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Abstract. We study the repair problem for hyperproperties specified
in the temporal logic HyperLTL. Hyperproperties are system properties
that relate multiple computation traces. This class of properties includes
information flow policies like noninterference and observational deter-
minism. The repair problem is to find, for a given Kripke structure, a
substructure that satisfies a given specification. We show that the repair
problem is decidable for HyperLTL specifications and finite-state Kripke
structures. We provide a detailed complexity analysis for different frag-
ments of HyperLTL and different system types: tree-shaped, acyclic, and
general Kripke structures.

1 Introduction

Information-flow security is concerned with the detection of unwanted flows of
information from a set of variables deemed as secrets to another set of vari-
ables that are publicly observable. Information-flow security is foundational for
some of the pillars of cybersecurity such as confidentiality, secrecy, and privacy.
Information-flow properties belong to the class of hyperproperties [12], which
generalize trace properties to sets of sets of traces. Trace properties are usually
insufficient, because information-flow properties relate multiple executions. This
also means that classic trace-based specification languages such as linear-time
temporal logic (LTL) cannot be used directly to specify information-flow proper-
ties. HyperLTL [11] is an extension of LTL with trace variables and quantifiers.
HyperLTL can express information-flow properties by simultaneously referring
to multiple traces. For example, noninterference [28] between a secret input h
and a public output o can be specified in HyperLTL by stating that, for all pairs
of traces π and π′, if the input is the same for all input variables I except h,
then the output o must be the same at all times:

∀π.∀π′.
(

∧

i∈I\{h}

iπ = iπ′

)

⇒ (oπ = oπ′)

Another prominent example is generalized noninterference (GNI) [36], which can
be expressed as the following HyperLTL formula:

∀π.∀π′.∃π′′. (hπ = hπ′′) ∧ (oπ′ = oπ′′)

The existential quantifier is needed to allow for nondeterminism. Generalized
noninterference permits nondeterminism in the low-observable behavior, but
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stipulates that low-security outputs may not be altered by the injection of high-
security inputs.

There has been a lot of recent progress in automatically verifying [14,23–25]
and monitoring [2, 8, 9, 21, 22, 29, 39] HyperLTL specifications. The automatic
construction of systems that satisfy a given set of information-flow properties is
still, however, in its infancy. So far, the only known approach is bounded syn-
thesis [14, 19], which searches for an implementation up to a given bound on
the number of states. While there has been some success in applying bounded
synthesis to systems like the dining cryptographers [10], this approach does not
yet scale to larger systems. The general synthesis problem (without the bound
on the number of states) becomes undecidable as soon as the HyperLTL formula
contains two universal quantifiers [19]. A less complex type of synthesis is pro-

gram repair, where, given a model K and a property ϕ, the goal is to construct a
model K′, such that (1) any execution of K′ is also an execution of K, and (2) K′

satisfies ϕ. A useful application of program repair is program sketching, where
the developer provides a program with “holes” that are filled in by the synthesis
algorithm [38]. Filling a hole in a program sketch is a repair step that eliminates
nondeterminism. While such a repair is guaranteed to preserve trace properties,
it is well known that this is not the case in the context of information-flow secu-
rity policies [30]. In fact, this problem has not yet been studied in the context
of hyperproperties.

In this paper, we study the problem of automated program repair of finite-
state systems with respect to HyperLTL specifications. We provide a detailed
analysis of the complexity of the repair problem for different shapes of the struc-
ture: we are interested in general, acyclic, and tree-shaped Kripke structures.
The need for investigating the repair problem for tree-shaped and acyclic graphs
stems from two reasons. First, many trace logs that can be used as a basis for
example-based synthesis [4] and repair are in the form of a simple linear collec-
tion of the traces seen so far. Or, for space efficiency, the traces are organized
by common prefixes and assembled into a tree-shaped Kripke structure, or by
common prefixes as well as suffixes assembled into an acyclic Kripke structure.
The second reason is that tree-shaped and acyclic Kripke structures often occur
as the natural representation of the state space of a protocol. For example, cer-
tain security protocols, such as authentication and session-based protocols (e.g.,
TLS, SSL, SIP) go through a finite sequence of phases, resulting in an acyclic
Kripke structure.

