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Tomáš Brázdil1, Krishnendu Chatterjee2, Antońın Kučera1, Petr Novotný1,
and Dominik Velan1

1 Faculty of Informatics, Masaryk University
{xbrazdil,tony,petr.novotny,xvelan1}@fi.muni.cz

2 IST Austria
krishnendu.chatterjee@ist.ac.at

Abstract. A probabilistic vector addition system with states (pVASS)
is a finite state Markov process augmented with non-negative integer
counters that can be incremented or decremented during each state tran-
sition, blocking any behaviour that would cause a counter to decrease
below zero. The pVASS can be used as abstractions of probabilistic pro-
grams with many decidable properties. The use of pVASS as abstractions
requires the presence of nondeterminism in the model. In this paper, we
develop techniques for checking fast termination of pVASS with nonde-
terminism. That is, for every initial configuration of size n, we consider
the worst expected number of transitions needed to reach a configuration
with some counter negative (the expected termination time). We show
that the problem whether the asymptotic expected termination time is
linear is decidable in polynomial time for a certain natural class of pVASS
with nondeterminism. Furthermore, we show the following dichotomy: if
the asymptotic expected termination time is not linear, then it is at least
quadratic, i.e., in Ω(n2).

Keywords: angelic and demonic nondeterminism · termination time ·
probabilistic VASS

1 Introduction

Probabilistic Programs & VASS Probabilistic systems play an important
role in various areas of computing such as machine learning [26], network pro-
tocol design [25], robotics [45], privacy and security [5], and many others. For
this reason, verification of probabilistic systems receives a considerable attention
of the verification community. As in the classical (non-probabilistic) setting, in
probabilistic verification one typically constructs a suitable abstract model over-
approximating the real behaviour of the system. In the past, the verification re-
search was focused mostly on finite-state probabilistic models [4] as well as some
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special infinite-state classes, such as probabilistic one-counter [11] or pushdown
automata [21,24]. However, the recent proliferation of general, Turing-complete
probabilistic programming languages (PPLs) necessitates the use of more complex
models, that can encompass multiple potentially unbounded numerical variables.

In the classical setting, one of the standard formalisms used for program
abstraction are vector addition systems with states (VASS) [32]. Intuitively, a
VASS is a finite directed graph where every edge is assigned a vector of inte-
ger counter updates of a fixed dimension d. A configuration pv is specified by
a current state p and a vector of current counter values v. The computation
proceeds by moving along the edges in the graph and performing the respec-
tive updates on the counters. Since VASS themselves are not Turing-complete,
they have many decidable properties, and they have been successfully used as
program abstractions in termination and complexity analysis [44] as well as for
reasoning about parallel programs [23,32] and parameterized systems [6,2]. Ap-
plying such an abstraction to a probabilistic program yields a probabilistic VASS
(pVASS), which allows for a probabilistic choice of a transition in some states.
Moreover, during the abstraction, certain complex programming constructs such
as if-then-else branching are replaced with nondeterministic choice. To ensure
that the abstraction over-approximates the possible behaviour, we typically in-
terpret the nondeterminism as demonic, i.e., the choice is resolved by adversarial
environment. However, in certain settings it makes sense to consider angelic non-
determinism, to be resolved by a yet-to-be-designed controller (e.g., a scheduling
mechanism in a queuing system).

Termination Complexity One of the fundamental problems in program anal-
ysis is to evaluate a given program’s runtime. In the classical setting, this
problem emerges in various flavours, ranging from worst-case execution time-
analysis [47,13] in real-time systems to obtaining bounds on the number of
execution steps [27], analysing asymptotic [16], or amortized complexity [28].
VASS-based abstractions were successfully used in the latter scenario [44].

Recently, several approaches to reason about the expected runtime of proba-
bilistic programs were developed [31,40]. The analysis is much more demanding
than in the classical case. For instance, deciding whether the expected runtime is
finite is harder (i.e. higher in the arithmetic hierarchy) than deciding whether a
probabilistic program terminates with probability one [30]. Additional obstacle
is the inherent non-compositionality of expected runtimes. The work [31] gives
an example of two programs, P1, and P2, which both consist of a single loop (i.e.
they have a strongly connected control flow graph) and whose expected runtime
is linear in the magnitude of initial variable valuations; but running P2 after P1

yields the program P1;P2 whose expected runtime is infinite.

These intricacies spawn fundamental questions about probabilistic models,
which we aim to address: Is there a sufficiently powerful probabilistic formalism
where a fast (i.e., linear-time) termination from an arbitrary initial configuration
is decidable? Can the decision procedure proceed by analysing individual strongly-
connected components and composing the results? Can we provide a lower bound
on the expected runtime in the case that it is not linear? These questions were
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previously considered in the non-probabilistic setting, namely in the domain of
VASS [10]. In this paper, we investigate them in the probabilistic context.
Our Setting We show that the above questions can be answered affirmatively
in the domain in pVASS with nondeterminism, which are Markov decision pro-
cesses over VASS where the nondeterministic choice is resolved either demoni-
cally (i.e. the nondeterminism tries to prolong the computation) or angelically.
We consider a basic variant of VASS termination: the zero termination, where
the computation stops when some counter becomes negative. The termination
complexity of a given pVASS is a function L : N → N∪{∞} assigning to every n
the maximal/minimal (in the demonic/angelic case) expected length of a com-
putation initiated in a configuration of size n (the size of pv is defined as the
maximal component of v), where the maximum/minimum is taken over all the
strategies of the environment (we consider unrestricted, i.e., history-dependent
and randomized, strategies).
Our Results For strongly connected pVASS which contain either a demonic or
an angelic non-determinism (but not both) we show that

1. The problem whether L ∈ O(n) is decidable in polynomial time.
2. If L 6∈ O(n), then L ∈ Ω(n2).
3. If L 6∈ O(n), then for every ε > 0, the probability of all computations of

length at least n2−ε converges to one as n → ∞, (in the demonic case, this
requires the environment to use appropriate strategies).

According to 2., L 6∈ O(n) implies that L is “at least quadratic”. However, 3.
does not follow from 2. (a more detailed discussion is postponed to Section 3).

We also show that the above results hold in general VASS with angelic nonde-
terminism, while in the demonic setting they extend to a restricted class pVASS
whose maximal end-component (MEC) decomposition yields a directed acyclic
graph (DAG), in which case 1. can be solved compositionally by analysing indi-
vidual MECs. Finally, we show that in pVASS whose MEC-decomposition is not
DAG-like, the demonic complexity cannot be decided by analysis of individual
MECs, since such VASS can emulate the non-compositional example of [31].

The results build on analogous results for non-probabilistic VASS established
in [10], combining them with a novel probabilistic analysis.

Paper Organization. After presenting preliminaries in Section 2, we focus on
the demonic case which contains the main technical contributions. Subsection 3.1
provides an intuitive outline of our techniques. Subsection 3.2 develops the al-
gorithm for proving linear termination complexity and shows its soundness (i.e.
that a yes-answer indeed proves Ld(n) ∈ O(n)). Subsection 3.3 deals with the
quadratic lower bound, showing the completeness of our algorithm, and Subsec-
tion 3.4 discusses extension of the results to the angelic case. Finally, in Section 4
we extend the techniques to DAG-like VASS MDPs and discuss the difficulties
arising in general VASS. Missing proofs are provided in the appendix.

Related Work. The termination problems (counter-termination, control-state
termination) for classical VASS as well as the related problems of boundedness
and coverability have been studied very intensively in the last decades, see, e.g.,
[38,42,20,22,7]. The complexity of the termination problem with fixed initial
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configuration is EXPSPACE complete [38,48,3]. The more general reachability
problem is also decidable [39,35,33], but computationally hard [38,19]. The best
known upper bound is Ackermannian [37] (see [43] for an overview of hyper-
Ackermannian complexity hierarchies).

The problem of existence of infinite computations in VASS has been also stud-
ied in the literature. Polynomial-time algorithms have been presented in [14,46]
using results of [34]. In the more general context of games played on VASS,
even deciding the existence of infinite computation is coNP-complete [14,46],
and various algorithmic approaches based on hyperplane-separation technique
have been studied in [15,29,18].

