆

Christof Löding and Anton Pirogov ⋆⋆

RWTH Aachen University, Templergraben 55, 52062 Aachen, Germany
{loeding,pirogov}@cs.rwth-aachen.de

Abstract. In this work, we present multiple new optimizations and
heuristics for the determinization of Büchi automata that exploit a num-
ber of semantic and structural properties, most of which may be applied
together with any determinization procedure. We built a prototype im-
plementation where all the presented heuristics can be freely combined
and evaluated them, comparing our implementation with the state-of-
the-art tool spot on multiple data sets with different characteristics.
Our results show that the proposed optimizations and heuristics can in
some cases significantly decrease the size of the resulting deterministic
automaton.

Keywords: Büchi · parity · automata · determinization · heuristics

1 Introduction

Nondeterministic Büchi automata (NBA) [4] are a well-established formalism
for the representation of properties of non-terminating executions of finite state
programs, and arise often as a low-level representation obtained by translation
of some formula describing the desired behaviour in a logic like e.g. LTL [33]. In
the field of model checking, Büchi automata are an important tool in verification
algorithms for finite state systems (see, e.g., [2]). In order to capture the full class
of regular ω-languages, Büchi automata need to be nondeterministic. In some
applications, however, the algorithms require the property to be represented by
a deterministic automaton. For example, in probabilistic model checking, the
natural product of an automaton with a Markov chain requires the automaton
to be deterministic in order to produce again a Markov chain. Therefore, many
algorithms in this setting need deterministic automata as input (see, e.g., [2,
Section 10.3]). Another example is the problem of synthesis of finite state systems
from ω-regular specifications, where the specification can be translated into a
game over a finite graph based on a deterministic parity automaton [40,27] .

⋆ The final authenticated publication is available online at
https://doi.org/10.1007/978-3-030-31784-3_18

⋆⋆ This work is supported by the German research council (DFG) Research Training
Group 2236 UnRAVeL

http://arxiv.org/abs/1911.01759v1
https://doi.org/10.1007/978-3-030-31784-3_18

2 Christof Löding and Anton Pirogov

For this reason, the determinization of Büchi automata is a well-researched
problem. In order to obtain a deterministic automaton model that is as expres-
sive as nondeterministic Büchi automata, one needs to use a more expressive
acceptance condition such as Muller, Rabin, Streett, or parity conditions (see,
e.g., [38,41]). The first determinization construction by McNaughton [26] re-
sulted in doubly-exponential Muller automata, whereas the first asymptotically
optimal construction was presented by Safra [35], which yields Rabin automata
with 2O(n logn) states. Since then, modifications of Safra’s construction have been
proposed in order to improve the constants in the exponent of the state com-
plexity [32,36], resulting in a construction for which tight lower bounds exist
[7,36]. In particular, Piterman was the first to present a direct construction of
a deterministic parity automaton (DPA) [32], which is described in a slightly
different way in [36]. Another variant of Safra’s construction is presented in [34].

While the Safra construction (and its variants) is the most famous deter-
minization construction for Büchi automata, there is another approach which
can be derived from a translation of alternating tree automata into nonde-
terministic ones by Muller and Schupp [31]. Determinization constructions for
Büchi automata based on the ideas of Muller and Schupp have been described in
[19,14,13]. The two types of constructions, Safra and Muller/Schupp, are unified
in [25].

While in theory, constructions with tight upper and lower bounds have been
achieved, there is a lot of room for optimizations when implementing deter-
minization constructions. A first implementation of Safra’s construction in the
version of [32] is ltl2dstar, presented in [20]. While ltl2dstar already im-
plements some optimizations and heuristics in order to reduce the size of the
output automaton, the resulting automata are still quite large, even for small
input Büchi automata. The current state-of-the-art tool for determinization of
Büchi automata is part of the library spot [9], which implements the variant of
Safra’s construction presented in [34]. Furthermore, spot also implements more
optimizations to reduce the size of the output automata.

The contribution of this paper is the identification of new heuristics for re-
ducing the size of DPA produced by determinization from Büchi automata and a
simple framework for their implementation. More specifically, our contributions
can roughly be described as follows:

– We present a modularized version of the construction in [25] which enables
the integration of SCC-based heuristics.

– By exploiting properties of the used construction, we make stronger use
of language inclusions between states of the given NBA (e.g. obtained by
simulation), permitting to use inclusions between states in the same SCC.

– We treat specific types of SCCs in the NBA in a special way, namely those
without accepting states, those with only accepting states, and those with a
deterministic transition relation.

– The construction from [25] leaves some freedom in the choice of succes-
sor states. Our implementation admits different options for this succes-

New Optimizations and Heuristics for Determinization of Büchi Automata 3

sor choice, in particular those leading to the constructions of Safra and of
Muller/Schupp.
Furthermore, we have an optimization that exploits this freedom of successor
selection by checking whether admissible successor states have already been
constructed before adding a new state.

– We make use of language equivalences of states in the constructed DPA in
order to remove some SCCs of the resulting DPA. These language equiva-
lences are derived during construction time from the powerset automaton
for the given NBA.

– We propose to use known minimization techniques as post processing, which
to the best of our knowledge, have not yet been used in this context. We
first minimize the number of priorities of the DPA using an algorithm from
[5], and then reduce the size of the resulting DPA by Hopcroft’s algorithm
[17], treating it as a finite automaton that outputs the priorities.

– We have evaluated the combination of different heuristics on different types
of data-sets (randomly generated NBAs, NBAs constructed from random
LTL formulas, NBAs generated from some families of LTL formulas taken
from the literature, and NBAs obtained from specifications of the compe-
tition SYNTCOMP [18]), and compared the size of the resulting automata
with the ones produced by spot.

This work is organized as follows. After some preliminaries in Section 2,
we sketch the general construction on which we based our implementation in
Section 3, and then describe our optimizations and heuristics in Section 4. In
Section 5 we present our experiments and in Section 6 we conclude.

2 Preliminaries

First we briefly review basic definitions concerning ω-automata and ω-languages.
If Σ is a finite alphabet, then Σω is the set of all infinite words w = w0w1 . . .

with wi ∈ Σ. For w ∈ Σω we denote by w(i) the i-th symbol wi. For convenience,
we write [n] for the set of natural numbers {1, . . . , n}. A Büchi automaton A is
a tuple (Q,Σ,∆,Q0, F), where Q is a finite set of states, Σ a finite alphabet,
∆ ⊆ Q×Σ×Q is the transition relation and Q0, F ⊆ Q are the sets of initial and
final states, respectively. When Q is understood and X ⊆ Q, then X := Q \X .
We write ∆(p, a) := {q ∈ Q | (p, a, q) ∈ ∆} to denote the set of successors of
p ∈ Q on symbol a ∈ Σ, and ∆(P, a) for

⋃
p∈P ∆(p, a). A run of an automaton

on a word w ∈ Σω is an infinite sequence of states q0, q1, . . . starting in some
q0 ∈ Q0 such that (qi, w(i), qi+1) ∈ ∆ for all i ≥ 0. As usual, an automaton
is deterministic if |Q0| = 1 and |∆(p, a)| ≤ 1 for all p ∈ Q, a ∈ Σ, and non-
deterministic otherwise. In this work, we assume Büchi automata to be non-
deterministic and refer to them as NBA. A (transition-based) deterministic parity
automaton (DPA) is a deterministic automaton (Q,Σ,∆,Q0, c) where instead
of F ⊆ Q there is a priority function c : ∆ → N assigning a natural number to
each transition.

A run of an NBA is accepting if it contains infinitely many accepting states.
A run of a DPA is accepting if the smallest priority of transitions along the run

4 Christof Löding and Anton Pirogov

which appears infinitely often is even. An automaton A accepts w ∈ Σω if there
exists an accepting run on w, and the language L(A) ⊆ Σω recognized by A is the
set of all accepted words. If P is a set of states of an automaton, we write L(P)
for the language accepted by this automaton with initial state set P . For sets
consisting of one state q, we write L(q) instead of L({q}). We sometimes refer to
states of a DPA that is obtained by a determinization construction as macrostates
to distinguish them from the states of the underlying Büchi automaton.

We write p
x
→ q if there exists a path from p to q labelled by x ∈ Σ+ and

p → q if there exists some x such that p
x
→ q. The strongly connected component

(SCC) of p ∈ Q is scc(p) := {q ∈ Q | p = q or p → q and q → p}. The
set SCCs(A) := {scc(q) | q ∈ Q} is the set of all SCCs and partitions Q. A
component C ∈ SCCs(A) is trivial if C = {q} for some q ∈ Q and q 6→ q. C is
bottom if p → q implies q ∈ C for all p ∈ C and q ∈ Q. In a Büchi automaton,
C is rejecting if it is trivial or contains no accepting states, and accepting if it
is not trivial and all cycles inside C contain an accepting state. If an SCC is
neither accepting or rejecting, it is mixed. Notice that rejecting and accepting
components are often called inherently weak in the literature (e.g. [3]). Finally,
C is deterministic if |∆(p, a) ∩ C| ≤ 1 for all p ∈ C and a ∈ Σ. An NBA is
limit-deterministic, if all its non-rejecting SCCs are deterministic and cannot
reach non-deterministic SCCs again.