Table 1 summarizes the contributions of this paper. It shows our results on
the complexity of automated program repair with respect to different fragments
of HyperLTL. The complexities are in the size of the Kripke structure. This
system complexity is the most relevant complexity in practice, because the system
tends to be much larger than the specification. Our results show that the shape of
the Kripke structure plays a crucial role in the complexity of the repair problem:

– Trees. For trees, the complexity in the size of the Kripke structure does
not go beyond NP. The problem for the alternation-free fragment and the
fragment with one quantifier alternation where the leading quantifier is exis-
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HyperLTL

fragment

Tree Acyclic General

E∗

L-complete
(Theorem 1)

NL-complete
(Theorems 5

and 6)

NL-complete
(Theorem 8)

A∗ NP-complete
(Theorem 9)

EA∗

PSPACE

(T
h
eo
re
m

1
0
)

E∗A∗ Σp
2

(T
h
eo
re
m

7
)AE∗ P-complete

(Theorem 2) Σp
2-complete PSPACE-complete

A∗E∗

NP-complete
(Corollary 1)

(E∗A∗)k Σp

k-complete
(k−1)-EXPSPACE-complete

(A∗E∗)k Σp

k+1
-complete

(A∗E∗)∗
PSPACE

(Corollary 2)
NONELEMENTARY
(Corollary 3)

Table 1: Complexity of the HyperLTL repair problem in the size of the Kripke
structure, where k is the number of quantifier alternations in the formula.

tential is L-complete. The problem for the fragment with one quantifier alter-
nation where the leading quantifier is universal is P-complete. The problem
is NP-complete for full HyperLTL.

– Acyclic graphs. For acyclic Kripke structures, the complexity is NL-

complete for the alternation-free fragment and the fragment with one quan-
tifier alternation where the leading quantifier is existential. The complexity
is in the level of the polynomial hierarchy that corresponds to the number
of quantifier alternations.

– General graphs. For general Kripke structures, the complexity is NL-

complete for the existential fragment and NP-complete for the universal frag-
ment. The complexity is PSPACE-complete for the fragment with one quanti-
fier alternation and (k− 1)-EXPSPACE-complete in the number k of quantifier
alternations.

We believe that the results of this paper provide the fundamental under-
standing of the repair problem for secure information flow and pave the way for
further research on developing efficient and scalable techniques.

Organization The remainder of this paper is organized as follows. In Section 2,
we review Kripke structures and HyperLTL. We present a detailed motivating
example in Section 3. The formal statement of our repair problem is in Section 4.
Section 5 presents our results on the complexity of repair for HyperLTL in the
size of tree-shaped Kripke structures. Sections 6 and 7 present the results on
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the complexity of repair in acyclic and general graphs, respectively. We discuss
related work in Section 8. We conclude with a discussion of future work in
Section 9. Detailed proofs are available in the full version of this paper.

2 Preliminaries

2.1 Kripke Structures

Let AP be a finite set of atomic propositions and Σ = 2AP be the alphabet. A
letter is an element of Σ. A trace t ∈ Σω over alphabet Σ is an infinite sequence
of letters: t = t(0)t(1)t(2) . . .

Definition 1. A Kripke structure is a tuple K = 〈S, sinit , δ, L〉, where

– S is a finite set of states;
– sinit ∈ S is the initial state;
– δ ⊆ S × S is a transition relation, and
– L : S → Σ is a labeling function on the states of K.

We require that for each s ∈ S, there exists s′ ∈ S, such that (s, s′) ∈ δ.

Figure 1 shows an example Kripke structure where L(sinit ) = {a}, L(s3) =
{b}, etc. The size of the Kripke structure is the number of its states. The directed
graph F = 〈S, δ〉 is called the Kripke frame of the Kripke structure K. A loop in
F is a finite sequence s0s1 · · · sn, such that (si, si+1) ∈ δ, for all 0 ≤ i < n, and
(sn, s0) ∈ δ. We call a Kripke frame acyclic, if the only loops are self-loops on
otherwise terminal states, i.e., on states that have no other outgoing transition.
See Fig. 1 for an example. Since Definition 1 does not allow terminal states, we
only consider acyclic Kripke structures with such added self-loops.

{a}

sinit

{a}

s1

{b}

s2

{b}

s3

Fig. 1: An acyclic Kripke structure.

We call a Kripke frame tree-shaped,
or, in short, a tree, if every state s has a
unique state s′ with (s′, s) ∈ δ, except
for the root node, which has no prede-
cessor, and the leaf nodes, which, again
because of Definition 1, additionally
have a self-loop but no other outgoing
transitions.

A path of a Kripke structure
is an infinite sequence of states
s(0)s(1) · · · ∈ Sω, such that:

– s(0) = sinit , and
– (s(i), s(i + 1)) ∈ δ, for all i ≥ 0.

A trace of a Kripke structure is a trace t(0)t(1)t(2) · · · ∈ Σω, such that there
exists a path s(0)s(1) · · · ∈ Sω with t(i) = L(s(i)) for all i ≥ 0. We denote by
Traces(K, s) the set of all traces of K with paths that start in state s ∈ S.
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In some cases, the system at hand is given as a tree-shaped or acyclic Kripke
structure. Examples include session-based security protocols and space-efficient
execution logs, because trees allow us to organize the traces according to common
prefixes and acyclic graphs according to both common prefixes and common
suffixes.