The study on asymptotic termination complexity of non-probabilistic VASS,
initiated in [10] was continued in [36], where the existence of some k such that
L ∈ O(nk) was also shown decidable in polynomial time.

Concerning expected runtime analysis, we note the work [17] which presents
a sound (but incomplete) technique for obtaining near-linear asymptotic bounds
on recurrence relations arising from certain types of probabilistic programs.

2 Preliminaries

We use N, Z, Q, and R to denote the sets of non-negative integers, integers,
rational numbers, and real numbers. Given a function f : N → N, we use O(f(n))
and Ω(f(n)) to denote the sets of all g : N → N such that g(n) ≤ a · f(n) and
g(n) ≥ b · f(n) for all sufficiently large n ∈ N, where a, b are some positive
constants. If h(n) ∈ O(f(n)) and h(n) ∈ Ω(f(n)), we write h(n) ∈ Θ(f(n)).

Let A be a finite index set. The vectors of RA are denoted by bold letters
such as u,v, z, . . .. The component of v of index i ∈ A is denoted by v(i). If the
index set is of the form A = {1, 2, . . . , d} for some positive integer d, we write Rd

instead of RA. For every n ∈ N, we use n to denote the constant vector where all
components are equal to n. The scalar product of v,u ∈ Rd is denoted by v · u,

i.e., v · u =
∑d

i=1 v(i) · u(i). The other standard operations and relations on R

such as +, ≤, or < are extended to Rd in the component-wise way. In particular,
v < u if v(i) < u(i) for every index i.

2.1 Markov Decision Processes

Definition 1. Let L be a set of labels. A Markov decision process (MDP) with
L-labeled transitions is a tuple A = (Q, (Qn, Qp), T, P ), where Q 6= ∅ is a finite
set of states split into two disjoint subsets Qn and Qp of nondeterministic and
probabilistic states, T ⊆ Q×L×Q is a finite set of labeled transitions such that
every q ∈ Q has at least one outgoing transition, and P is a function assigning
to each (p, ℓ, q) ∈ T where p ∈ Qp a positive rational probability so that, for every
p ∈ Qp,

∑

(p,ℓ,q)∈T P (p, ℓ, q) = 1.

A state q is an immediate successor of a state p if there is a transition
(p, ℓ, q) for some ℓ ∈ L. A finite path in A of length n is a finite sequence of
the form p0, ℓ1, p1, ℓ2, p2, . . . , ℓn, pn where n ≥ 0 and (pi, ℓi+1, pi+1) ∈ T for all
0 ≤ i < n. If n ≥ 1 and p0 = pn, then π is a cycle. An MDP is strongly
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connected if for each pair of distinct states p, q there is a finite path from p
to q. An infinite path in A is an infinite sequence p0, ℓ1, p1, ℓ2, p2, . . . such that
p0, ℓ1, p1, . . . , ℓn, pn is a finite path for every n ≥ 0. For a finite sequence of the
form π = p0, ℓ1, p1, ℓ2, p2, . . . , ℓn, pn and a finite or infinite sequence of the form
̺ = q0, κ1, q1, κ2, . . ., where π and ̺ are not necessarily paths in A, we use π⊙ ̺
to denote the concatenated sequence p0, ℓ1, . . . , ℓn, pn, κ1, q1, κ2, . . . (we do not
require pn = q0). If π, ̺ are both paths in A and pn = q0, then π ⊙ ̺ is also a
path in A.

A strategy is a function σ assigning to every finite path p0, ℓ1, p1, . . . , ℓn, pn
ending in a nondeterministic state a probability distribution over the outgoing
transitions of pn. A strategy is Markovian (M) if it depends only on the last
state pn, and deterministic (D) if it always selects some successor state with
probability one. The set of all strategies is denoted by Σ (the underlying A is
always clearly determined by the context). Every initial state p ∈ Q and every
strategy σ determine the probability space over infinite paths initiated in p in
the standard way, and we use Pσ

p to denote the associated probability measure.

2.2 Probabilistic VASS with Nondeterminism

Definition 2. Let d ∈ N. A d-dimensional probabilistic VASS with non-
determinism (VASS MDP) is an MDP where the set of labels is Zd.

Let A = (Q, (Qn, Qp), T, P ) be a d-dimensional VASS MDP. The encoding
size of A is denoted by ||A||, where the integers representing counter updates
are written in binary. A configuration of A is a pair pv, where p ∈ Q and
v ∈ Zd. If some component of v is negative, then pv is terminal. The set of all
configurations of A is denoted by C (A). The size of pv ∈ C (A) is ||pv|| = ||v|| =
max{|v(i)| : 1 ≤ i ≤ d}. Given n ∈ N, we say that pv is n-bounded if ||pv|| ≤ n.

Every (finite or infinite) path p0,u1, p1,u2, p2, . . . and every initial vector
v ∈ Zd determine the corresponding computation of A, i.e., the sequence of
configurations p0v0, p1v1, p2v2, . . . such that v0 = v and vi+1 = vi + ui+1. For
every infinite computation π = p0v0, p1v1, p2v2, . . ., let Term(π) be the least j
such that pjvj is terminal. If there is no such j, we put Term(π) = ∞ .

Recall that every strategy σ and every p ∈ Q determine a probability space
over infinite paths initiated in p with probability measure Pσ

p . Similarly, σ deter-
mines the unique probability space over all computations initiated in a given pv,
and we use Pσ

pv to denote the associated probability measure, and Eσ
pv[Term ]

denotes the expected value of Term .
The angelic/demonic termination complexity of A are the functions

La,Ld : N → R∪{∞} defined as follows, where Cn(A) is the set of all pv ∈ C (A)
such that ||pv|| = n:

La(n) = max
pv∈Cn(A)

inf
σ∈Σ

Eσ
pv[Term ],

Ld(n) = max
pv∈Cn(A)

sup
σ∈Σ

Eσ
pv[Term ].

We say that the expected angelic/demonic termination time of A is linear if
La(n) ∈ O(n) and Ld(n) ∈ O(n), respectively.
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Fig. 1. VASS MDP A1 (left) and A2 (right). The states p1, p2 are probabilistic, and
the states q1, q2 are nondeterministic.

3 Linearity of Demonic Termination Time

In this paper, we prove the following theorem:

Theorem 1. The problem whether the expected termination time of a given
strongly connected VASS MDP A is linear is decidable in polynomial time. If the
expected termination time of A is not linear, then Ld(n) ∈ Ω(n2). Furthermore,
for every ε > 0 we have that

lim
n→∞

sup
p∈Q,σ∈Σ

{
Pσ
pn[Term ≥ n2−ε]

}
= 1

The last part of Theorem 1 deserves some comments. Recall Ld(n) ∈ Ω(n2)
if there is b > 0 such that Ld(n) ≥ b · n2 for all sufficiently large n. We prove
Ld(n) ∈ Ω(n2) by showing the existence of δ, c > 0 such that Pσ

pn[Term ≥

n2/c] ≥ δ for all sufficiently large n, where σ is a suitable strategy depend-
ing on pn (then, we can put b = δ/c). Hence, Ld(n) ∈ Ω(n2) does not imply
that supσ∈Σ,p∈Q

{
Pσ
pn[Term ≥ n2/c]

}
converges to 1 as n → ∞ (for some con-

stant c). The last part of Theorem 1 shows that for an arbitrarily small ε > 0,
we have that supσ∈Σ,p∈Q

{
Pσ
pn[Term ≥ n2−ε]

}
does converge to 1 as n → ∞.

The question whether the convergence holds for ε = 0 remains open.

3.1 Outline of Techniques

The proof of Theorem 1 is non-trivial, and it is based on combining the existing
techniques with new analysis invented in this paper. We use VASS MDPs A1

and A2 of Fig. 1 as running examples to illustrate our techniques.
A polynomial-time algorithm deciding asymptotic linearity of termination

time for purely non-deterministic VASS (where the set Qp is empty) was given
in [10]. Theorem 1 generalizes this result to VASS MDPs. We start by recalling
the results of [10] and sketching the main ideas behind the proof of Theorem 1.
These ideas are then elaborated in subsequent sections.