3 Construction

For our prototype implementation, we applied new optimizations and heuristics
to an adaptation of a recent generalized determinization construction from NBA
to DPA that was presented in [25]. This construction unifies the constructions
of Safra and of Muller and Schupp, and also introduces new degrees of freedom,
which we exploit in one of our heuristics (see Section 4.2).

Let A = (Q,Σ,∆,Q0, F) be the NBA to be determinized. The macrostates
(α, t) in the deterministic automaton (called ranked slices) are tuples of disjoint
non-empty sets t := (S1, S2, . . . , Sn) equipped with a bijection α : [n] → [n] that
assigns to each set Si the rank α(i). These ranks are used to define the priorities
of the transitions. When reading symbol a ∈ Σ in macrostate (α, t), the successor
(α′, t′) is obtained by applying the successive operations step, prune, merge and
normalize. An overview of the complete transition is sketched in Figure 1 and we
refer to [25] for more details.

3.1 A modular variant of the construction

We present a generalization of the construction above which offers a clean frame-
work to implement our heuristics, specifically the heuristics that exploit the SCC
structure of the Büchi automaton. This variant of the construction runs multiple
interacting instances of the construction above in parallel, where each instance
is essentially a ranked slice as above, but manages only an SCC of the Büchi
automaton (or a union of SCCs). A macrostate in this modular construction con-
sists of not one, but (in general) multiple tuples with a global ranking function
(see illustration in Figure 2). Furthermore, for some heuristics it is not needed

New Optimizations and Heuristics for Determinization of Büchi Automata 5

(α, t = (S1, . . . , Sn))

(α̂, t̂ = (Ŝ1, . . . , Ŝ2n))

(α̃, t̃ = (S̃1, . . . , S̃ñ))

(α̌, ť = (Š1, . . . , Šn′))

(α′, t′ = ť)

step separate acc./non-acc. successors, only keep leftmost occurrences

prune remove empty sets, obtain good and bad signals (sets G,R)

merge merge adjacent sets, depending on G,R from prune (optional, nondet.)

normalize reassign ranks in order-preserving way

Fig. 1. Sketch of some transition (α, t)
a∈Σ
→ (α′, t′) of the determinization construction.

The nondeterminism in the optional merge operation enables the simulation of different
constructions and provides freedom for optimizations.

to have a rank assigned to certain states of the Büchi automaton. We therefore
additionally store a separate “buffer set” in each macrostate with no assigned
rank where such Büchi states can be placed in. The states in the buffer set are
not used to track an accepting run directly, but they may reach successors later
that should be managed inside of a tuple.

({q1, q3}
5
, {q2}

3) | ({q4}
1
, {q6}

6
, {q5}

4) | ({q7, q8, q9}
2) || {q10}

Fig. 2. Illustration of some macrostate of the modularized determinization procedure.
In this example, assume that the underlying automaton has components with the states
q1, q2, q3 and q4, q5, q6 and q7, . . . , q10, respectively. The superscripts denote the global
rank of the corresponding set. State q10 is currently not considered to track accepting
runs, so it is stored in the separated buffer set and has no assigned rank. The vertical
bars separate the different components from each other.

To ensure the correct interaction of the tuples, the ranks assigned to sets must
be unique in the whole macrostate. Apart from this difference, the construction
above is applied to each tuple individually. Whenever a transition in the Büchi
automaton moves from an SCC C1 to a different SCC C2, and the same state
is not also reached by some transition inside of C2, then the resulting state is
added in a new right-most set in the tuple responsible for SCC C2. The rank of
this new set is the least important (i.e., largest in the tuple) one.

The correctness of this modular approach essentially follows from the fact
that each accepting run eventually stays in the same SCC of the Büchi automaton
forever, i.e., the states along this run eventually stay in the same tuple forever
and are managed by the construction above without interference. More details
about the required adaptations can be found in Appendix A.

4 Optimizations and Heuristics

In the following, we describe the optimizations and heuristics we suggest to
consider during determinization of Büchi automata.

6 Christof Löding and Anton Pirogov

4.1 Using known language inclusions of Büchi states

We are aware of only two rather simple optimizations that are exploiting known
language inclusion relations between states of the Büchi automaton—a “true-
loop” optimization from ltl2dstar [20] that syntactically identifies NBA states
that can be treated as accepting sinks, and an optimization used in spot [9] that
is restricted to pairs of states from different SCCs of the NBA, which we refer to
as “external” language inclusions. In general, it is nontrivial to use the language
inclusions between pairs of states in the same SCC of the NBA, because both of
them can occur infinitely often in the same run.

However, there is a possibility to use the language inclusion relation more gen-
erally within the same SCC in a safe manner by exploiting properties of the de-
terminization construction from [25]. The result is what we call the “internal” lan-
guage inclusion optimization, which works for the original non-modular version
of the construction, which uses a single ranked tuple (α, t) per macrostate, as fol-
lows. Let Qt :=

⋃n

i=1 Si for t = (S1, . . . , Sn) and let the function idxt : Qt → [n]
map each state q ∈ Qt to the tuple index i such that q ∈ Si.

Theorem 1. Let p, q ∈ Q with L(p) ⊆ L(q) and let (α, t) be a macrostate of
the determinization construction such that p, q ∈ Qt. If q is to the left of p (i.e.
idxt(q) < idxt(p)), then p may be omitted from the macrostate without changing
the language of the determinized automaton.

A sketch of the correctness proof and required modifications for the modu-
larized construction can be found in Appendix B.

Since the internal or external language inclusion optimization change the
structure of the macrostates, the overall structure of the constructed DPA might
change significantly. For this reason, there is no guarantee that this technique
cannot increase the number of states in some cases. In our experiments we found
no instance where this is the case, i.e., in practice they only decrease the number
of states.

4.2 Using properties of SCCs in the NBA

In the following, we describe some heuristics to simplify the treatment of SCCs
in the NBA that are rejecting, accepting, or deterministic. Earlier, we described
how the determinization construction can be performed in a modular way. The
following heuristics can be implemented very cleanly in that framework, but in
principle could also be used with other constructions.

Rejecting SCCs: It is known that one can keep states from rejecting NBA SCCs
separate from the determinization construction, as no accepting run can visit
them infinitely often. This can be realized in our modular construction by keeping
states of rejecting SCCs outside of the determinization tuples in the buffer set.
A related optimization is already implemented in spot as a modification of the
construction from [34].

New Optimizations and Heuristics for Determinization of Büchi Automata 7

Accepting SCCs: For accepting SCCs, it is sufficient to check that at least one
run eventually stays in the same SCC forever. For this, an adaptation of the
Miyano-Hayashi construction [29] (often called “breakpoint”-construction) can
be used, which requires to manage only two different sets—a track set and a
background set. In a transition, the track set is updated to all successors of the
current track set that are in an accepting SCC. The background set contains
all other states from accepting SCCs that are reached in this transition. This
pair of sets has one rank assigned by the global ranking function. As long as the
track set is non-empty, the rank signals a good event. If the track set becomes
empty in a transition, then the rank signals a bad event, the background set
becomes the new track set, and a new rank is assigned that is larger than all
the ranks that survived the last transition. It is not very difficult to see that this
construction correctly detects runs of the NBA that remain inside an accepting
SCC.

This heuristic is realized in our modular construction by delaying the move-
ment of states into the corresponding component tuple until a “breakpoint” hap-
pens, thereby ensuring that the tuple responsible for all accepting components
always contains at most one non-empty set. If the two heuristics for rejecting
and accepting SCCs are used, and the input NBA is a weak automaton (in which
all SCCs are either rejecting or accepting), then one obtains the pure breakpoint
construction, which is used, e.g., in [3] to determinize weak automata. The over-
all state complexity is then reduced from 2O(n log n) to 3n. More details can be
found in Appendix C.

Deterministic SCCs: If an SCC has both accepting and rejecting states, but is
deterministic, a run never branches into multiple runs as long as the successors
stay in the same component. Hence, the number of different runs can only de-
crease or stay the same. This excludes the possibility that an accepting state is
visited infinitely often by different runs, but not by a single infinite run. There-
fore, whenever a set of states in a deterministic SCC is reached from some other
SCC, it suffices to add the states to the tuple which is responsible for this SCC
with a new rank, but in the following steps there is no need to refine this set,
i.e. separate accepting from non-accepting states, as this is only required for fil-
tering out infinite non-accepting runs. For a good event to be signalled by such
a component in the construction, it suffices that a set just contains an accepting
state. If this set eventually never becomes empty and infinitely often contains
accepting states, clearly at least one of the finitely many runs evolving in this
set must visit accepting states infinitely often. Applying this heuristic on limit-
deterministic NBA simplifies the determinization procedure to a variant of the
construction described in [10], because then the importance ordering given by
ranks coincides with the tuple index ordering, effectively mimicking the tuples
as used in [10]. More details can be found in Appendix D.