2.2 The Temporal Logic HyperLTL

HyperLTL [11] is an extension of linear-time temporal logic (LTL) for hyperprop-
erties. The syntax of HyperLTL formulas is defined inductively by the following
grammar:

ϕ ::= ∃π.ϕ | ∀π.ϕ | φ

φ ::= true | aπ | ¬φ | φ ∨ φ | φ U φ | φ

where a ∈ AP is an atomic proposition and π is a trace variable from an infinite
supply of variables V . The Boolean connectives ¬ and ∨ have the usual meaning,
U is the temporal until operator and is the temporal next operator. We
also consider the usual derived Boolean connectives, such as ∧, ⇒, and ⇔, and
the derived temporal operators eventually ϕ ≡ true U ϕ and globally ϕ ≡
¬ ¬ϕ. The quantified formulas ∃π and ∀π are read as ‘along some trace π’ and
‘along all traces π’, respectively.

The semantics of HyperLTL is defined with respect to a trace assignment, a
partial mapping Π : V → Σω. The assignment with empty domain is denoted by
Π∅. Given a trace assignment Π , a trace variable π, and a concrete trace t ∈ Σω,
we denote by Π [π → t] the assignment that coincides with Π everywhere but
at π, which is mapped to trace t. Furthermore, Π [j,∞] denotes the assignment
mapping each trace π in Π ’s domain to Π(π)(j)Π(π)(j+1)Π(π)(j+2) · · · . The
satisfaction of a HyperLTL formula ϕ over a trace assignment Π and a set of
traces T ⊆ Σω, denoted by T,Π |= ϕ, is defined as follows:

T,Π |= aπ iff a ∈ Π(π)(0),
T,Π |= ¬ψ iff T,Π 6|= ψ,

T,Π |= ψ1 ∨ ψ2 iff T,Π |= ψ1 or T,Π |= ψ2,

T,Π |= ψ iff T,Π [1,∞] |= ψ,

T,Π |= ψ1 U ψ2 iff ∃i ≥ 0 : T,Π [i,∞] |= ψ2 ∧ ∀j ∈ [0, i) : T,Π [j,∞] |= ψ1,

T,Π |= ∃π. ψ iff ∃t ∈ T : T,Π [π → t] |= ψ,

T,Π |= ∀π. ψ iff ∀t ∈ T : T,Π [π → t] |= ψ.

We say that a set T of traces satisfies a sentence ϕ, denoted by T |= φ, if
T,Π∅ |= ϕ. If the set T is generated by a Kripke structure K, we write K |= ϕ.

3 Motivating Example

A real-life example that demonstrates the importance of the problem under in-
vestigation in this paper is the information leak in the EDAS Conference Man-
agement System3, first reported in [2]. The system manages the review process

3 http://www.edas.info
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1 void Output ( ) {
2 bool n t f = Ge tNot i f i c a t i onS ta tu s ( ) ;
3 bool dec = GetDecis ion ( ) ;
4 bool s e s = ge tS e s s i on ( ) ;
5

6 s t r i n g s t a tu s =
7 i f ( n t f )
8 then i f ( dec )
9 then ”Accept”

10 e l s e ” Re jec t”
11 e l s e ”Pending” ;
12

13 s t r i n g s e s s i o n =
14 i f ( ? )
15 then ”Yes”
16 e l s e ”No”
17

18 Print ( status , s e s s i o n ) ;
19 }

Fig. 2: Program sketch for a conference management system.

for papers submitted to conferences. Throughout this process, authors can check
on the status of their papers, but should not learn whether or not the paper has
been accepted until official notifications are sent out. The system is correctly
programmed to show status “Pending” before notification time and “Accept”
or “Reject” afterwards. The leak (which has since then been fixed) occurred
through another status display, which indicates whether or not the paper has
been scheduled for presentation in a session of the conference. Since only ac-
cepted papers get scheduled to sessions, this allowed the authors to infer the
status of their paper.

The problem is shown in Table 2. The first two rows show the output in the
web interface for the authors regarding two papers submitted to a conference
after their notification, where the first paper is accepted while the second is
rejected. The last two rows show two other papers where the status is pending.
The internal decisions on notification (ntf), acceptance (dec), and session (ses),
shown in the table with a gray background, are not part of the observable output
and are added for the reader’s convenience. However, by comparing the rows for
the two pending papers, the authors can observe that the Session column values
are not the same. Thus, they can still deduce that the first paper is rejected and
the second paper is accepted.

Internal Decisions Output

Paper ntf dec ses Status Session

foo1 true true true Accept Yes

bar1 true false false Reject No

foo2 false false false Pending No

bar2 false true true Pending Yes

Table 2: Output with leak.