Consider a purely non-deterministic VASS A of dimension d. A cycle
p0,u1, p1, . . . ,un, pn of A is simple if all p1, . . . , pn−1 are pairwise different. The
total effect of a simple cycle, i.e., the sum

∑n
i=1 ui, is called an increment.

Clearly, there are only finitely many increments i1, . . . , ik. In [10], it was shown
that the termination time of A is linear iff all increments are contained in an
open half-space whose normalw is strictly positive in every component. The “if”
direction is immediate, relying on a straightforward “ranking” argument. The
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“only if” part is more elaborate. In [10], it was shown that if the increments are
not contained in an open half-space with positive normal, then for all sufficiently
large n, there is a non-terminating computation initiated in pn whose length is
at least n2/c for some constant c. This computation consists of simple cycles and
auxiliary short paths used to “switch” from one control state to another.

Now letA be a VASS MDP with d counters. Here, instead of simple cycles and
their increments, we use the vectors of expected counter changes per transition
induced by MD strategies in their BSCCs. More precisely, for each of the finitely
many MD strategies σ and every BSCC B of the finite-state Markov chain Aσ

obtained by “applying” σ to A, we consider the unique vector i of expected
counter changes per transition (note that i is the same for almost all infinite
computations initiated in a state of B). Thus, we obtain a finite set of vectors
i1, . . . , ik together with the associated set of tuples (σ1,B1), . . . , (σk,Bk) where
each σi is an MD strategy and Bi is a BSCC of σi (note that we can have
σi = σj for i 6= j since MD strategies might have multiple BSCCs). Similarly as
in [10], we check whether all i1, . . . , ik are contained in an open half-space whose
normalw is strictly positive in every component. This is achievable in polynomial
time by using the results of [8]. If such a w exists, we can conclude Ld(n) ∈
O(n). This is because the “extremal” vectors of expected counter changes per
transition are obtained by MD strategies3, and hence the expected shift in the
direction opposite to w per transition stays bounded away from zero even for
general strategies. We than use a submartingale-based argument to show that
the expected termination time is linear. This proves the first part of Theorem 1.

Example 1. For the VASS MDP A2 of Fig. 1, there are three different increments
i1 = (−1, 1

2 ), i2 = (12 ,−1), and i3 = (−1,−1). Hence, we can choose w = (1, 1)
as a positive normal satisfying i1 · w < 0, i2 · w < 0, and i3 · w < 0. For
the VASS MDP A1 of Fig. 1, there are three different increments i1 = (− 1

2 ,
1
2 ),

i2 = (12 ,−
1
2 ), and i3 = (−1,−1), hence no positive normal w satisfying i1 ·w < 0

and i2 ·w < 0 exists.

Now suppose there is no such w. Recall that for purely non-deterministic
VASS, a sufficiently long non-terminating computation initiated in pn consist-
ing of simple cycles and short “switching” paths was constructed in [10]. Since
i1, . . . , ik are no longer effects of simple cycles or any fixed finite executions, it is
not immediately clear how to proceed and we need to use new techniques. The
arguments of [10] used to construct a sufficiently long non-terminating computa-
tion are purely geometric, and they do not depend on the fact that increments are
total effects of simple cycles. Hence, by using the same construction, we obtain
a sufficiently long sequence of vectors consisting of i1, . . . , ik and some auxiliary
elements representing switches between control states. We call this sequence a
scheme, because it does not correspond to any real computation of A in general.
When the constructed scheme is initiated in pn, the resulting trajectory never
crosses any axis. Also note that for every fixed r ∈ N, we can create an extra
(r− 1) ·n space between the trajectory and the axes by shifting the initial point

3 Here we rely on well-known results about finite-state MDPs [41].
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from pn to p(r · n), which does not influence our asymptotic bounds. Now, we
analyze what happens if the constructed scheme is followed from p(r · n). Here,
following a vector ij means to execute the transition selected by σj , and follow-
ing a “switch” from p to q means to execute a strategy which eventually reaches
q with probability one (we use a strategy minimizing the expected number steps
needed to reach q). Using concentration bounds of martingale theory, we show
that the probability of all executions deviating from the scheme by more than
r · n is bounded by 1− δ for some fixed δ > 0 (assuming n is sufficiently large),
which yields the Ld(n) ∈ Ω(n2) lower bound of Theorem 1. The last part of
Theorem 1 is proven by a more detailed analysis of the established bounds.

Let us note that the underlying martingale analysis is not immediate, since
the previous work which provides the basis for this analysis (such as [11]) typi-
cally assume that the analysed strategies are memoryless in the underlying finite
state space. In contrast, strategies arising of schemes are composed of multiple
memoryless strategies, with the switching rules depending on the size of the
initial configuration. Hence, we take a compositional approach, analysing each
constituent strategy separately using known techniques and composing the re-
sults via a new approach.

3.2 The Algorithm

In this section we prove the first part of Theorem 1. Our analysis uses results on
multi-mean-payoff MDPs. Recall that if M is an MDP with transitions labelled
by elements of Rd (for some dimension d), then a mean-payoff of an infinite
path π = p0,u1, p1,u2, . . . of A is MP(π) = lim infn→∞

1
n

∑n
i=1 ui. We say that

a given vector v is achievable for A if there exist a strategy σ and p ∈ Q such
that Eσ

p [MP] ≥ v. Now we recall some results on mean-payoff MDPs [8] used as
tools in this section.

(a) There is a finite set R of vectors such that the set of all achievable vectors
is precisely the set of all v such that v ≤ u for some u ∈ R∗, where R∗ is
the convex hull of R.

(b) The problem whether a given rational v is achievable is decidable in poly-
nomial time.

Furthermore, we need the following result about finite-state MDPs.

Lemma 1. Let M = (Q, (Qn, Qp), T, P ) be a strongly connected MDP with
labels from Q such that

sup {Eσ
p [MP] | σ ∈ Σ, p ∈ Q} = κ < 0

Let Dec be a function assigning to every infinite path π = p0, u1, p1, u2, . . . of M
the least m such that

∑m
i=1 ui ≤ −1. If there is no such m, then Dec(π) = ∞.

Then there exists a constant c depending only on M such that for every p ∈ Q
and σ ∈ Σ we have that Eσ

p [Dec] ≤ c.

Now we show how to prove the first part of Theorem 1 using the results above.
Let A = (Q, (Qn, Qp), T, P ) be a strongly connected VASS MDP. For each of
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the finitely many MD strategies σ we can consider a finite-state Markov chain
Aσ obtained from A by fixing in every q ∈ Qn the probability of transitioning
to the unique successor specified by σ(q) to 1. For each such Aσ and each its
BSCC B we consider the unique vector i defined by

i =
∑

p∈B, p
u

→q

η(p) · P (p
u

→ q) · u

where η is the invariant (stationary) distribution over the states of B (note that
i = Eσ

p [MP] for every p ∈ B). Thus, we obtain a finite set of increments i1, . . . , ik
together with the associated MD strategies σ1, . . . , σk and the BSCCs B1, . . . ,Bk.

Lemma 2. If there exists a vector w > 0 such that ij ·w < 0 for every 1 ≤ j ≤ k,
then there exists κ < 0 such that w · Eσ

p [MP] ≤ κ for every p ∈ Q and σ ∈ Σ.

Proof. Let κ = max{ij ·w | 1 ≤ j ≤ k}. Consider a Q-labelled MDP M obtained
from A by replacing each counter update vector u with the number u ·w. Note
that every strategy σ for A can be seen as a strategy for M, and vice versa.
For a given σ ∈ Σ, we write Eσ,A

p [MP] and Eσ,M
p [MP] to denote the expected

value of MP in A and M, respectively. Note that for every σ ∈ Σ we have that
Eσ,M
p [MP] = w · Eσ,A

p [MP].
For every p ∈ Q, there is an optimal MD strategy σ̂ maximizing the expected

mean payoff in M. Since Eσ̂,M
p [MP] is a convex combination of increments, we

obtain Eσ̂,M
p [MP] ≤ κ. Now let σ be an arbitrary strategy. Since Eσ,M

p [MP] ≤

Eσ̂
p [MP] ≤ κ, we obtain Eσ,M

p [MP] = w · Eσ,A
p [MP] ≤ κ. ⊓⊔

A direct corollary to Lemma 1 and Lemma 2 is the following:

Lemma 3. If there exists a vector w > 0 such that ij ·w < 0 for every 1 ≤ j ≤ k,
then Ld(n) ∈ O(n) holds for A.