It should be pointed out that all these SCC-based heuristics can in fact
increase the number of states for specific instances, even though they restrict
the state space in general (e.g. see Appendix F, Figure 6) and therefore must
be applied with greater care.

8 Christof Löding and Anton Pirogov

4.3 Smart successor selection

The determinization construction in [25] permits, in general, multiple valid suc-
cessor macrostates because of the freedom in the merge operation. Determiniza-
tion in practice usually works by starting in some initial state and fully exploring
the state space which is reachable using the transitions prescribed by some con-
struction. The natural optimization to be derived from the non-determinism of
merge is to check for each transition whether a permissible successor state has
already been constructed. In this case, just a new edge is added, and a new state
is constructed only if no viable existing successor could be found.

The question is then how to find such a state as efficiently as possible. A
naive approach would be to check for every already visited state whether it
satisfies the constraints on the shape of a successor for the current transition.
This would incur a blow-up in the running time that is quadratic in the size of
the output automaton, which can be very large in general. A better approach is
to structure the set of already visited states in a reasonable way that accelerates
this search. We achieve this by managing a trie where each node corresponds to
a macrostate. Each trie node is labelled by a set S ⊆ Q of states of the NBA and
can be marked to denote whether the corresponding macrostate already exists
in the DPA. There exists a simple bijection that maps each ranked slice into a
sequence of sets (without ranks) which uniquely determines a node in the trie.
The resulting sequence of sets S1, S2, . . . , Sn is the “word” over the alphabet 2Q

which is inserted into the trie if the corresponding macrostate is added to the
DPA (the sequence S1, S2, . . . , Sn is different from the tuple in the ranked slice).

When constructing a successor state, we first apply the operations step and
prune. From that, we obtain the minimal active rank k. Under the constraints
of the construction sketched in Section 3, the merge operation can now merge
sets with rank at least k which in turn means that the sets with rank smaller
than k do not change during merge. This sequence of sets of rank smaller than k

determines a trie node such that all possible successors that can be constructed
by merge are below this node.

Only a simple check must be performed on remaining candidate macrostates
that are found in the trie, and all required steps can be carried out efficiently
using bit-set operations, so that the overall slowdown incurred by this optimized
successor selection is very moderate. More details about this optimization can
be found in Appendix E.

This optimization only prevents new redundant states from being constructed,
thus the resulting automaton can never become larger than without this opti-
mization enabled. However, in combination with other heuristics, like the post-
processing described in Section 4.5, it might also have a negative effect.

4.4 The benefits of the powerset structure

It is a well-known fact that language equivalent states of a deterministic or
non-deterministic ω-automaton cannot be merged, in general, without changing
the accepted language. However, if the two states are in different SCCs, it is
possible to remove one of them. The aim of the heuristic that we describe next,

New Optimizations and Heuristics for Determinization of Büchi Automata 9

is to exploit this fact during construction of the DPA. Formally, we rely on the
following proposition, which we consider folklore.

Proposition 1. Let s, s′ be states of a DPA. If L(s) = L(s′) and s 6→ s′, then
all incoming edges of s′ can be redirected to s without changing the recognized
language (and s′ can be removed, since it becomes unreachable).

This implies that the whole SCC containing such a state s′ can be removed
because the language equivalence holds for all the successor states of s and s′ as
well, due to the deterministic transitions.

In order to use this insight in the determinization construction, we need
to detect language equivalences of states of the DPA at construction time. We
do this by using the powerset structure PS(A) of the given NBA A, which is
the transition system with nodes from 2Q obtained by using the NFA powerset
construction on the Büchi automaton, with Q0 as initial state and a deterministic
transition function δPS(A)(P, a) := ∆(P, a). Our optimization is based on the
following simple observation.

Proposition 2. Let B be a DPA that is equivalent to the NBA A. Let u be a
finite word such that in B the state s is reached via u, and in PS(A) the set P is
reached via u. Then B accepts from s the same language as A accepts from P .

This implies that states of the DPA that can be reached simultaneously with the
same set P in PS(A) are language equivalent. In combination with Proposition 1,
we obtain that a DPA equivalent to A only needs one SCC per SCC in PS(A).

Corollary 1. Let A be an NBA and PS(A) its powerset structure. Then there
exists a DPA B recognizing the same language such that for each SCC of PS(A)
there is at most one SCC in B.

Based on this observation, we separately construct for each SCC C of PS(A)
one SCC of the DPA, as explained in the following. The construction picks some
node S ∈ C (which is a set of NBA states), and starts the determinization pro-
cedure using S as initial states. Furthermore, it tracks for each macrostate s also
the corresponding node Ps in C. On each transition, the successor macrostate
for the DPA is only constructed, if the corresponding transition in PS(A) stays
in C.

This construction gives us a DPA BC that can be partial in the case of non-
bottom SCCs C of PS(A), with “holes” for transitions that exit C. Note that
BC might consist of several SCCs itself. Based on Propositions 1 and 2, we only
need to keep one bottom SCC of BC .

In order to complete the missing transitions, consider such a transition lead-
ing outside of C to some P ′ in an SCC C′ of PS(A). We assume that we have
already done the determinization for C′ (starting at the bottom SCCs of PS(A)
and then going backwards), so there already exists a macrostate that corresponds
to P ′, and we can let the transition of the DPA point to that macrostate. This
idea is illustrated in Figure 3.

Putting this into practice and keeping only bottom SCCs of the partial DPAs
that have the smallest size, is what we call the “topological” optimization. While

10 Christof Löding and Anton Pirogov

S
P

C :

S′ P ′C′ :

det.
=⇒

BC :

det.
=⇒

BC′ :

S

.
S

P

S′
. . .

. . .

. . .

S′

P ′

a ∈ Σ
a

Fig. 3. Abstract sketch of the determinization guided by SCCs of PS(A). The two pow-
erset SCCs C and C′ were determinized starting with the sets S and S′, respectively.
The states in the constructed partial DPAs BC and BC′ are depicted by the sets from
PS(A) to which they are language-equivalent. It suffices to keep just one bottom SCC
of each partial DPA (e.g. in the dotted rectangle) and connect them by exploiting the
known language equivalences to introduce missing edges (e.g. the depicted bold edge).

this still requires the exploration of all macrostates that are reached by the deter-
minization of a single SCC in PS(A), many of those may be removed afterwards.

Alternatively, one could explore in a depth-first fashion and greedily just keep
the first completed bottom SCC, effectively trading an even smaller automaton
size for possibly faster computation.

It can be easily implemented in such a way that the resulting automaton will
have at most the same size as without this optimization, by picking appropriate
initial states for the construction of the partial DPAs BC (i.e. picking initial
states that would also be reached by the unoptimized construction anyway).

Notice that this optimization is generic and can be used with any deter-
minization construction based on state exploration.

4.5 State reduction using Mealy minimization

A simple but powerful optimization that to our knowledge has not been consid-
ered yet, consists of first minimizing the number of priorities of the DPA (which
can be done efficiently using a simple algorithm from [5]) and then applying the
classical minimization algorithm by Hopcroft [17], by interpreting the DPA as a
Mealy machine that outputs priorities. Since the minimization as Mealy machine
preserves the priority sequence for each input, this clearly does not change the
language of the DPA.

We believe that the effectiveness is due to the determinization procedure often
returning automata with an unnecessarily large number of different priorities.
Thus, the new priority function may assign edges with initially distinct priorities
the same new priority. Thereby, paths with initially different priority sequences
might become equivalent, ultimately leading to more states that can be merged.
Because this is a pure post-processing step, it can be integrated easily into any
determinization tool-chain.

New Optimizations and Heuristics for Determinization of Büchi Automata 11

5 Experiments and Discussion

Our quantitative experiments1 involved different sets of Büchi automata that can
be roughly grouped into two categories—automata obtained from LTL formulas
and arbitrary automata. Most sets were generated and/or processed using tools
included with spot [9] (version 2.6.3). All sets were filtered to exclude already
deterministic Büchi automata. Furthermore, we filtered the sets to include only
automata that are determinizable by spot (via autfilt -D -P --high) in rea-
sonable time (between 1-30 minutes, depending on the size of the corresponding
test set). This was also our benchmark for comparison. We explicitly compare
only the size of the resulting automata and do not aim for competitive perfor-
mance. However, most heuristics we proposed are computationally cheap, being
essentially simple modifications of the successor calculation.

All LTL formulas were transformed to state-based Büchi automata using
ltl2tgba -B. As we are evaluating only the impact of the heuristics during the
transformation from Büchi to parity automata, the method to transform LTL
formulas to Büchi automata does not matter. For the same reason, we do not
compare with tools like Rabinizer [22] that bypass Büchi automata and Safra-
style constructions. We are also aware of the fact that spot might have been
able to produce smaller automata from LTL when using the usually smaller
transition-based automata as input. As all our heuristics and optimizations in
principle would work on those as well, we believe that this does not matter for
our evaluation.