Internal Decisions Output

Paper ntf dec ses Status Session

foo1 true true true Accept Yes

bar1 true false false Reject No

foo2 false false false Pending No

bar2 false true true Pending No

Table 3: Output without leak.
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The information leak in the EDAS system has previously been addressed by
adding a monitor that detects such leaks [2, 6]. Here, we instead eliminate the
leak constructively. We use program sketching [38] to automatically generate the
code of our conference manager system. A program sketch expresses the high-
level structure of an implementation, but leaves “holes” in place of the low-level
details. In our approach, the holes in a sketch are interpreted as nondeterministic
choices. The repair eliminates nondeterministic choices in such a way that the
specification becomes satisfied.

Figure 2 shows a simple sketch for the EDAS example. The hole in the
sketch (line 14) is indicated by the question mark in the if statement. The
replacement for the hole determines how the the value of the session output
in the the web interface for the authors is computed. We wish to repair the
sketch so that whenever two computations both result in status = "Pending",
the value of session is also the same. This requirement is expressed by the
following HyperLTL formula:

ϕ = ∀π.∀π′.
(

(

(status = "Pending")π ∧ (status = "Pending")π′

)

⇒ (sessionπ ⇔ sessionπ′)
)

In this example, an incorrect repair would be to replace the hole in line 14
with ses, which would result in the output of Table 2. A correct repair would
be to replace the hole with the Boolean condition ntf ∧ ses, which would result
in the output of Table 3.

In the rest of the paper, we formally define the repair problem and study its
complexity for different fragments of HyperLTL.

4 Problem Statement

The repair problem is the following decision problem. Let K = 〈S, sinit , δ, L〉 be
a Kripke structure and ϕ be a closed HyperLTL formula. Does there exist a
Kripke structure K′ = 〈S′, s′

init
, δ′, L′〉 such that:

– S′ = S,
– s′

init
= sinit ,

– δ′ ⊆ δ,
– L′ = L, and
– K′ |= ϕ?

In other words, the goal of the repair problem is to identify a Kripke structure K′,
whose set of traces is a subset of the traces of K that satisfies ϕ. Note that since
the witness to the decision problem is a Kripke structure, following Definition 1,
it is implicitly implied that in K′, for every state s ∈ S′, there exists a state s′

such that (s, s′) ∈ δ′. In other words, the repair does not create a deadlock state.
We use the following notation to distinguish the different variations of the

problem:

7



PR[Fragment, Frame Type],

where

– PR is the program repair decision problem as described above;
– Fragment is one of the following for ϕ:

• We use regular expressions to denote the order and pattern of repetition
of quantifiers. For example, E∗A∗-HyperLTL denotes the fragment, where
an arbitrary (possibly zero) number of existential quantifiers is followed
by an arbitrary (possibly zero) number of universal quantifiers. Also,
AE+-HyperLTL means a lead universal quantifier followed by one or more
existential quantifiers. E≤1A∗-HyperLTL denotes the fragment, where zero
or one existential quantifier is followed by an arbitrary number of uni-
versal quantifiers.

• (EA)k-HyperLTL, for k ≥ 0, denotes the fragment with k alternations
and a lead existential quantifier, where k = 0 means an alternation-free
formula with only existential quantifiers;

• (AE)k-HyperLTL, for k ≥ 0, denotes the fragment with k alternations
and a lead universal quantifier, where k = 0 means an alternation-free
formula with only universal quantifiers,

• HyperLTL is the full logic HyperLTL, and

– Frame Type is either tree, acyclic, or general.

5 Complexity of Repair for Tree-shaped Graphs

In this section, we analyze the complexity of the program repair problem for
trees. This section is organized based on the rows in Table 1. We consider the
following three HyperLTL fragments: (1) E∗A∗, (2) AE∗, and (3) the full logic.

5.1 The E
∗

A
∗ Fragment

Our first result is that the repair problem for tree-shaped Kripke structures
can be solved in logarithmic time in the size of the Kripke structure for the
fragment with only one quantifier alternation where the leading quantifier is
existential. This fragment is the least expensive to deal with in tree-shaped
Kripke structures and, interestingly, the complexity is the same as for the model
checking problem [6].

Theorem 1. PR[E∗A∗-HyperLTL, tree] is L-complete in the size of the Kripke struc-

ture.