The next lemma leads to a sound algorithm for proving of linear termination
complexity.

Lemma 4. The vector 0 is achievable for A iff there is no w > 0 such that
ij ·w < 0 for every 1 ≤ j ≤ k.

Proof. If 0 is achievable, there exist σ ∈ Σ and p ∈ Q such that Eσ
p [MP] ≥ 0.

Suppose there is w > 0 such that ij ·w < 0 for every 1 ≤ j ≤ k. By Lemma 2,
Eσ
p [MP] ·w < 0, which is a contradiction.
Now suppose 0 is not achievable. Consider the (convex and compact) set R∗

of claim (a). Since 0 is not achievable, the set R∗ has the empty intersection with
the (convex) set of all vectors with non-negative components. By the hyperplane
separation theorem, there exists a hyperplane with normal w > 0 such that
v ·w < 0 for all v ∈ R∗. Since every increment i is achievable, there is v ∈ R∗

such that i ≤ v. Hence, i ·w < 0. ⊓⊔

Hence, to check linear termination complexity, our algorithm simply checks
whether 0 is achievable for A. The previous lemma shows that this approach
is sound. In the next subsection, we show that if there is no w > 0 such that
ij · w < 0 for every 1 ≤ j ≤ k, then the expected termination time of A is at
least quadratic. This shows that our algorithm is also complete, i.e. a decision
procedure for linear termination of strongly connected demonic VASS MDPs.
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3.3 Quadratic Lower Bound

For the rest of this section, we fix a strongly connected VASS MDP
A = (Q, (Qn, Qp), T, P ). Let i1, . . . , ik be the increments, and σ1, . . . , σk and
B1, . . . ,Bk the associated MD strategies and BSCCs introduced in Section 3.2.

Suppose that there does not exist a normal vector w > 0 such that ii ·w < 0
for every 1 ≤ i ≤ k. By [10, Lemma 3.2]4, there exist a subset of increments

j1, . . . , jℓ and positive integer coefficients a1, . . . , aℓ such that
∑ℓ

i=1 aiji ≥ 0. We
use this subset to construct a so-called scheme.
Scheme The definition of a scheme is parameterized by a certain function L :
N → N. This function is defined later, for now it suffices to know that L(n) ∈
Θ(n). For every n ∈ N, we define the scheme for n, which is a concatenation of
L(n) identical n-cycles, where each n-cycle is defined as follows:

j1, . . . , j1
︸ ︷︷ ︸

L(n)·a1

, s1, j2, . . . , j2
︸ ︷︷ ︸

L(n)·a2

, s2, · · · , jℓ, . . . , jℓ
︸ ︷︷ ︸

L(n)·aℓ

, sℓ

The subsequence ji, . . . , ji, si of the j-th cycle is called the i-th segment of the
j-th n-cycle. Since the length of each n-cycle is Θ(n), the length of the scheme
for n is Θ(n2).

Example 2. Recall the VASS MDP A1 of Fig. 1. Here, we put j1 = (− 1
2 ,

1
2 ),

j2 = (12 ,−
1
2 ), and a1 = a2 = 1. So, the cycle for n is

(− 1
2 ,

1
2 ), . . . , (−

1
2 ,

1
2 )

︸ ︷︷ ︸

L(n)

, s1, (
1
2 ,−

1
2 ), . . . , (

1
2 ,−

1
2 )

︸ ︷︷ ︸

L(n)

, s2

Note that the scheme does not necessarily correspond to any finite path
in A, even if the switches are disregarded. However, the scheme for n determines
a unique strategy ηn for A defined below.

From Schemes to Strategies. For every p ∈ Q, we fix an MD strategy γp
such that for every q ∈ Q, the P

γp
q probability of visiting p from q is equal to

one. Furthermore, we fix some state pi ∈ Bi for every 1 ≤ i ≤ ℓ.
For all finite paths that are not initiated in p1, the strategy ηn is defined

arbitrarily. Otherwise, ηn starts by simulating the strategy σ1 for precisely L(n) ·
a1 steps. Then, ηn remembers the state q11 in which the simulation of σ1 ended,
and changes to simulating γp2 until the state p2 of B2 is reached. After reaching
p2, the strategy ηn simulates σ2 for precisely L(n) · a2 steps. Then, it again
remembers the final state q12 and starts to simulate γp3 until p3 is reached, and
so on, until the simulation of σℓ corresponding to the ℓ-th segment of the first
n-cycle is completed. Then, ηn starts to simulate the switch sℓ of the first n-
cycle, i.e., the strategy γq11 . This completes the simulation of the first n-cycle. In

general, the j-th n-cycle (for 2 ≤ j ≤ L(n)) is simulated in the same way, the

only difference is that every switch si is simulated by γqj−1
i

where qj−1
i is the

state entered when terminating the simulation of σ(i+1) mod ℓ in the (j−1)-th

4 Technically, Lemma 3.2 in [10] assumes ij ∈ Zd for every 1 ≤ j ≤ k. Here, ij ∈ Qd.
We can multiply all increments of by the least common multiple of all denominators
and apply Lemma 3.2 afterwards.



Deciding Fast Termination for Probabilistic VASS 11

n-cycle. This goes on until all n-cycles of the scheme are simulated. After that,
ηn behaves arbitrarily.

Lower Bound. We now show that the family of strategies {ηn | n ∈ N} wit-
nesses the quadratic complexity. First we define L(n). From standard results
on MDPs [41] we know that for every p, the expected number of steps we
keep playing γp before hitting p is finite and dependent only on A. Hence,
there exists a constant ξ depending only on A such that also the expected
change of every counter incurred while simulating γp is bounded by ξ. Now
let minA = min{u(i) | (p,u, q) ∈ T }, i.e., minA is the minimal counter update
over all transitions, and let

L(n) = ⌊n / (ℓ · ξ −
ℓ∑

j=1

aj ·min
A

+1)⌋.

The function L(n) has been chosen so that, for all sufficiently large n, if the
scheme for n is “executed” from the point n, i.e., if we follow the vectors of
the scheme, where each switch is replaced with the vector (ξ, . . . , ξ), then the

resulting trajectory never crosses any axis (recall that
∑ℓ

i=1 aiji ≥ 0).

Example 3. A trajectory for the scheme of Example 2 is shown in Fig. 2. Here,
ξ = −1, because performing every switch takes just one transition with expected
change of the counters equal to (−1,−1).

Definition 3. Let π = p0,u1, p1,u2, . . . , pj be a finite alternating sequence of
states and vectors of Qd (not necessarily a finite path in A), and m ∈ N. We

say that π is m-safe if, for every 1 ≤ i ≤ j, we have that
∑i

k=1 uk ≥ −m.
Furthermore, we say that an infinite sequence π = p0,u1, p1,u2, . . . is m safe-
until k if its prefix p0,u1, p1,u2, . . . , pk is m-safe.

Now consider an infinite path π = q0,u1, q1,u2, . . . in A initiated in p1.
Then almost all such π’s (w.r.t. the probability measure Pηn

p1
) can be split into

a concatenation of sub-paths

π1
1 , τ

1
1 , . . . , π

1
ℓ , τ

1
ℓ , π

2
1 , τ

2
1 , . . . , π

2
ℓ , τ

2
ℓ , . . . . . . π

L(n)
1 , τ

L(n)
1 , . . . , π

L(n)
ℓ , τ

L(n)
ℓ , π̂

where πj
i is a path with precisely L(n) · ai transitions (resulting from simulation

of σi), τ
j
i is a switching path performing the switch si of the j-th cycle, and π̂

is the remaining infinite suffix of π. Note that for every 1 ≤ i ≤ ℓ, the paths

π1
i , π

2
i , . . . , π

L(n)
i can be concatenated and form a single path in A of length

L2(n). This follows from the way of scheduling the switching strategies γp in
ηn. Writing π = ̺⊙ π̂ (where π̂ is the suffix of π defined above), we denote by
SimLen(π) the length of ̺. Note that SimLen(π) ≥ L2(n) for almost all π.