We used autcross to obtain statistics about different combinations of our
heuristics as well as to ensure correctness of the generated automata. The test
sets that we used were the following:

raut: 1662 random automata generated by randaut with 5-20 states (9 on aver-
age), mostly in one SCC.

rautms: 2112 random automata with 10-30 states (13 on average) generated by
randaut, but filtered to have more than one SCC, specifically having at
least one rejecting and at least one accepting component.

rltl: 11798 automata of various size (8 states on average) from random LTL for-
mulas generated by randltl.

gltl: 68 automata from various parametrized LTL formula families generated by
genltl that yield nondeterministic automata [15,24,16,23,37,8,30].

scomp: 113 automata from LTL formulas extracted from the TLSF-benchmarks di-
rectory of the SYNTCOMP [18] benchmark repository.

To reduce the exponential number of possible combinations of different heuris-
tics and algorithm variants to a manageable amount, we fixed an order in which
to add optimizations additionally to the previous configuration. We tested this
sequence of cumulatively enabled optimizations for the three successor construc-
tion strategies proposed in the description of the generalized determinization al-
gorithm [25], which correspond to the Muller-Schupp construction (abbreviated

1 Our prototype can be obtained at https://github.com/apirogov/nbautils

https://github.com/apirogov/nbautils

12 Christof Löding and Anton Pirogov

M.-S.), Safra’s construction and the maximally collapsing merge rule (abbrevi-
ated Max.). The following list explains the used parameter combinations. In the
tables, the optimization listed in a column is enabled in addition to the ones
used in all previous columns.

def : only trimming of the automaton and the known true-loop optimization [20]
+T: topological optimization (Sec. 4.4)
+E: known external language inclusion [9] (Sec. 4.1)
+I: internal language inclusion (Sec. 4.1)

+M: priority minimization and state reduction (Sec. 4.5)
+S: smart successor selection using tries (Sec. 4.3)
+A: breakpoint construction for accepting SCCs (Sec. 4.2)
+W: optimization for both, accepting and rejecting SCCs (Sec. 4.2)
+D: optimization for deterministic SCCs (Sec. 4.2)

The results for our main benchmark test sets are shown in Table 1.

Σ spot mode def +T +E +I +M +S +W +D

M.-S. 2.42 2.31 2.31 2.31 1.33 1.07 1.07 1.07

raut 334523 Safra 1.14 1.00 1.00 1.00 0.80 0.82 0.82 0.82

Max. 1.21 1.07 1.06 1.06 0.84 0.83 0.83 0.83

M.-S. 1.28 1.21 0.92 0.92 0.77 0.70 0.68 0.68

rautms 286967 Safra 0.70 0.70 0.68 0.68 0.62 0.61 0.60 0.60

Max. 0.73 0.72 0.71 0.71 0.64 0.62 0.61 0.61

M.-S. 3.63 2.05 1.42 1.33 0.84 0.93 0.94 0.90

rltl 174251 Safra 4.15 2.67 1.76 1.61 0.93 0.96 0.97 0.92

Max. 3.94 2.47 1.79 1.65 0.98 0.99 1.01 0.93

M.-S. 3.12 1.98 1.97 1.87 1.18 1.08 1.07 1.00

gltl 3658 Safra 2.77 1.93 1.92 1.84 1.18 1.07 1.06 0.995

Max. 2.39 1.71 1.70 1.62 1.00 1.05 1.05 0.994

M.-S. 1.84 1.59 0.97 0.77 0.85 0.74

scomp 14502 Safra 1.92 1.58 0.98 0.72 0.78 0.69

Max. 1.62 1.22 0.73 0.74 0.85 0.70

Table 1. Results of the quantitative experiments. The numbers show the fraction of the
sum of states obtained by the indicated configuration of our implementation, compared
to the sum of states of the automata obtained by spot. On the SYNTCOMP set we did
not evaluate the least optimized configurations, as some optimizations were necessary
to obtain results in acceptable time.

Our results show that for each test set there is a configuration of our pro-
totype that, on average, produces automata that are not larger than the ones
produced by spot. In many cases, the best configuration produces automata
with up to 40% less states.

New Optimizations and Heuristics for Determinization of Büchi Automata 13

Unfortunately, the effect of the post-processing step with the priority mini-
mization and state reduction (+M) is not robust even under minor variations of
the automaton. This is, e.g., witnessed by the test set rltl, for which the state re-
duction without the smart successor selection yields better results. As only states
that agree on all priority sequences of runs going through them can be merged
by Hopcroft’s algorithm, slight variations that lead to “symmetry breaking” may
already render states non-mergeable. This optimization is more costly than the
others, because equivalent states must be computed in the resulting automaton.
But we believe that this is one of the most generally useful optimizations which
is worth the additional computation time, as it quite consistently reduces the
number of states by approximately 20–40%.

The smart selection of successors (+S) is the only proposed optimization
which is “stateful”, in the sense that it depends on the already constructed part
of the automaton, which in turn depends on other enabled optimizations. In all
but one test sets, this optimization was especially helpful in reducing states when
using the Muller-Schupp successors. Interestingly, it was most successful in the
Safra-based construction for the SYNTCOMP test set, where this optimization
alone was responsible for an additional state reduction of 26%. The topologi-
cal optimization (+T) yields a mild state reduction on random automata and
significant reduction of up to 36% in the LTL-based test sets. A particularly
suggestive demonstration of the topological optimization is given in Appendix F,
Figure 7.

The application of the optimization that exploits language inclusion relations
inside of a single SCC (+I) seems to have no visible effect on random automata,
but was responsible for a decent additional state reduction of 6–8% for any
variant of the construction in the LTL-based test sets. In our prototype we used
only a simple direct simulation [11] for the optimizations. We are optimistic that
using more involved simulations [12] to under-approximate language inclusion,
e.g. fair simulation, would lead to even better results.

The heuristics for accepting and rejecting SCCs of the NBA (+W), while
sometimes helpful, in other cases lead to an increase of the number of states. The
separate handling of deterministic components, which is enabled in addition to all
other optimizations, shows a positive effect mainly in the LTL-based automata
test sets.

We now give some further examples that illustrate the potential effect of
some of the heuristics. We start with the effect of our state reduction when de-
terminizing the family of automata introduced by Max Michel in [28] (see also
[39]) and which was used as a benchmark in [1]. A deterministic automaton rec-
ognizing the same language must have at least n! states and is usually much
larger in practice. While in [1] the Muller-Schupp construction performed sig-
nificantly worse than Safra’s construction, we were surprised to see that using
the Muller-Schupp update in our own experiments, the Hopcroft minimization
is able to drastically reduce the size of the automaton, producing much smaller
automata than any other construction variant we tried (see Table 2).

14 Christof Löding and Anton Pirogov

n spot mode def+TEI +M n spot mode def+TEI +M

2 18 M.-S. 19 17 4 2284 M.-S. 2725 457

Safra 18 18 Safra 2202 2106

Max. 18 18 Max. 2094 2094

3 145 M.-S. 166 82 5 60109 M.-S. 72616 2936

Safra 142 142 Safra 57714 57714

Max. 142 142 Max. 51094 51094

Table 2. Results for Michel’s automata family (input NBA have n + 1 states for all
n). The table demonstrates the surprising efficiency of the Muller-Schupp construction
with subsequent state reduction.

The heuristics for handling rejecting/accepting (+W) and deterministic (+D)
SCCs of the NBA were enabled in addition to all other heuristics in the experi-
ments shown in Table 1, and thus only had a small or even negative effect. We
refer to Appendix F, Figure 6 for a concrete example where SCC-based heuris-
tics can be harmful. In the following we give some examples showing that these
heuristics indeed can have a strong positive effect. The deterministic SCC opti-
mization is very useful for determinization of automata obtained from formulas
ϕGH(n) :=

∧n

i=1 GFai∨FGai+1 from [16]. An example where the heuristic which
applies the breakpoint-style construction to accepting SCCs is very helpful is the
family of formulas ϕMS(n) :=

∨n

i=0 FG(¬ia ∨ X
ib) from [30], where the bottom

SCCs of the automata are increasingly complex accepting SCCs (see Table 3).

M.-S. Safra max.

formula spot def.+TEI +D def.+TEI +D def.+TEI +D

ϕGH(2) 18 30 32 29 32 28 32

ϕGH(3) 108 385 255 327 255 381 266

ϕGH(4) 2143 15206 5612 10922 5612 12394 5036

formula spot def.+TEI +A def.+TEI +A def.+TEI +A

ϕMS(2) 21 40 16 40 16 36 16

ϕMS(3) 170 371 46 371 46 155 46

ϕMS(4) 1816 4933 132 4933 132 620 132

ϕMS(5) 22196 67173 358 67173 358 2419 358

Table 3. Results for some instances of the ϕGH (n) and ϕMS(n) formulas, with and
without usage of suitable heuristics. Number of states obtained by spot is provided
as reference in the tables. In case of ϕGH formulas, spot profits significantly from the
stutter-invariance optimization [21], which we do not utilize.