Proof. We note that the number of traces in a tree is bounded by the number of
states, i.e., the size of the Kripke structure. The repair algorithm enumerates all
possible assignments for the existential trace quantifiers, using, for each existen-
tial trace variable, a counter up to the number of traces, which requires only a
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logarithmic number of bits in size of the Kripke structure. For each such assign-
ment to the existential quantifiers, the algorithm steps through the assignments
to the universal quantifiers, which again requires only a logarithmic number of
bits in size of the Kripke structure. We consider only assignments with traces
that have also been assigned to a existential quantifier. For each assignment
of the trace variables, we verify the formula, which can be done in logarithmic
space [6]. If the verification is affirmative for all assignments to the universal
variables, then the repair consisting of the the traces assigned to the existential
variables satisfies the formula.

In order to show completeness, we prove that the repair problem for the exis-
tential fragment is L-hard. The L-hardness for PR[E∗-HyperLTL, tree] and
PR[A∗-HyperLTL, tree] follows from the L-hardness of ORD [16]. ORD is the graph-
reachability problem for directed line graphs. Graph reachability
from s to t can be checked with with the repair problems for ∃π. (sπ ∧ tπ)
or ∀π. (sπ ∧ tπ). ⊓⊔

5.2 The AE
∗ Fragment

We now consider formulas with one quantifier alternation where the leading
quantifier is universal. The type of leading quantifier has a significant impact on
the complexity of the repair problem: the complexity jumps from L-completeness

to P-completeness, although the model checking complexity for this fragment re-
mains L-complete [6].

Theorem 2. PR[AE∗-HyperLTL, tree] is P-complete in the size of the Kripke struc-

ture.

Proof sketch. Membership to P can be shown by the following algorithm. For
ϕ = ∀π1.∃π2. ψ, we begin by marking all the leaves. Then, in several rounds,
we go through all marked leaves v1 and instantiate π1 with the trace leading to
v1. We then again go through all marked leaves v2 and instantiate π2 with the
trace leading to v2, and check ψ on the pair of traces. If the check is successful
for some instantiation of π2, we leave v1 marked, otherwise we remove the mark.
When no more marks can be removed, we eliminate all branches of the tree that
are not marked. For additional existential quantifiers, the number of rounds will
increase linearly.

For the lower bound, we reduce the Horn satisfiability problem, which is P-

hard, to the repair problem for AE∗ formulas. We first transform the given Horn
formula to one that every clause consists of two negative and one positive literals.
We map this Horn formula to a tree-shaped Kripke structure and a constant-size
HyperLTL formula. For example, formula (¬x1 ∨ ¬x2 ∨ f) ∧ (¬x3 ∨ ¬f ∨ x4) ∧
(¬x2 ∨¬x2 ∨x4) ∧ (¬x1 ∨¬x1 ∨⊥) is mapped to the Kripke structure in Fig. 3.

The Kripke structure includes one branch for each clause of the given Horn
formula, where the length of each branch is in logarithmic order of the number
of variables in the Horn formula. We use atomic propositions neg1 and neg2
to indicate negative literals and pos for the positive literal. We also include

9



{neg1, pos}

{neg2}

{pos}

{neg1,neg2, c}

{neg1}

{neg2, pos}

{neg1, neg2, h}

{pos}

{neg1,neg2}

{h}

b10

b11

b12

b13

b20

b21

b22

b23

b30

b31

b32

b33

b40

b41

b42

b43

Fig. 3: The Kripke structure of the Horn formula.

propositions c and h to mark each clause with a bitsequence. That is, for each
clause {¬xn1

∨ ¬xn2
∨ xp}, we label states of its branch by atomic proposition

neg1 according to the bitsequence of xn1
, atomic proposition neg2 according to

the bitsequence of xn2
, and atomic proposition pos according to the bitsequence

of xp. We reserve values 0 and |X | − 1 for ⊥ and ⊥, respectively, where X is the
set of variables of the Horn formula. Finally, we use the atomic proposition c

to assign to each clause a number (represented as the bitsequence of valuations
of c, starting with the lowest-valued bit; the position after the highest-level bit
is marked by the occurrence of atomic proposition h, which does not appear
anywhere else).

The HyperLTL formula enforces that (1) ⊤ is assigned to true, (2) ⊥ is
assigned to false, (3) all clauses are satisfied, and (4) if a positive literal l appears
on some clause in the repaired Kripke structure, then all clauses with l must be
preserved by the repair. ⊓⊔

5.3 The Full Logic

We now turn to full HyperLTL. We first show that the repair problem is in NP.

Theorem 3. PR[HyperLTL, tree] is in NP in the size of the Kripke structure.

Proof. We nondeterministically guess a solution K′ to the repair problem. Since
determining whether or not K′ |= ϕ can be solved in logarithmic space [6], the
repair problem is in NP. ⊓⊔

For the lower bound, the intuition is that an additional leading universal
quantifier allows us to encode full Boolean satisfiability, instead of just Horn
satisfiability as in the previous section. Interestingly, the model checking problem
remains L-complete for this fragment [6].
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Theorem 4. PR[AAE-HyperLTL, tree] is NP-hard in the size of the Kripke struc-

ture.