We now focus on proving the following lemma:

Lemma 5. For every δ > 0 there exist r, n0 ∈ N such that for all n ≥ n0,
the Pηn

p1
probability of all infinite paths π initiated in p1 that are r · n-safe until

SimLen(π) is at least 1− δ. Moreover, the n0 is independent of δ.
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The lemma guarantees that if the strategy ηn is executed in a configuration
p1(r · n), where n ≥ n0, then Pηn

p1(r·n)
[Term ≥ L(n)2] ≥ 1 − δ. This implies

L(n) ∈ Ω(n2). Hence, it remains to prove the lemma.

Proof of Lemma 5. We separately bound the probabilities of “large counter
deviations” while simulating the σi’s and the switching strategies. To this end,
for every 1 ≤ i ≤ ℓ let πi = p0,v1, p1,v2, . . . be the finite path of length L2(n) ob-

tained by concatenating all π1
i , π

2
i , . . . , π

L(n)
i . Furthermore, let Ipathi(π) the se-

quence obtained from πi by replacing every vk with vk−ji. Intuitively, Ipath
i(π)

is πi where the transition effects are “compensated” by subtracting the expected
change in the counter values per transition. We prove the following:

Lemma 6. For every δ > 0, there exist c, n0 ∈ N such that for all n ≥ n0

it holds Pηn
p1

({π | Ipathi(π) is c · n-safe}) ≥ 1 − δ. Moreover, the n0 does not
depend on δ.

In the proof of Lemma 6, we use the martingale defined for stochastic one-
counter automata in [11]. Intuitively, if Ipathi(π) is n safe, then it must be n
safe in every counter. Hence, we can consider each counter one by one, abstract
the other counters, and estimate the probability of being n safe in each of these
one-counter automata.

Similarly, we need to estimate the probability of deviating from the trajectory
by performing the switches. Let Spath(π) be the concatenation of all τ ji where
1 ≤ i ≤ ℓ and 1 ≤ j ≤ L(n) preserving their order. We prove the following:

Lemma 7. For every δ > 0, there exist c, n0 ∈ N such that for all n ≥ n0

it holds Pηn
p1

({π | Spathi(π) is c · n-safe}) ≥ 1 − δ. Moreover, the n0 does not
depend on δ.

Clearly, if Ipathi(π) is c1 · n-safe for all 1 ≤ i ≤ ℓ and Spath(π) is c2 · n-safe,
then π is (c1 + c2) · (ℓ+1) · n-safe until SimLen(π). Hence, Lemma 5 is a simple
consequence of Lemma 6 and Lemma 7.

Probability of Quadratic Behaviour. Now we indicate how to prove
the last part of Theorem 1. Directly from Lemma 5, we have that
limr→∞ Pηn

p1(r·n)
[Term ≥ L(n)2] = 1. However, observe that if r is not a fixed

constant, we cannot say that the size of the initial configuration is linear in n.
Taking r = nγ for a suitable γ > 0, we may rewrite the limit in the follow-
ing way: limr→∞ Pηn

p1(r·n)
[Term ≥ L(n)2] = limn→∞ Pηn

p1(n1+γ)[Term ≥ L(n)2] =

limn→∞ P
η
n1/(1+γ)

p1n [Term ≥ L(n1/(1+γ))2]. It can be shown that L(n1/(1+γ))2 >
n2−ε, for every sufficiently large n, thus obtaining the last part of the Theorem 1.

3.4 Linearity of Angelic Termination Time

For angelic nondeterminism, we have a similar result as in the demonic one.

Theorem 2. The problem whether the expected angelic termination time of a
given strongly connected VASS MDP A is linear is decidable in polynomial time.
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If the expected angelic termination time of A is not linear, then La(n) ∈ Ω(n2).
Furthermore, for every ǫ > 0 we have that

lim
n→∞

inf
p∈Q,σ∈Σ

{
Pσ
pn[Term ≥ n2−ε]

}
= 1

Proof (Sketch). We analyse each counter, i.e., we consider d one-dimensional
VASS MDPs obtained by projecting the labelling function of A.

If it is possible to terminate in one of these one-dimensional VASS MDPs in
expected linear time, then the corresponding strategy achieves linear termination
also in A. On the other hand, if this is not possible, then every one-counter has
infinite angelic termination complexity. This does not mean that the A has
infinite angelic termination complexity. However, we show that there exists a
constant c > 0 such that for sufficiently large initial configuration, the probability
of runs terminating before n2/c transitions is sufficiently small for every one-
counter. By union bound, the probability of runs terminating before n2/c in A
is 1 − δ for some δ > 0. Thus, La(n) ∈ Ω(n2). The last part of the theorem is
proved similarly to the demonic case. ⊓⊔

4 General VASS MDPs & Conclusion

We now drop the assumption that the VASS is strongly connected. Recall that an
end-component in an MDP is a set M of states that is closed (i.e., for q ∈ Qn∩M
at least one outgoing transition goes to M , while for q ∈ Qp∩M all the outgoing
transitions must end in M) and strongly connected. A maximal end component
(MEC) is an EC which is not contained in any larger EC. A decomposition of an
MDP into MECs can be computed in polynomial time by standard algorithms [1],
and each MEC of a VASS MDP induces a strongly connected VASS sub-MDP
which can be analyzed as shown in previous sections. We can construct a graph
whose vertices correspond to MECs of an MDP and there is an edge from M
to some other M ′ if and only if M ′ is reachable from M . If the only cycles
in this graph are self-loops, we say that the original MDP is DAG-like. MECs
corresponding to “leafs” of the graph (i.e. MECs that cannot be exited) are
called bottom MECs.

Theorem 3. Theorem 1 holds also for DAG-like VASS MDPs, while Theorem 2
holds for all VASS MDPs. In particular, a DAG-like VASS MDP A has Ld(n) ∈
O(n) if and only if each MEC of A induces a (strongly connected) VASS MDP
in which Ld(n) ∈ O(n); and A has La(n) ∈ O(n) iff each bottom MEC of A has
La(n) ∈ O(n). Otherwise, the termination complexity of A is in Ω(n2).

Proof (Sketch). We sketch the proof for the demonic case where there are no self-
loops in the MEC graph. Then no MEC can be re-entered once left. Moreover,
there is a constant c s.t. whenever we enter a MEC with a counter valuation v,
the expected time to either terminate or exit the MEC, as well as the expected
size of the counter valuation at the time of termination/exiting are bounded by
c · ||v||. Hence, a straightforward induction on the number of MECs shows that
the expected maximal counter value as well as the expected termination time
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Fig. 2. A trajectory for the scheme of
Example 2.

p1

r

p2

(0,0)

(0,0)1

4
,(0,0)

f

3

4
,(0,0)

(2,−1) (−1, 2)

(0,−1)

Fig. 3. VASS MDP with linear MECs
but infinite expected termination time.

are bounded by c|Q| · n from any initial configuration of size n. Since |Q| does
not depend on n, we get the result.