In summary, we noticed that the positive effects of the heuristics become
stronger with growing size of the input automaton. This is not surprising, as
for e.g. the SCC heuristics to have a positive effect, the automaton needs to
be sufficiently complex. Unfortunately, larger input automata are not suitable
for a thorough quantitative analysis in reasonable time. We are convinced, that
for sufficiently large automata, even the heuristics that may appear not very

New Optimizations and Heuristics for Determinization of Büchi Automata 15

effective in the presented benchmarks would have a stronger positive effect on
average.

Our results also show that every proposed choice of the merge operation in
the unified determinization construction seems to be superior in some cases. The
Muller-Schupp update was the best choice on the random LTL test set, while the
maximal collapse update was superior on the test set with the parametrized LTL
formulas. Even though the unoptimized Muller-Schupp update usually seems to
perform worst, combining it with some optimizations makes it a viable choice.
The maximal collapsing update seems to perform comparably with the Safra
update, but appears to be slightly worse in most cases, whereas the well-known
Safra update seems to be a good middle ground.

6 Conclusion

We presented a number of new heuristic optimizations for the determinization
of Büchi automata, and evaluated them in a prototype implementation using
different test sets of automata, ranging from randomly generated automata to
automata constructed from specifications from the competition SYNTCOMP.
Our results show that these heuristics can significantly reduce the number of
states in comparison with the base construction, and also in comparison with
the current state-of-the-art tool spot for determinization of NBAs.

In future work, we want to study in more depth the effect of the heuristic
based on language inclusions, by using stronger tools for identifying language
inclusions between states of the Büchi automaton (currently we are only using
direct simulation). We also see further potential in the smart successor selection,
which could be used for redirecting transitions in the constructed automaton in
order to reduce its size.

References

1. Althoff, C.S., Thomas, W., Wallmeier, N.: Observations on determinization of
Büchi automata. In: CIAA 2005. pp. 262–272. Springer

2. Baier, C., Katoen, J.P.: Principles of model checking. MIT Press (2008)
3. Boigelot, B., Jodogne, S., Wolper, P.: On the use of weak automata for deciding

linear arithmetic with integer and real variables. In: IJCAR 2001. Springer
4. Büchi, J.R.: On a decision method in restricted second order arithmetic. In: Studies

in Logic and the Foundations of Mathematics, vol. 44, pp. 1–11. Elsevier (1966)
5. Carton, O., Maceiras, R.: Computing the Rabin index of a parity automaton.

RAIRO-Theoretical Informatics and Applications 33(6), 495–505 (1999)
6. Choffrut, C., Grigorieff, S.: Uniformization of rational relations. In: Jewels are

Forever. pp. 59–71. Springer (1999)
7. Colcombet, T., Zdanowski, K.: A tight lower bound for determinization of transi-

tion labeled Büchi automata. In: ICALP 2009. Springer
8. Duret-Lutz, A.: Manipulating LTL formulas using spot 1.0. In: ATVA 2013.

Springer
9. Duret-Lutz, A., Lewkowicz, A., Fauchille, A., Michaud, T., Renault, E., Xu, L.:

Spot 2.0–a framework for LTL and ω-automata manipulation. In: ATVA 2016.
Springer

16 Christof Löding and Anton Pirogov

10. Esparza, J., Křetínskỳ, J., Raskin, J.F., Sickert, S.: From LTL and limit-
deterministic Büchi automata to deterministic parity automata. In: TACAS 2017.
Springer

11. Etessami, K., Holzmann, G.J.: Optimizing Büchi automata. In: CONCUR 2000.
Springer

12. Etessami, K., Wilke, T., Schuller, R.A.: Fair simulation relations, parity games, and
state space reduction for Büchi automata. SIAM J. on Computing 34(5) (2005)

13. Fisman, D., Lustig, Y.: A modular approach for Büchi determinization. In: CON-
CUR 2015. LIPIcs

14. Fogarty, S., Kupferman, O., Vardi, M.Y., Wilke, T.: Profile trees for Büchi word
automata, with application to determinization. Information and Computation 245,
136–151 (2015)

15. Gastin, P., Oddoux, D.: Fast LTL to Büchi automata translation. In: CAV 2001.
Springer

16. Geldenhuys, J., Hansen, H.: Larger automata and less work for LTL model check-
ing. In: SPIN 2006. Springer

17. Hopcroft, J.: An n log n algorithm for minimizing states in a finite automaton. In:
Theory of machines and computations, pp. 189–196. Elsevier (1971)

18. Jacobs, S., Basset, N., Bloem, R., Brenguier, R., Colange, M., Faymonville, P.,
Finkbeiner, B., Khalimov, A., Klein, F., Michaud, T., et al.: The 4th reactive
synthesis competition (syntcomp 2017): Benchmarks, participants & results. arXiv
preprint arXiv:1711.11439 (2017)

19. Kähler, D., Wilke, T.: Complementation, disambiguation, and determinization of
Büchi automata unified. In: ICALP 2008. Springer

20. Klein, J.: Linear time logic and deterministic omega-automata. Diploma thesis,
University of Bonn (2005)

21. Klein, J., Baier, C.: On-the-fly stuttering in the construction of deterministic
omega-automata. In: CIAA 2007. Springer

22. Křetínskỳ, J., Meggendorfer, T., Sickert, S., Ziegler, C.: Rabinizer 4: from LTL to
your favourite deterministic automaton. In: CAV 2018. Springer

23. Kupferman, O., Rosenberg, A.: The blow-up in translating LTL to deterministic
automata. In: MoChArt 2010. Springer

24. Kupferman, O., Vardi, M.Y.: From linear time to branching time. TOCL 2005
25. Löding, C., Pirogov, A.: Determinization of Büchi automata: Unifying

the approaches of Safra and Muller-Schupp. ICALP 2019 (to appear)
https://arxiv.org/abs/1902.02139

26. McNaughton, R.: Testing and generating infinite sequences by a finite automaton.
Information and control 9(5), 521–530 (1966)

27. Meyer, P.J., Sickert, S., Luttenberger, M.: Strix: Explicit reactive synthesis strikes
back! In: CAV 2018. Springer

28. Michel, M.: Complementation is more difficult with automata on infinite words.
Manuscript, CNET, Paris (1988)

29. Miyano, S., Hayashi, T.: Alternating finite automata on ω-words. Theoretical Com-
puter Science 32(3), 321–330 (1984)

30. Müller, D., Sickert, S.: LTL to deterministic Emerson-Lei automata. In: GandALF
2017

31. Muller, D.E., Schupp, P.E.: Simulating alternating tree automata by nondetermin-
istic automata: New results and new proofs of the theorems of Rabin, McNaughton
and Safra. Theoretical Computer Science 141(1-2), 69–107 (1995)

32. Piterman, N.: From nondeterministic Büchi and Streett automata to deterministic
parity automata. In: LICS 2006. IEEE

https://arxiv.org/abs/1902.02139

New Optimizations and Heuristics for Determinization of Büchi Automata 17

33. Pnueli, A.: The temporal logic of programs. In: Foundations of Computer Science,
1977., 18th Annual Symposium on. pp. 46–57. IEEE (1977)

34. Redziejowski, R.R.: An improved construction of deterministic omega-automaton
using derivatives. Fundamenta Informaticae 119(3-4), 393–406 (2012)

35. Safra, S.: On the complexity of omega-automata. In: Foundations of Computer
Science, 1988., 29th Annual Symposium on. pp. 319–327. IEEE (1988)

36. Schewe, S.: Tighter bounds for the determinisation of Büchi automata. In: FOS-
SACS 2009. Springer

37. Tabakov, D., Vardi, M.Y.: Optimized temporal monitors for SystemC. In: Inter-
national Conference on Runtime Verification. pp. 436–451. Springer (2010)

38. Thomas, W.: Automata on infinite objects. In: Handbook of Theoretical Computer
Science, vol. B, pp. 133–192. Elsevier Science Publishers, Amsterdam (1990)

39. Thomas, W.: Handbook of formal languages, vol. 3. chap. Languages, Automata,
and Logic, pp. 389–455. Springer (1997)

40. Thomas, W.: Church’s problem and a tour through automata theory. In: Pillars of
Computer Science. pp. 635–655. Springer (2008)

41. Vardi, M.Y., Wilke, T.: Automata: from logics to algorithms. In: Logic and au-
tomata - history and perspectives, Texts in Logic and Games, vol. 2, pp. 629–724.
Amsterdam University Press (2007)

18 Christof Löding and Anton Pirogov

A Adaptations for the modularized construction

In this section, we provide some more details on our modularized determinization
construction that is based on the construction presented in [25] and was sketched
in Section 3.1.

Fix a Büchi automaton A = (Σ,Q,∆,Q0, F) and observe that each accepting
run of the Büchi automaton must eventually stay in the same SCC of A forever.
Furthermore, a run can switch between components only a finite number of
times. So one can run multiple instances of the determinization in parallel, each
responsible for one (or multiple) of the SCCs of the Büchi automaton, and try
to detect accepting runs that eventually stay in those components.