Proof sketch. We map an instance of the 3SAT problem to a Kripke structure
and a HyperLTL formula. Figure 4 shows an example, where each clause in
3SAT is mapped to a distinct branch and each literal in the clause is mapped
to a distinct sub-branch. We label positive and negative literals by pos and
neg, respectively. Also, propositions c and h are used to mark the clauses with
bitsequences in the same fashion as in the construction of proof of Theorem 2.
The HyperLTL formula ϕmap ensures that (1) at least one literal in each clause is
true, (2) a literal is not assigned to two values, and (3) all clauses are preserved
during repair:

ϕmap = ∀π1.∀π2.∃π3.

[

(

¬posπ1
∨ ¬negπ2

)

]

∧

[

(

(

cπ2
∧¬cπ3

)

U
(

¬cπ2
∧ cπ3

∧ ((cπ2
↔ cπ3

)U hπ2
)
)

)

∨ (cπ2
∧¬cπ3

) U hπ2

]

The answer to the 3SAT problem is affirmative if and only if a repair exists for
the mapped Kripke structure with respect to formula ϕmap. ⊓⊔

Corollary 1. The following are NP-complete in the size of the Kripke struc-

ture: PR[A∗E∗HyperLTL, tree], PR[(EA)k-HyperLTL, tree], PR[(AE)k-HyperLTL, tree],

and PR[HyperLTL, tree].

6 Complexity of Repair for Acyclic Graphs

We now turn to acyclic graphs. Acyclic Kripke structures are of practical interest,
because certain security protocols, in particular authentication algorithms, often
consist of sequences of phases with no repetitions or loops. We develop our
results first for the alternation-free fragment, then for formulas with quantifier
alternation.

6.1 The Alternation-free Fragment

We start with the existential fragment. The complexity of the repair problem
for this fragment is interestingly the same as the model checking problem.

Theorem 5. PR[E∗-HyperLTL, acyclic] is NL-complete in the size of the Kripke

structure.

Proof. For existential formulas, the repair problem is equivalent to the model
checking problem. A given Kripke structure satisfies the formula iff it has a re-
pair. If the formula is satisfied, the repair is simply the original Kripke structure.
Since the model checking problem for existential formulas over acyclic graphs is
NL-complete [6, Theorem 2], the same holds for the repair problem. ⊓⊔

11



r11

r12

{c}r21

{h}r22

{neg}

v11

v12

v13

v14

v′11

{neg}

v′12

v′13

v′14

v′′11

v′′12

{pos}

v′′13

v′′14

{pos}

v21

v22

v23

v24

v′21

{pos}

v′22

v′23

v′24

v′′21

v′′22

v′′23

{neg}

v′′24

Fig. 4: The Kripke structure for the 3SAT formula (¬x1 ∨¬x2 ∨x3) ∧ (x1∨x2 ∨
¬x4). The truth assignment x1 = true, x2 = false, x3 = false, x4 = false renders
the tree with white branches, i.e., the grey branches are removed during repair.

We now switch to the universal fragment.

Theorem 6. PR[A∗-HyperLTL, acyclic] and PR[EA∗-HyperLTL, acyclic] is

NL-complete in the size of the Kripke structure.

Proof. To solve the repair problem of a HyperLTL formula
ϕ = ∃π. ∀π1.∀π2 . . . ∀πm. ψ(π, π1, π2, . . . , πm) with at most one existential quan-
tifier, which appears as the first quantifier, it suffices to find a single trace π that
satisfies ψ(π, π, . . . , π): suppose there exists a repair that satisfies ϕ and that has
more than one path, then any repair that only preserves one of these paths also
satisfies the universal formula ϕ. For the upper bound, we nondeterministically
guess a path for the trace π and remove all other paths. Since the length of the
path is bounded by the size of the acyclic Kripke structure, we can guess the
path using logarithmically many bits for a counter measuring the length of the
path.

NL-hardness of PR[A∗-HyperLTL, acyclic] follows from the NL-hardness of the
graph-reachability problem for ordered graphs [34]. Ordered graphs are acyclic
graphs with a vertex numbering that is a topological sorting of the vertices. We
express graph reachability from vertex s to vertex t as the repair problem of the
universal formula ∀π. (sπ ∧ tπ). ⊓⊔
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6.2 Formulas with Quantifier Alternation

Next, we consider formulas where the number of quantifier alternations is bounded
by a constant k. We show that changing the frame structure from trees to acyclic
graphs results in a significant increase in complexity (see Table 1). The complex-
ity of the repair problem is similar to the model checking problem, with the repair
problem being one level higher in the polynomial hierarchy (cf. [6]).