For non-DAG-like VASS MDPs, the situation gets much more complicated.
Consider the MDP in Figure 3. There are three MECs, each a singleton ({p1},
{p2}, {f}). Clearly all these three MECs have a linear termination complexity.
Now consider the following demonic strategy starting in configuration p1(0, n):
select the loop until we get the configuration p1(2n, 0); then transition to p2 and
play its loop until we get into p2(0, 4n); then transition to r and if the randomness
takes us back to p1, play the loop again until we get p1(8n, 0), etc. ad infinitum.
Clearly, the strategy eventually ends up in f where it terminates. However, the
expected termination time is at least 3

4

∑∞
i=0(

1
4 )

i · 4i+1 = 3
∑∞

i=0(
4
4 )

i = ∞.
Hence, proving the linear termination complexity in general VASS does not

reduce to analysing individual MECs. Moreover, it crucially depends on the
concrete probabilities in transient (non-MEC) states: in Figure 3, the termination
time would be finite (and linear) if the transition from r to f had probability< 1

4 .
The transient behaviour of MDPs can be of course rather complex and it is not
even clear whether the linear demonic termination complexity is even decidable
for VASS MDPs with general structure. We see this as a very intriguing, yet
complex, direction for future work.
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21. Esparza, J., Kučera, A., Mayr, R.: Model-checking probabilistic pushdown au-
tomata 2(1:2), 1–31 (2006)

22. Esparza, J., Ledesma-Garza, R., Majumdar, R., Meyer, P., Niksic, F.: An smt-
based approach to coverability analysis. In: Proceedings of CAV 2014. pp. 603–619
(2014)

23. Esparza, J., Nielsen, M.: Decidability issues for petri nets – a survey. Bulletin of
the EATCS 52, 245–262 (1994)

24. Etessami, K., Yannakakis, M.: Model checking of recursive probabilistic systems
13 (2012)

25. Foster, N., Kozen, D., Mamouras, K., Reitblatt, M., Silva, A.: Probabilistic netkat.
In: Thiemann, P. (ed.) European Symposium on Programming. LNCS, vol. 9632,
pp. 282–309. Springer Berlin Heidelberg, Berlin, Heidelberg (2016)

26. Ghahramani, Z.: Probabilistic machine learning and artificial intelligence. Nature
521(7553), 452–459 (2015)



16 T. Brázdil et al.

27. Gulwani, S., Mehra, K.K., Chilimbi, T.: Speed: Precise and efficient static esti-
mation of program computational complexity. In: Proceedings of POPL’09. pp.
127–139. ACM, New York, NY, USA (2009)

28. Hoffmann, J., Aehlig, K., Hofmann, M.: Multivariate amortized resource analysis.
ACM Trans. Program. Lang. Syst. 34(3), 14:1–14:62 (2012)

29. Jurdzinski, M., Lazic, R., Schmitz, S.: Fixed-dimensional energy games are in
pseudo-polynomial time. In: Proceedings of ICALP 2015. pp. 260–272 (2015)

30. Kaminski, B.L., Katoen, J., Matheja, C.: On the hardness of analyzing probabilistic
programs. Acta Inf. 56(3), 255–285 (2019)

31. Kaminski, B.L., Katoen, J., Matheja, C., Olmedo, F.: Weakest precondition rea-
soning for expected runtimes of randomized algorithms. J. ACM 65(5), 30:1–30:68
(2018)

32. Karp, R.M., Miller, R.E.: Parallel program schemata. J. Comput. Syst. Sci. 3(2),
147–195 (1969)

33. Kosaraju, S.R.: Decidability of reachability in vector addition systems (preliminary
version). In: Proceedings of STOC 1982. pp. 267–281. ACM (1982)

34. Kosaraju, S.R., Sullivan, G.F.: Detecting cycles in dynamic graphs in polynomial
time. In: Proceedings of STOC 1988. pp. 398–406 (1988)

35. Leroux, J.: Vector addition system reachability problem: A short self-contained
proof. In: Proceedings of POPL 2011. pp. 307–316 (2011)

36. Leroux, J.: Polynomial vector addition systems with states. In: Proceedings of
ICALP 2018. vol. 107, pp. 134:1–134:13 (2018)

37. Leroux, J., Schmitz, S.: Reachability in vector addition systems is primitive-
recursive in fixed dimension. In: Proceedings of LICS 2019 (2019)

38. Lipton, R.: The reachability problem requires exponential space. Technical re-
port 62 (1976)

39. Mayr, E.: An algorithm for the general Petri net reachability problem 13, 441–460
(1984)

40. Ngo, V.C., Carbonneaux, Q., Hoffmann, J.: Bounded expectations: Resource anal-
ysis for probabilistic programs. In: Proceedings of PLDI’18. pp. 496–512. ACM,
New York, NY, USA (2018)

41. Puterman, M.: Markov Decision Processes (1994)
42. Rackoff, C.: The covering and boundedness problems for vector addition systems.

Theor. Comput. Sci. 6, 223–231 (1978)
43. Schmitz, S.: Complexity hierarchies beyond elementary. ACM Trans. Comput. The-

ory 8(1), 3:1–3:36 (Feb 2016)
44. Sinn, M., Zuleger, F., Veith, H.: A simple and scalable static analysis for bound

analysis and amortized complexity analysis. In: Proccedings of CAV 2014. pp.
745–761 (2014)

45. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics (Intelligent Robotics and
Autonomous Agents). The MIT Press (2005)

46. Velner, Y., Chatterjee, K., Doyen, L., Henzinger, T.A., Rabinovich, A.M., Raskin,
J.: The complexity of multi-mean-payoff and multi-energy games. Inf. Comput.
241, 177–196 (2015)

47. Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S., Whalley, D.,
Bernat, G., Ferdinand, C., Heckmann, R., Mitra, T., Mueller, F., Puaut, I.,
Puschner, P., Staschulat, J., Stenström, P.: The worst-case execution-time prob-
lem&mdash;overview of methods and survey of tools. ACM Trans. Embed. Com-
put. Syst. 7(3), 36:1–36:53 (2008)

48. Yen, H.C.: A unified approach for deciding the existence of certain petri net paths.
Inf. Comput. 96(1), 119–137 (1992)



Deciding Fast Termination for Probabilistic VASS 17

A Proofs

We start by recalling basic notions of martingale theory. A stochastic process
m(0),m(1),m(2), . . . is a martingale if the following holds for all i ∈ N:

– E[m(i)] < ∞,
– E[m(i+1) | m(i), . . .m(0)] = m(i).

By weakening the second condition into E[m(i+1) | m(i), . . .m(0)] ≥ m(i), we
obtain a submartingale.

If m(0),m(1),m(2), . . . is a (sub)martingale such that |m(i+1) − m(i)| ≤ d
almost surely for all i ∈ N, then the Azuma-Hoeffding inequality says that, for
every t > 0,

– P [m(i) −m(0) ≥ t] ≤ exp(−t2/2id2) if m(0),m(1),m(2), . . . is a mar-
tingale,

– P [m(i) −m(0) ≤ −t] ≤ exp(−t2/2id2) if m(0),m(1),m(2), . . . is a sub-
martingale.

A.1 A proof of Lemma 1

We start by recalling the results of [41]. LetN = (Q, (Qn, Qp), T, P ) be a strongly
connected Q-labeled MDP. Consider the following linear program:

minimize x subject to

zq ≥ −x+ c+ zp for all q ∈ Qn and (q, c, p) ∈ T

zq ≥ −x+
∑

(q,c,p)∈T

P (q, c, p) · (c+ zp) for all q ∈ Qp

This linear program is feasible, and the minimal value of x is equal to

sup {Eσ
p [MP] | σ ∈ Σ, p ∈ Q}

Let x̄, z̄p be the components of an optimal solution, and let p ∈ Q be some
fixed initial state. For every i ∈ N, let S(i) and C(i) be functions assigning
to every infinite path π = p0,u1, p1,u2, . . . initiated in p the state pi and the
sum

∑i
j=1 uj , respectively (we put C(0)(π) = 0). Let σ ∈ Σ be an arbitrary

strategy. Almost identical computation as in [9,12] gives that the stochastic
process m(0),m(1), . . ., where m(i) = C(i) + z̄S(i) − i · x̄, is a supermartingale
(over the probability space determined by σ).