Formally, let P = {Pi}
|P |
i=1 be an SCC-preserving partition of Q, where SCC-

preserving means that for p, q ∈ Q, scc(p) = scc(q) implies that p, q ∈ Pi for
the same i ∈ N. Fix m ∈ N, denoting the number of determinization tuples that
will be run in parallel, and choose an injective map prt : [m] →֒ P that assigns
each tuple a different set of states from the Büchi automaton that it will be
responsible for. The assignment should cover all SCCs of the Büchi automaton
which admit accepting runs, i.e. Q\R ⊆

⋃m

i=1 prt(i), where R is the set of states
in rejecting SCCs of A.

A macrostate s := ((αi, ti)
m
i=1, B) in the modular construction consists of

a buffer set B ⊆ Q and components (αi, ti) with tuples ti := (Si,1, . . . , Si,ni
)

equipped with injective functions αi : [ni] →֒ [n] that map each set to its rank,
where n :=

∑m

i=1 ni, Qti :=
⋃ni

j=1 Si,j and Qs := B ∪
⋃m

i=1 Qti . We require that
the sets img(αi) partition [n], Qti ⊆ prt(i) and that all sets of states in s must
be disjoint. We allow the components to be empty, i.e. having ni = 0 (then αi

is just the empty function).

Whenever a state (of the NBA) is reached from some other state in the same
component, we must follow the rules of the original procedure to infer accepting
runs correctly. However, when a state is reached only from a state in a different
component, then the state must lie on a run which is not already represented in
the tuple for that component. Hence, we can add this state to the component in
such a way that it is not related to the others and from there on let the original
construction handle the rest.

The priorities at the transitions of the original construction are consequence
of red and green ranks that are assigned to sets. When multiple components
work in parallel and one component witnesses an accepting run by signalling
green infinitely often (and red only finitely often), these signals must eventually
dominate red signals from other components. The correct interaction of signals
is easily achieved by using a ranking that totally orders all the sets (which is
captured by the definition and constraints on partial rankings αi), disregarding
the separated components, and updating the ranks according to the rules of the
construction. Following the construction ensures that “less important” sets move
up in the ranking order whenever a more important rank has a bad event.

The initial state consists of a macrostate q0 such that all states in Q0 are
distributed into singleton sets in the corresponding tuples ti, with arbitrary
different ranks satisfying the definition of macrostates above.

New Optimizations and Heuristics for Determinization of Büchi Automata 19

A transition is defined as follows. Let s = ((αi, ti)
m
i=1, B) be some macrostate.

Similar to the original construction, the successor on some letter x ∈ Σ is ob-
tained by performing the steps step, relocate, prune,merge and normalize, where
only the relocate step is completely new, whereas the other steps are only small
modifications of the original construction.

First, the operation step is executed on each tuple exactly as before. Addi-
tionally, let B̃ := ∆(B, x) be the successors of states in the buffer set. The new
operation relocate collects the set of all wrongly-placed states from the sets B̃

and Q̃ti , removes them from those sets and places them into the correct sets.
Formally, let W0 := B̃ ∩

⋃m

i=1 prt(i) and for 1 ≤ i ≤ m let Wi := {q ∈ Qt̃i
|

q 6∈ prt(i)}. Then B̊ := (B̃ \ W0) ∪ ((
⋃m

i=1 Wi) \
⋃m

i=1 prt(i)) is the new buffer
set, containing all reached states that do not belong in any tuple. The tuples t̊i
are defined by setting S̊i,j := S̃i,j \Wi for each set S̃i,j in t̃i, thereby removing

wrongly placed states, and then adding a new rightmost set S̊i,new := (
⋃m

j=0 Wj∩
prt(i))\Qt̃i

to the tuple, which contains states that have predecessors only outside
of the tuple. The ranks α̊ for the modified sets stay the same as before, whereas
all the new sets S̊i,new are assigned some fresh rank higher than all currently

assigned ranks, giving us the intermediate macrostate ((α̊i, t̊i)
m
i=1, B̊).

Next, proceed with prune as in the original construction. The priority of the
transition is obtained in essentially the same way as before, based on the results
of prune in the tuples. First obtain the sets Gi and Ri of good and bad ranks
of the different tuples according to the original construction, then consider their
union G :=

⋃m

i=1 Gi and R :=
⋃m

i=1 Ri. The priority p of the transition is 2k
if k ∈ G and 2k − 1 otherwise, where k := min(G ·∪ R) (or k := |Q| + 1 if
(G ·∪R) = ∅) denotes the smallest rank associated with some event in a tuple.

The merge operation has constraints based on the smallest rank with a good
or bad event in the transition. Use the most important rank k of the whole
macrostate from above to execute merge on the individual tuples. Finally, apply
normalize in such a way that the rank order of all sets in the whole macrostate is
preserved and let B′ := B̊, so that in the end we have the successor macrostate
s′ = ((α′

i, t
′
i)

m
i=1, B

′).
A note to readers familiar with Safra’s construction—the redistribution of

misplaced states in the relocate operation essentially introduces a new separate
Safra tree root labelled by the newly introduced states. The tree structure here is
encoded in the ranks (more details on this correspondence can be found in [25]).
By adding the new rightmost sets S̊i,new as described above, each tuple in general
contains not just one tree encoding the relationship of runs that share a common
history, but multiple such trees in an ordered forest, reflecting the “unknown”
history which was lost in the transition of the state between the different tuples.
The important preserved information is that the state was actually reached at
some time i and from this point on the runs that continue from there and stay in
the same component will be correctly managed like in the original construction.

20 Christof Löding and Anton Pirogov

B Correctness of internal language inclusion optimization

In this section we give a proof sketch for the proposed internal language inclusion
optimization from Section 4.1:

Theorem 1. Let p, q ∈ Q with L(p) ⊆ L(q) and let (α, t) be a macrostate of
the determinization construction such that p, q ∈ Qt. If q is to the left of p (i.e.
idxt(q) < idxt(p)), then p may be omitted from the macrostate without changing
the language of the determinized automaton.

Proof (sketch). Let w ∈ L(A). We need to show that removing states in this way
does not inhibit the acceptance of w by the resulting DPA. Let the acceptance
profile of a run q0q1 . . . be defined as a sequence z0z1 . . . ∈ {0, 1}ω such that
zi = 1 if qi ∈ F and zi = 0 otherwise. Then let ρ be an accepting run with
a lexicographically maximal acceptance profile, i.e., an accepting run visiting
accepting states as early as possible (such a run always exists, see e.g., the
greedy ordering of runs in [6]).

The determinization construction puts states along lexicographically larger
runs to the left of states along lexicographically smaller runs by separating ac-
cepting from non-accepting states and keeping only leftmost occurrences of each
state in step. This order is never swapped during the other operations. It can
only happen that two states are merged into the same set in merge. Thus, the
construction ensures the following invariant: idxt(q) < idxt(p) implies that a lex.
maximal run going through q is lex. larger than a lex. maximal run going through
p at the same time. Hence, in the sequence of macrostates on w in a DPA, no
state along the run ρ is ever removed by this optimization, because this would
contradict the maximality of the acceptance profile of ρ. Choosing this run ρ in
the proof of [25, Lemma 6] shows that the DPA indeed still accepts w. ⊓⊔

B.1 Modification for the modular construction

The invariant in the proof above may be violated in the modular construction
(Appendix A) due to states being moved between different tuples, such that some
run which goes through these states may suddenly switch to the right side of a
tuple, even though it is “better” than other runs tracked in that tuple. This poses
a problem, if the same run can leave and re-enter the same tuple. Therefore, we
need to add an additional constraint to pairs of states for which we can apply
this optimization to exclude this possibility.

More formally, in the modular construction we may only apply Theorem 1
to some pair of NBA states p, q ∈ Q with L(p) ⊆ L(q) that are assigned to the
same determinization tuple ti (i.e., p, q ∈ prt(i) for some i ∈ N), if every path
from q to p must stay in prt(i), i.e., can not leave and re-enter ti.

C Details on the accepting SCC heuristic

In this section we describe how the breakpoint construction [29] can be inter-
nalized in the determinization procedure to handle accepting SCCs of Büchi
automata more efficiently.

New Optimizations and Heuristics for Determinization of Büchi Automata 21

The idea of the breakpoint construction is that for accepting SCCs it is
sufficient to check that at least one run eventually stays in the same SCC forever.
Because there are no rejecting loops that could be taken by runs in these SCCs,
it suffices to (conceptually) fix some set of runs that are currently in such SCCs
and track sets of states that are reached by these runs and stay in those SCCs.
As long as there is at least one state left, there must be a run remaining in this
SCC and all remaining runs must be accepting. This reduces the required effort
to track accepting runs significantly. One only needs to ensure the separation of
the states in these accepting SCCs reached by the currently tracked runs from
states that were reached only by runs that are currently not followed. When
our currently tracked set becomes empty, we can start the tracking again on (a
subset of) states along the previously unfollowed runs. If it is ensured that every
reached state in the accepting SCCs eventually has the chance to be tracked, an
accepting run will eventually be detected, if one exists.