Theorem 7. For k ≥ 2, PR[(EA)k-HyperLTL, acyclic] is Σp

k-complete in the size of

the Kripke structure. For k ≥ 1, PR[(AE)k-HyperLTL, acyclic] is Σp

k+1-complete in

the size of the Kripke structure.

Proof sketch. For the upper bound, suppose that the first quantifier is existential.
Since the Kripke structure is acyclic, the length of the traces is bounded by the
number of states. We can thus nondeterministically guess the repair and the
existentially quantified traces in polynomial time, and then verify the correctness
of the guess by model checking the remaining formula, which has k−1 quantifier
alternations and begins with a universal quantifier. The verification can be done
in Πp

k−1 [6, Theorem 3]. Hence, the repair problem is in Σp

k. Analogously, if the
first quantifier is universal, the model checking problem in Πp

k and the repair
problem in Σp

k+1.
We establish the lower bound via a reduction from the quantified Boolean

formula (QBF) satisfiability problem [27]. The Kripke structure (see Fig. 5) con-
tains a path for each clause, and a separate structure that consists of a sequence
of diamond-shaped graphs, one for each variable. A path through the diamonds
selects a truth value for each variable, by going right or left, respectively, at the
branching point.

In our reduction, the quantifiers in the QBF instance are translated to trace
quantifiers (one per alternation depth), resulting in a HyperLTL formula with k
quantifier alternations and a leading existential quantifier. Note that, the out-
ermost existential quantifiers are not translated to a quantifier, but instead re-
solved by the repair. For this reason, it suffices to build a HyperLTL formula
with one less quantifier alternation than the original QBF instance. Also, in our
mapping, we must make sure that the clauses and the diamonds for all variables
except the outermost existential variables are not removed during the repair.
Similar to the proof of Theorem 4, we add a counter to the clauses and add a
constraint to the HyperLTL formula that ensures that all counter values are still
present in the repair; for the diamonds of the variables, the valuations themselves
form such a counter, and we add a constraint that ensures that all valuations
for the variables (except for the outermost existential variables) are still present
in the repair. ⊓⊔

Finally, Theorem 7 implies that the repair problem for acyclic Kripke struc-
tures and HyperLTL formulas with an arbitrary number of quantifiers is in
PSPACE.

Corollary 2. PR[HyperLTL, acyclic] is in PSPACE in the size of the Kripke struc-

ture.
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πd traces π′ traces

{q1, p} {q1, p̄}

{q2, p} {q2, p̄}

{q3, p} {q3, p̄}

{c}

{q1, p}

{q2, p̄}

{q3, p}

{c}

{q1, p̄}

{q2, p}

{q3, p̄}

Fig. 5: Kripke structure for the formula y = ∃x1.∀x2.∃x3.(x1∨¬x2∨x3)∧ (¬x1 ∨
x2 ∨ ¬x3).

7 Complexity of Repair for General Graphs

In this section, we investigate the complexity of the repair problem for general
graphs. We again begin with the alternation-free fragment and then continue
with formulas with quantifier alternation.

7.1 The Alternation-free Fragment

We start with the existential fragment. Similar to the case of acyclic graphs, the
repair problem can be solved with a model checking algorithm.

Theorem 8. PR[E∗-HyperLTL, general] is NL-complete in the size of the Kripke

structure.

Proof. Analogously to the proof of Theorem 5, we note that, for existential
formulas, the repair problem is equivalent to the model checking problem. A
given Kripke structure satisfies the formula if and only if it has a repair. If
the formula is satisfied, the repair is simply the original Kripke structure. Since
the model checking problem for existential formulas for general graphs is NL-
complete [25], the same holds for the repair problem. ⊓⊔

Unlike the case of acyclic graphs, the repair problem for the universal frag-
ment is more expensive, although the model checking problem is NL-complete [6].

Theorem 9. PR[A+-HyperLTL, general] is NP-complete in the size of the Kripke

structure.
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Proof. For membership in NP, we nondeterministically guess a solution to the
repair problem, and verify the correctness of the universally quantified Hyper-
LTL formula against the solution in polynomial time in the size of the Kripke
structure. NP-hardness follows from the NP-hardness of the repair problem for
LTL [5].

7.2 Formulas with Quantifier Alternation

Next, we consider formulas where the number of quantifier alternations is bounded
by a constant k. We show that changing the frame structure from acyclic to gen-
eral graphs again results in a significant increase in complexity (see Table 1).

Theorem 10. PR[E∗A∗-HyperLTL, general] is in PSPACE in the size of the Kripke

structure. PR[A∗E∗-HyperLTL, general] is PSPACE-complete in the size of the Kripke

structure. For k ≥ 2, PR[(EA)k-HyperLTL, general] and PR[(AE)k-HyperLTL, general]

are (k−1)-EXPSPACE-complete in the size of the Kripke structure.