Our aim is to show that there exists a ∈ (0, 1) and i0 ∈ N depending only
on M such that for an arbitrary strategy σ, every p ∈ Q, and all i ≥ i0 we have
that Pσ

p [Dec = i] ≤ ai. From this we immediately obtain

Eσ
p [Dec] =

∞∑

i=1

i · Pσ
p [Dec = i] ≤ c
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for some constant c depending only on M.
Now consider the supermartingale of the first paragraph applied to infinite

paths in M (under the strategy σ). Let π = p0,u1, p1,u2, . . . be an infinite path
such that Dec(π) = i. Then C(i)(π) ≥ −(1 + δ) for some fixed δ depending only
on M, because the rewards are bounded. Furthermore, the maximal difference
between z̄p and z̄q for p, q ∈ Q is also bounded by some constant depending only
on M. Hence, m(i)(π)−m(0)(π) ≥ µ− i · x̄ for some constant µ depending only
on M (recall that x̄ is negative). For every i ≥ i0 where i0 := −2µ/x̄, we obtain
µ− i · x̄ ≤ i · x̄/2− i · x̄ = −(i · x̄/2) where i · x̄/2 < 0. Thus, we obtain

Pσ
p [Dec = i] ≤ Pσ

p [m
(i) −m(0) ≥ µ− i · x̄] ≤ Pσ

p [m
(i) −m(0) ≥ −(i · x̄/2)]

Since the supermartingale m(0),m(1), . . . can change in one step at most by a
constant ̺ (depending only on M), applying Azuma’s inequality yields

Pσ
p [m

(i) −m(0) ≥ −(i · x̄/2)] ≤ exp

(
−i2 · x̄2

8 · i · ̺2

)

= ai

where a = exp(−x̄2/8̺2) ∈ (0, 1), for all i ≥ i0.

A.2 A proof of Lemma 6

We assume a fixed 1 ≤ i ≤ ℓ. Recall the strategy σi and the BSCC Bi asso-
ciated to the increment ji (see Section 3.2). For every path π initiated in p1,
let Ipathi(π) = q0,v1, q1,v2, . . . , qL2(n), and for every 1 ≤ j ≤ d, consider the

sequence Ipathi
j(π) obtained by projecting every vk to its j-th component, i.e.,

Ipathi
j(π) = q0,v1(j), q1,v2(j), . . . , qL2(n).

Our aim is to show that, for every δ > 0 and every 1 ≤ j ≤ d, there exist
c, n0 ∈ N such that the Pσi

p1
probability of all π initiated in p1 such that Ipathi

j(π)
is c · n safe is at least 1 − δ. Observe that Lemma 6 is a direct consequence of
this claim.

Observe that Bi, where the nondeterministic choice is resolved by σi, and
the counter update vectors are projected to their jth component, can be seen
as a one-counter automaton. The long-run average change of the counter per
transition in this automaton is ji(j). Recall that Ipathi(π) was obtained from

the concatenated paths π1
i , π

2
i , . . . , π

L(n)
i by subtracting the increment ji from

each vector occurring in this sequence. Hence, we need to subtract ji(j) from
every counter update on every transition of Bi. Thus, we obtain a one-counter
automaton B̂i. A trivial but crucial observation is that the long-run average
change of the counter per transition in B̂i is zero.

The Pσi
p1

probability of all π initiated in p1 such that Ipathi
j(π) is not c · n

safe is equal to the probability that a run of B̂i initiated in q(0), where q is the
starting state of π1

i , decreases the counter to −c · n or below during the first
L2(n) transitions. An upper bound on the latter probability can be established
using the martingale for probabilistic one-counter automata introduced in [11]
(here we use a slightly modified version of this martingale which better suits our
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purposes). Due to [11], for every state p(0) of B̂i and every c ∈ N, there exists a

vector y ∈ [0,∞)|B̂i| such that the stochastic process defined by

m
(k)
i,j =

{

C(k) + yj(p
(k)) if C(k) ≥ −cn for all 0 ≤ k′ < k;

m
(k−1)
i,j otherwise

is a martingale, where C(0) = 0, C(k) =
∑k

s=1 vs(j) is a random variable return-

ing the accumulated counter change after k steps, and p(k) is a random variable
returning the control state entered after k steps. Moreover, the vector yj satis-

fies 0 ≤ ‖yj‖ ≤ 2|B̂i|/x
|B̂i|
min, where xmin is the minimum probability used in the

transitions of B̂i.
Note that if the accumulated counter change drops to −c · n or below for

the first time after exactly k transitions, the martingale does not change its

value from this point on, and remains equal to m
(k)
i,j . Let y = maxj ‖yj‖. If

m
(L2(n))
i,j ≥ −cn + ‖y‖ then the value C(L2(n)) is at least −cn for every k ≤

L2(n). Hence, the probability that a run of B̂i initiated in pi(0) decreases the
counter to −cn or below during the first L2(n) transitions is less or equal to

P (m
(L2(n))
i,j ≤ −cn+ ‖y‖+ 1). Furthermore, for all n ≥ ‖y‖+ 1 +m

(0)
i,j we have

that

P (m
(L2(n))
i,j ≤ −cn+‖y‖+1) ≤ P (m

(L2(n))
i,j −m

(0)
i,j ≤ −(c−1)n) ≤ exp

(
−(c− 1)2/α

)

by applying Azuma’s inequality, where α is a suitable constant dependent only
on B̂i.

The above holds for every j ∈ {1, . . . , d}. Hence, the probability of all Pσi
p1

probability of all π initiated in p1 such that Ipathi(π) is not c · n safe is less
or equal to d · exp

(
−(c− 1)2/α

)
for every sufficiently large n. To achieve d ·

exp
(
−(c− 1)2/α

)
≤ δ, we can put c = ⌈

√

α(ln d− ln δ)⌉+ 1.

A.3 A proof of Lemma 7

First, we bound the expected number of transitions used in executing one switch.
Let xmin be the minimum probability appearing in the VASS MDP, and let
p, q ∈ Q. There is a path of length at most |Q| − 1 which we may follow with

probability at least x
|Q|−1
min . If successful, we are done, otherwise we end up in

some state p′ and again there is some path from p′ to q of length at most |Q|− 1

and the probability of traversing this path is still at least x
|Q|−1
min .

If we use the number x
|Q|−1
min as the (lower bound on the) probability of

success, the random variable counting the number of attempts until the first

success has a geometric distribution. Its expected value is then 1/x
(|Q|−1)
min . Since

every attempt uses at most |Q| − 1 transitions, the expected number of used

transitions is bounded from above by λ = (|Q| − 1) · 1/x
(|Q|−1)
min .

Let X be the random variable equal to the length of Spath(π). Since the
number of switches is L(n), the expected value of Spath(π) is bounded from
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above by λ · L(n). Let δ > 0. Surely P (X ≥ δ−1 · λ · L(n)) ≤ P (X ≥ δ−1E[X ]).
By Markov inequality, we obtain that P (X ≥ δ−1E[X ]) ≤ δ. Therefore, with
probability at most δ, we use more than δ−1 · λL(n) transitions.

The minimal update over all transitions is minA. If minA ≥ 0, then c = 0
since no transition can decrease the counters and the set of paths π such that
Spath(π) is 0 safe has probability one. For minA < 0, the set of paths π such
that Spath(π) is −minA δ−1λ · L(n) safe has probability at least 1 − δ. Since
L(n) ≤ n, taking c = −minA δ−1λ completes the proof.

A.4 A proof of the last part of Theorem 1

We show that for every ε > 0 we can choose γ > 0 such that

lim
n→∞

P
η
n
1/1+γ

pn [Term ≥ n2−ε] = 1.

From Lemma 5, we have that limr→∞ Pηn

p1(r·n)
[Term ≥ L(n)2] = 1. Rewriting

the limit, we obtain

lim
r→∞

Pηn

p1(r·n)
[Term ≥ L(n)2] = lim

n→∞
Pηn

p1(n1+γ)[Term ≥ L(n)2]

= lim
n→∞

P
η
n1/(1+γ)

p1n [Term ≥ L(n1/(1+γ))2].

Let c = ℓ · ξ−
∑ℓ

j=1 aj ·minA +2. Then L(n) ≥ n/c by the definition of L(n) (for

n sufficiently large). We need to show that L(n1/(1+γ))2 ≥ n2−ε for some γ > 0.
Surely

L(n1/(1+γ))2 ≥ n2/(1+γ)/c = n2−2γ/(1+γ)/c.

For n sufficiently large, we have nγ/(1+γ)/c > 1. Therefore,

n2−2γ/(1+γ)/c ≥ n2−3γ/(1+γ).