So we need to manage only two different sets to detect accepting runs in
any accepting SCC—a track set and a background set. In a transition, the track
set is updated to all successors of the current track set that are in an accepting
SCC. The background set contains all other states from accepting SCCs that
are reached in this transition. Whenever the track set becomes empty (which is
a “breakpoint”), all states from the background set are moved to the track set.
Using this kind of scheme (see e.g. [3]), it is possible to determinize weak NBA
with a blow-up of at most 3n, instead of the general upper bound of 2O(n logn).

To exploit this approach for general NBA, we utilize our modular deter-
minization construction (see Appendix A). We use the buffer set B of the
modular macrostates for the background set and a separate determinization
component for the track set, which is formally some ranked tuple (αi, ti) with
ti := (Si,1) containing a single set with all the states in the track set. This com-
ponent is responsible for all accepting SCCs, i.e., prt(i) := A, where A is the
union of all accepting SCCs of the NBA. The operation relocate is modified in
such a way that reached states in A are collected in the buffer set B first and do
not go directly into the responsible component (αi, ti), unless it becomes empty
during step (which indicates a breakpoint).

As all states in A are accepting, they all move to the left child during step,
whereas the right child becomes empty. Consequently, the right empty set is
removed, whereas its rank (which is more important) is preserved by assigning
it to the left child containing all the states. This rank, by definition, is in the
set Gi, signalling a good event. On the other hand, if the tracked states have no
successors, both child sets will be empty during step, resulting in prune removing
both of them and the assigned rank (as well as the fresh rank of the left child
set) signalling a bad event, i.e., being in the set Ri. But then all other states in
A that are currently untracked are moved into the component by relocate with a
fresh rank of low importance, thereby “restarting” the track set with the states
from the background set. The merge operation on a single set clearly is always
trivial (i.e. can be skipped).

22 Christof Löding and Anton Pirogov

In practice, the separation of successors into two sets during step and most
of the mechanics during prune can be optimized away by making the current
rank of the single set in the tuple always signal green, unless it becomes empty,
when it must signal red. Thereby we can use only a single rank (assigned by
αi) for all states in A. If the track set in the tuple eventually never becomes
empty, its importance will increase by following the construction and eventually
its green signal will be the most important in the transition, unless there exists
a different more important rank that also eventually always signals green, so the
DPA is guaranteed to accept if there is an accepting run in the accepting SCCs
of the Büchi automaton. On the other hand, if there is no such run, then the
determinization component that runs the breakpoint construction will become
empty and will be “restarted” infinitely often and therefore its current rank will
infinitely often signal red and thus will never witness an accepting run.

D Details on the deterministic SCC heuristic

In this section we describe how the determinization construction can be simpli-
fied for SCCs of the NBA that are already deterministic. For this section, fix
a deterministic SCC D of the Büchi automaton. The idea is based on the fact
that no run of the Büchi automaton that currently is in D can ever split up into
multiple runs as long as its states remain in D.

Fix (conceptually) a set of runs currently in D, i.e., take the set of states
occupied by these runs. Then track for these states which successors also remain
in D (if a run splits up, then all but one successors go to a different SCC and are
not tracked). Clearly, as long as the tracked set is not empty, there are still runs
in D. Furthermore, if an accepting state is in this set, then it was reached by
one of the runs we are currently tracking. Therefore, if there are accepting states
in this set infinitely often, then at least one of the finitely many runs tracked in
the set must visit accepting states infinitely often, i.e. there exists an accepting
run.

While we are tracking this set, some runs from other SCCs may enter D and
reach the same or also different states. Whenever this happens, we start a new
tracking set with a lower priority, which means that whenever both sets reach the
same state q, only the set with higher priority gets state q. Thus, we keep only
one copy of each state and at the same time lower priority sets never interfere
with higher priority sets. Lower priority sets therefore only track runs that visit
states which are not visited by runs tracked in sets with higher priority at the
same time.

Notice how this concept can be easily represented in our modularized con-
struction (see Appendix A). Assume that some determinization component (αi, ti)
is responsible for the deterministic SCC D of the NBA, i.e. we have that prt(i) =
D. We can easily adapt the step operation to not split up the set of successors,
so that together with the relocate operation we get exactly the behaviour de-
scribed above, i.e., older sets are located to the left in ti and are favoured by the
normalized successor calculation, whereas new sets are introduced on the right

New Optimizations and Heuristics for Determinization of Büchi Automata 23

by relocate. These sets contain only states that were not reached by the other
sets in the component and get a fresh rank with low importance. States that
leave D are also automatically taken care of by the construction during relocate.
Whenever a tracked set becomes empty, it will be removed by prune and by
definition, its rank will be in the set Ri representing a bad event. For a rank to
signal a good event, we modify the construction for this component to reflect
the reasoning above, such that a rank r is put into the set Gi whenever the set
Si,j in ti with αi(j) = r contains an accepting state. The operations merge and
normalize work as before.

Observe that by disabling the splitting of sets during step we can hope to
construct less different partitionings of the states in D, as new sets only are
introduced by runs coming from outside of D. Furthermore, the assigned ranks
in the tuple ti are always ascending (because the new sets with low importance
are always added on the right), so that the importance order and tuple order
agree. This property restricts the worst-case upper bound on the state space for
the component (αi, ti), as only ascending rankings αi are used.

When applying this heuristic for the determinization of limit-deterministic
automata, one obtains a variant of the construction described in [10], in which
the states in the deterministic components are organized in a tuple sorted by
the order in which the corresponding run entered the deterministic part. In
our construction, we use a tuple of sets instead, tracking those runs that enter
the deterministic part at the same time in one set. While the worst-case upper
bound for the number of resulting macrostates is better for the construction in
[10], in our experiments we found that using tuples of sets also works well in the
examples.

24 Christof Löding and Anton Pirogov

E Details on smart successor selection

In this section, we describe in more detail how the freedom of choice for the
successor given by the merge operation of the determinization construction from
[25] can be exploited in a computationally feasible way, i.e., how to quickly search
for a candidate successor macrostate for some transition during state exploration
of the DPA in the set of already existing macrostates.

The crucial idea is to structure the set of already visited states in a reasonable
way such that macrostates which share a common prefix in the trie are related
wrt. the tree interpretation of the macrostates. This tree is derived from a ranked
slice in the following way. Let (α, t) be a ranked slice with t = (S1, . . . , Sn). The
tuple index of the parent of Si is the closest index to the right of i that has
a smaller rank, formally defined as ↑(i) := mini<k≤n{k | α(k) < α(i)}. The
ordered tree induced by ↑, with siblings in tuple index order, is called the rank-
tree of (α, t) (more on this correspondence of ranked slices and trees can be found
in [25]).

For example, in the macrostate ({q3, q4}4, {q2}2, {q5, q6}3, {q1}1) from Fig-
ure 5(b), the rightmost index 4 can have no parent and is the root. Its rank
1 is the closest smaller rank for positions 2 and 3 (that have ranks 2 and 3,
respectively), hence we have ↑(2) = ↑(3) = 4, whereas the position 1 (with rank
4) has position 2 (with rank 2) as parent, that is ↑(1) = 2. The edges shown
in Figure 5(a)–(c) correspond to the edges in this tree interpretation, pointing
from a parent to its direct descendants. In Figure 4, the trees on the bottom are
actually such macrostates, in this interpretation as trees. The sequence of sets
in the upper part of the figure is explained later.

Rank-trees have the property that parents have smaller ranks than children
and sibling nodes have ascending ranks, which easily follows from the definition.
So one can interpret ranks as the order of creation of nodes in the tree, smaller
ranks meaning that the corresponding tree node was created earlier (in practice,
multiple nodes that are created at the same time are eventually assigned different
ranks during the normalize step of the determinization construction, fixing an
arbitrary creation order for them).

We now explain how such rank trees can be encoded by a single sequence of
sets (with ranks implicitly encoded), which is the basis for the data structure
that we are using. We present it here for the case of a single tuple, but it can be
adapted to the modularized variant in a straight-forward way.

First, replace each set in the tuple with a set containing all states in the sub-
tree of the corresponding rank-tree node. Then, sort these sets in ascending rank
order and drop the ranks. For the macrostate ({q3, q4}4, {q2}2, {q5, q6}3, {q1}1)
from Figure 5(b), the resulting sequence is {q1, . . . , q6}, {q2, q3, q4}, {q5, q6}, {q3, q4}.
The resulting sequence of sets S1, S2, . . . , Sn (which are different from the sets
in the macrostate tuple) is essentially just a word over the alphabet 2Q which
satisfies the property that for all i > 1, it holds that ∅ 6= Si ⊂ Sk for some k < i

and all sets are pairwise different.
Notice that we can interpret such sequences of sets operationally, as a “recipe”

describing how one can construct a rank-tree, when first starting just with the

New Optimizations and Heuristics for Determinization of Büchi Automata 25

set of all states that are located in its nodes. The first set of the sequence is the
set of all states that exist in the tree, and can be seen as a trivial rank-tree with
all states in the root (which must have the rank 1). The following sets in the
sequence can be read as a list of successive instructions, each set S essentially
saying: “find the current tree node that contains the states in S, create a new
child node of that node (assigning it the new highest rank so far) and move the
states in S to the new node”. Thereby, each additional set in the list “refines” the
tree, until we get the exact rank-tree we are describing. Notice that each prefix
of this sequence also describes a valid rank-tree with the same states, but with
less nodes over which those states are distributed (see Figure 4).