Proof idea. The claimed complexities are those of the model checking prob-
lem [37]. We prove that the repair problem has the same complexity as the model
checking problem. To show the upper bound of PR[A∗E∗-HyperLTL, general], we
enumerate, in PSPACE, all possible repairs, and then verify against the HyperLTL
formula.

For the lower bounds, we modify the Kripke structure and the HyperLTL
formula such that the only possible repair is the unchanged Kripke structure.
After the modification, the repair problem thus has the same result as the model
checking problem. The idea of the modification is to assign numbers to the suc-
cessors of each state. We add extra states such that the traces that originate from
these states correspond to all possible number sequences. Finally, the HyperLTL
formula states that for each such number sequence there exists a corresponding
trace in the original Kripke structure. ⊓⊔

Finally, Theorem 10 implies that the repair problem for general Kripke struc-
tures and HyperLTL formulas with an arbitrary number of quantifiers is in
NONELEMENTARY.

Corollary 3. PR[HyperLTL, general] is NONELEMENTARY in the size of the Kripke

structure.

8 Related Work

There has been a lot of recent progress in automatically verifying [14, 23–25]
and monitoring [2,8,9,21,22,29,39] HyperLTL specifications. HyperLTL is also
supported by a growing set of tools, including the model checker MCHyper [14,
25], the satisfiability checkers EAHyper [20] and MGHyper [18], and the runtime
monitoring tool RVHyper [21].

Directly related to the repair problem studied in this paper are the satis-
fiability and synthesis problems. The satisfiability problem for HyperLTL was
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shown to be decidable for the ∃∗∀∗ fragment and for any fragment that includes
a ∀∃ quantifier alternation [17]. The hierarchy of hyperlogics beyond HyperLTL
has been studied in [13].

The synthesis problem was shown to be undecidable in general, and decid-
able for the ∃∗ and ∃∗∀ fragments. While the synthesis problem becomes, in
general, undecidable as soon as there are two universal quantifiers, there is a
special class of universal specifications, called the linear ∀∗-fragment, which is
still decidable [19]. The linear ∀∗-fragment corresponds to the decidable dis-

tributed synthesis problems [26]. The bounded synthesis problem considers only
systems up to a given bound on the number of states. Bounded synthesis from
hyperproperties is studied in [14, 19]. Bounded synthesis has been successfully
applied to small examples such as the dining cryptographers [10].

The problem of model checking hyperproperties for tree-shaped and acyclic
graphs was studied in [6]. Earlier, a similar study of the impact of structural
restrictions on the complexity of the model checking problem has also been
carried out for LTL [33].

For LTL, the complexity of the repair problem was studied independently
in [5,15,32] and subsequently in [7] for distributed programs. The repair problem
is also related to supervisory control, where, for a given plant, a supervisor is
constructed that selects an appropriate subset of the plant’s controllable actions
to ensure that the resulting behavior is safe [31, 35, 40].

9 Conclusion and Future Work

In this paper, we have developed a detailed classification of the complexity of
the repair problem for hyperproperties expressed in HyperLTL. We considered
general, acyclic, and tree-shaped Kripke structures. We showed that for trees,
the complexity of the repair problem in the size of the Kripke structure does not
go beyond NP. The problem is complete for L, P, and NP for fragments with only
one quantifier alternation, depending upon the outermost quantifiers. For acyclic
Kripke structures, the complexity is in PSPACE (in the level of the polynomial hi-
erarchy that corresponds to the number of quantifier alternations). The problem
is NL-complete for the alternation-free fragment. For general graphs, the prob-
lem is NONELEMENTARY for an arbitrary number of quantifier alternations. For
a bounded number k of alternations, the problem is (k−1)-EXPSPACE-complete.
These results highlight a crucial insight to the repair problem compared to the
corresponding model checking problem [6]. With the notable exception of trees,
where the complexity of repair is NP-complete, compared to the L-completeness

of model checking, the complexities of repair and model checking are largely
aligned. This is mainly due to the fact that computing a repair can be done by
identifying a candidate substructure, which is comparatively inexpensive, and
then verifying its correctness.

The work in this paper opens many new avenues for further research. An
immediate question left unanswered in this paper is the lower bound complexity
for the ∃∗∀∗ fragment in acyclic and general graphs. It would be interesting to see
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if the differences we observed for HyperLTL carry over to other hyperlogics (cf.
[1,11,13,24]). One could extend the results of this paper to the reactive setting,
where the program interacts with the environment. And, finally, the ideas of this
paper might help to extend popular synthesis techniques for general (infinite-
state) programs, such as program sketching [38] and syntax-guided synthesis [3],
to hyperproperties.
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