Let γ be such that n2−3γ/(1+γ) = n2−ε, therefore 3γ/(1 + γ) = ε. Multiplying
by 1 + γ we get ε+ εγ − 3γ = 0. Therefore, γ = ε/(3 − ε). This completes the
proof.

A.5 A proof of Theorem 2

The proof is very similar to the one of Lemma 1. Again, we recall the results
of [12] for one-counter machines. We consider the following linear program:

maximize x subject to

zq ≤ −x+ c+ zp for all q ∈ Qn and (q, c, p) ∈ T

zq ≤ −x+
∑

(q,c,p)∈T

P (q, c, p) · (c+ zp) for all q ∈ Qp

This linear program is feasible, and the maximal value of x is equal to

inf {Eσ
p [MP] | σ ∈ Σ, p ∈ Q}.

Moreover, we can assume that for all q ∈ Q we have z̄q ≥ 0. Direct corollary
of [12, Proposition 5,(B)] is the following Lemma:
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Lemma 8. Let (x̄, (z̄q)q∈Q) be a solution of the linear program above. If x̄ < 0
then La(n) ∈ Θ(n).

Moreover, we use (similarly to the proof of Lemma 1) that the stochastic
process m(0),m(1), . . . , where

m(i) =

{

C(i) + z̄S(i) − i · x̄ C(j) > 0 for all j, 0 ≤ j < i,

m(i−1) otherwise

is a submartingale.

Now we use these results on one-dimensional VASS-MDPs to obtain the
proof for d-dimensional VASS-MDP A by simply considering d projections on
one counter.

A trivial observation gives the following result.

Lemma 9. Let A be a d-dimensional VASS-MDP, A1, . . . ,Ad corresponding
one-dimensional VASS-MDPs obtained by projecting the labels onto respective
coordinate. If at least one of the one-dimensional VASS-MDPs has linear angelic
termination time, then A has also linear angelic termination time (using the
same strategy).

In order to obtain the result for at least quadratic termination, we use the
Azuma inequality for all the submartingales obtained from the one-dimensional
VASS-MDPs.

Let m
(0)
j ,m

(1)
j be the submartingale for Aj , Z̄j = maxq∈Q z̄q obtained from

the corresponding linear program (and assuming all values z̄q are non-negative).

Given an initial configuration p(n, . . . , n), the probability that the j-th
counter decreases below zero in t steps can be bounded from above:

P (m
(t)
j −m

(0)
j ≤ −n+ Zj) ≤ exp(−(n− Zj)

2/tα)

where Zj and α are constants independent of n.
Let Z = maxj=1,...,d Zj and n ≥ 2Z, then:

P (m
(t)
j −m

(0)
j ≤ −n+ Z) ≤ exp(−(n− Zj)

2/tα) ≤ exp(−n2/4tα).

Observe that there exists a suitable constant c > 0 such that

d · exp(−c/4α) < 1

since d and α are constants (depending only on A). Therefore, taking t = n2/c,
we obtain that the probability of some counter decreasing below zero is 1− δ for
some δ > 0, and thus La(n) ∈ Ω(n2).

Let ε > 0 and t = n2−ε, then

lim
n→∞

P (m
(t)
j −m

(0)
j ≤ −n+ Zj) ≤ lim

n→∞
exp(−(n− Zj)

2/n2−εα) = 0.

This completes the proof of Theorem 2.
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A.6 A proof of Theorem 3

We can divide the set of states of A into the states belonging to some MEC and
transient states. We rely on the two following facts:

1. For every strategy, the expected number of transitions from a transient state
to some MEC state can be bounded by a constant k (a number dependent
only on A and not the size of the initial configuration).

2. The asymptotic complexity of a MEC does not depend on the initial state.

First, we consider the demonic case. In DAG-like VASS-MDP, the only loops
in the MEC decomposition are self-loops, i.e., once we leave MEC M and visit a
different MEC M ′, we may never return to M . Moreover, there is a probability
p < 1 such that for every MEC M and every strategy, we revisit M after leaving
it (i.e., execute the self loop on M) with probability at most p.

For the “if” direction, we assume that the initial state is in a MEC M .
We compute the upper bound on the expected number of transitions before
terminating or arriving into another MEC. Let Q′ be the states of every MEC
different from M . We know that if MEC M is linear then there exists wM > 0
such that all increments i1, . . . , ir in M satisfy ij ·wM < 0. Let us consider a Q-
labeled MDP Aw obtained from A by replacing each label u ∈ Zd by u·wM ∈ Q.

Now we construct a supermartingale similar to the one in the proof of
Lemma 1. Again, for every i ∈ N, let S(i) and C(i) be functions assigning to
every infinite path π = p0, u0, p1, u2, . . . in Aw initiated in p the state pi, and
the sum w ·n+

∑i
j=1 uj (where n = (n, n, . . . , n) is the initial counter vector in

A). Furthermore, let M.steps(i) and T.steps(i) be functions counting for every
infinite path π the number of transitions in the MEC M and in the transient
states before entering a MEC different from M (a transition t = (q,u, q′) is in
M if both q, q′ are in M).

Let p be any initial state and σ arbitrary strategy. Then the following se-
quence of random variables is a supermartingale:

m(i) =

{

C(i) + z̄S(i) −M.steps(i) · x̄+ T.steps(i) ·K if C(i) ≥ 0 and S(i) 6= Q′

m(i−1) otherwise

where K is sufficiently large constant. We want to compute the expected value
of M.steps. For every i we have:

Eσ
p (m

(i)) = Eσ
p (C

(i) + z̄S(i) −M.steps(i) · x̄+ T.steps(i) ·K).

We know that Eσ
p (T.steps) ≤ k and Eσ

p (z̄S(i)) is bounded by a constant. More-

over, m(0) ≥ w · n +K1 where K1 is a constant depending only on Aw. Using
the property of a supermartingale, we obtain

Eσ
p (m

(i)) = Eσ
p (C

(i)) +K2 − Eσ
p (M.steps(i)) · x̄ ≤ w · n.

Since x̄ < 0, we have for every i ∈ N that

Eσ
p (M.steps(i)) ≤ (w · n−K2 − Eσ

p (C
(i)))/|x̄|,
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therefore Eσ
p (M.steps) + Eσ

p (T.steps) ≤ c · n for a suitable constant c.

The time spent in one MEC can be used to increase some counters that can
be used by MECs visited later. However, once we visit MEC M ′, we never return
to M . We define the height of MEC M to be the length of a longest path in the
MEC decomposition from M into a bottom MEC (if MEC M ′ can be visited
from M , then M ′ has higher height).

Let maxA = max{‖u‖; (q,u, q′) ∈ T } be the size of maximum counter change
per transition.

We assume that for every MEC, the demonic termination complexity is
bounded by rn for all n ∈ N. Let i be the height of the MEC containing the
initial state (or i is such that i − 1 is the height of a reachable MEC with the
largest height). By induction on i, we prove that the expected termination time
is bounded by (maxA ·r + 1)i · n for n sufficiently high.

If i = 0, then Ld(n) ≤ rn.
Assume that the height of MEC M containing the initial configuration is

i + 1 and and the expected termination time for i is bounded by (r + 1)i · n
(if we start in some transient state, the expected number of steps into a MEC
with height at most i is constant and the induction step holds). We divide every
path π = π1π2 where π1 is the part of π prior the arrival into the lower MEC.
The expected length of π1 is bounded by rn. Therefore, we have the following
upper bound on the expected size of counters when arriving into the lower MEC:
n+ rn ·maxA = (maxA ·r + 1) · n.

Using induction hypothesis, the expected length of π is then
(maxA ·r + 1)i+1 · n which completes the proof.

For the “only if” direction, consider an initial state to be in a MEC with at
least quadratic termination complexity. Using the corresponding strategy, we
obtain the result.

Now we turn to the angelic case. If all bottom MECs are linear, there exists
a strategy reaching one of the MECs in expected constant time. Therefore, the
complexity is the same as in the bottom MEC, i.e., linear. If some of the bot-
tom MECs is at least quadratic, then starting in that MEC, we obtain at least
quadratic termination complexity.
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