{q1, . . . , q5} {q2, q3} {q4, q5} {q5} {q3}

{q1, . . . , q5}
1 {q1, q4, q5}

1

{q2, q3}
2

{q1}
1

{q2, q3}
2 {q4, q5}

3

{q1}
1

{q2, q3}
2 {q4}

3

{q5}
4

{q1, q4}
1

{q2}
2 {q4}

3

{q3}
5 {q5}

4

Fig. 4. Example illustrating the semantics of the set sequences which describe
macrostates in terms of refining their rank-tree. The illustrated rank-trees at the bot-
tom correspond to the different prefixes of the set sequence at the top.

Our approach now is to manage tries that store such sequences of sets, i.e.,
each trie node is labelled by a set S ⊆ Q and a marker that indicates whether the
sequence from the root down to the current node is stored in the trie (corresponds
to a macrostate of the DPA that is constructed). The words that are added into
this trie are exactly such sequences of sets as described above, so each trie node
corresponds to the macrostate that is described by the set sequence from the root
down to this node. In Figure 4, the set sequence at the top would be a single
branch of the trie and each set would be a node of the trie that represents a
specific macrostate, which is illustrated below the trie-node as the corresponding
rank-tree.

To be more precise, for each set U ⊆ Q of NBA states there is a separate trie
(with the root labelled by U) that can be used to store all possible ranked slices
(i.e. macrostates) with exactly the states from U , i.e., all macrostates (α, t) with
Qt = U . In practice, these tries are constructed on-the-fly to contain just the
branches corresponding to macrostates that were already added to the DPA (see
Figure 5 for an illustration).

Now we explain how to use these tries to aid the successor selection. Recall
that in a transition of the determinization construction, during the merge op-
eration adjacent sets can be grouped into intervals and merged together. The
nondeterminism in the choice of intervals in this step allows for the multiple valid

26 Christof Löding and Anton Pirogov

1:

2:

3:

4:

5:

6:

{q1, . . . , q6}

{q2, q3, q4}

{q5,q6}

{q6}

{q3}

{q4}

{q3,q4}

(a)

(b)

(c)

(a):
{q2−q4}

2 {q5, q6}
3 {q1}

1

(b):
{q3, q4}

4 {q2}
2 {q5, q6}

3 {q1}
1

(c):
{q3}

5 {q4}
6 {q2}

2 {q6}
4 {q5}

3 {q1}
1

Fig. 5. The depicted trie on the left contains three macrostates that correspond to
the marked trie nodes. The macrostate-tuples are depicted on the right, with ranks
as superscripts and rank-tree edges (defined by parent index function ↑) connecting
parents with children sets.

successors. In the view of macrostates as rank-trees, it is permitted to merge,
for example, a whole subtree and/or multiple adjacent siblings into one node.

If k is the dominating rank of the transition (obtained after performing
prune), the constraints on merge ensure that certain nodes with more important
(i.e., smaller) ranks, which are higher up in the rank-tree, more precisely—all
nodes with a rank < k, cannot be changed at all. They keep exactly the same
states and retain the same rank as before the merge. This is reflected in the set
sequences described above by the fact that all valid successor macrostates agree
on the prefix of length k − 1, and only differ in the following sets that describe
how the states are further distributed in the rank-tree. This means, that all valid
successors must be located in the sub-trie that is rooted at the trie node reached
after this common prefix of length k−1, which already significantly restricts the
search space for a valid successor state.

Furthermore, each state q that is not in a set of the rank-tree that has a rank
< k must eventually appear in some set at trie depth ≥ k. If it does not, then in
the macrostate described along the current trie branch, q was never “promoted”
downward in the rank-tree, violating the fact that nodes that have ranks < k

must not be modified by the merge operation, and especially must not contain
additional states.

On the other hand, observe that one may skip the merge step completely (or
do a trivial merge operation that collapses no sets), which corresponds to the
successor agreeing with the Muller-Schupp construction. Because by performing
non-trivial merges, the rank of each state q (i.e., the rank of the set containing
q in the macrostate) may only decrease, the Muller-Schupp successor carries
important information, namely for each state the highest rank of a node (of the
rank-tree) that can have q in its subtree, if the resulting macrostate shall be
a valid successor. Translated to the trie view, this means that for each state
of the NBA there is a deepest level of the trie where it may appear along the
corresponding set sequence.

New Optimizations and Heuristics for Determinization of Büchi Automata 27

We use the observations above in the following way. During a transition, we
first compute the Muller-Schupp successor (i.e., skip merge) and transform the
resulting macrostate into a sequence of sets, as described above.

First, we check whether the trie node reached by the k−1-prefix of the set
sequence exists in the trie. If it does not, then there is no viable successor state
existing in the automaton yet, as they all must share this prefix in the trie. Thus,
we proceed by constructing the “default” successor, as prescribed by some merge

strategy that is given as a parameter by the user (e.g. a merge that corresponds
to the construction of Safra, Muller-Schupp, etc.), add this macrostate to the
DPA and insert its set sequence into the trie, i.e., add the branch labelled by
those sets and mark the final trie node reached by this set sequence, indicating
that the corresponding macrostate is in the DPA.

If the trie node corresponding to the prefix does already exist in the trie, we
search the trie using a depth-first search. This DFS follows existing branches in
the subtrie, as long as they don’t violate the constraints above (which can be
computed from the Muller-Schupp successor we already constructed). Whenever
a trie node is reached where these constraints are violated, the exploration of its
sub-trie can be aborted, as the macrostates represented further below may not
arise by a valid merge operation in the current transition.

Each trie node which does not violate the constraints, and is also marked,
corresponds to a macrostate which already exists in the automaton and is a
candidate for a valid successor. What remains to be ensured is that the can-
didate macrostate really can be obtained by merging adjacent non-empty sets.
This is done using a simple unidirectional scan which compares the Muller-
Schupp successor (which we constructed in the beginning) to the current can-
didate macrostate (which already existed and just needs to be looked up). If a
valid successor is identified during this exploration, then the DPA just gets a
new transition to this already existing macrostate. Otherwise, we construct the
“default” successor, add it to the DPA as the target of the current transition and
also insert it into the trie, as described above.

From the practical point of view, all required steps can be carried out effi-
ciently using bit-set operations, i.e. all set operations can be seen as constant-
time operations. For all checks and computations only a linear (in the number
of sets in a macrostate) number of set operations is required. Hence, the overall
slowdown incurred by this optimized successor selection is very moderate.

28 Christof Löding and Anton Pirogov

F Additional examples

The example in Figure 6 illustrates a case where heuristics presented in Sec-
tion 4.2, which exploit the SCC-structure of the NBA, can be detrimental to
state reduction and therefore using them requires greater care. One of the rea-
sons is that by adding more determinization components in the modularized
construction (Appendix A), it is possible that additional new macrostates are
constructed due to the relocation of reached states of the NBA between the
different tuples. Therefore, SCC-based heuristics should be only applied with
sufficiently large SCCs, where a large reduction can be expected due to the
separated handling.

B(n) :

q1 q2 . . . qn qF2 3 n

1

3

n

n

2

n

Σ\{1} Σ\{2} Σ\{n} Σ\{#}

n spot def. +sep

5 62 62 454

6 126 126 2607

7 254 254 17612

Fig. 6. B(n) is a family of automata with n+1 states for each n, where enabling some
of the heuristics that enforce separated handling of SCCs of the NBA leads to more
states. The table shows the resulting automata sizes from our prototype with just basic
optimizations, and the same configuration with separation of all SCCs into different
determinization components (+sep) enabled. For any choice of the merge step, useless
permutations of the states are introduced by the enforced separation, leading to the
blowup.

The example in Figure 7 demonstrates how well the topological optimization
complements the Muller-Schupp variant of the merge step in the determinization
construction from Section 3.

C(n) : q0 . . .

q1 q′1

qn q′n

Σ

Σ

Σ

Σ \ {1}

Σ \ {n}

1

n

Σ

Σ

1

n

n spot def.+EI +T +M

2 3 6 4 1

3 3 23 5 1

4 3 126 6 1

5 3 827 7 1

6 3 6188 8 1

Fig. 7. C(n) is a family of universal automata with 2n+ 1 states for each n on which
using Muller-Schupp successors generates many useless states, which can be removed
again using the topological optimization, as shown in the table. Together with our
minimization we obtain the optimal automata.

	New Optimizations and Heuristics for Determinization of Büchi Automata

