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Are Parametric Markov Chains Monotonic?

Jip Spel, Sebastian Junges, Joost-Pieter Katoen

RWTH Aachen University, Aachen, Germany⋆

Abstract. This paper presents a simple algorithm to check whether
reachability probabilities in parametric Markov chains are monotonic
in (some of) the parameters. The idea is to construct—only using the
graph structure of the Markov chain and local transition probabilities—a
pre-order on the states. Our algorithm cheaply checks a sufficient con-
dition for monotonicity. Experiments show that monotonicity in several
benchmarks is automatically detected, and monotonicity can speed up
parameter synthesis up to orders of magnitude faster than a symbolic
baseline.

1 Introduction

Probabilistic model checking [3,35] takes as input a Markov model together with
a specification typically given in a probabilistic extension of LTL or CTL. The
key problem is computing the reachability probability to reach a set of target
states. Efficient probabilistic model checkers include PRISM [36] and Storm [20].
A major practical obstacle is that transition probabilities need to be precisely
given. Uncertainty about such quantities can be treated by specifying transition
probabilities by intervals, as in interval Markov chains [11,32], or by parametric
Markov chains [18], which allow for expressing complex parameter dependencies.

This paper considers parametric Markov chains (pMCs). Their transition
probabilities are given by arithmetic expressions over real-valued parameters. A
pMC represents an uncountably large family of Markov chains (MCs): each pa-
rameter value from the parameter space induces an MC. Reachability properties
are easily lifted to pMCs; they are satisfied for a subset of the family of MCs, or
equivalently, for a subset of the parameter values. Key problems are e.g., is there
a parameter valuation such that a given specification ϕ is satisfied (feasibility)?,
do all parameter values within a given parameter region satisfy ϕ (verification)?,
which parameter values do satisfy ϕ (synthesis)?, and for which parameter values
is the probability of satisfying ϕ maximal (optimal synthesis)? Applications of
pMCs include model repair [5,12,13,24,40], strategy synthesis in AI models such
as partially observable MDPs [34], and optimising randomised distributed algo-
rithms [2]. PRISM and Storm, as well as dedicated tools including PARAM [27]
and PROPhESY [19] support pMC analysis.

Despite the significant progress in the last years in analysing pMCs [10,15,41],
the scalability of algorithms severely lacks behind methods for ordinary MCs.
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There is little hope to overcome this gap. The feasibility problem for a reachabil-
ity probability exceeding 1/2 is ETR-complete (thus NP-hard) [44]. Experiments
show that symbolic computations rather than (floating-point) numeric compu-
tations have a major impact on analysis times [41].

This paper takes a different approach and focuses on monotonicity, in partic-
ular on (a) an algorithm to check whether pMCs are monotonic in (some of) the
parameters with respect to reachability probabilities, and (b) on investigating
to what extent monotonicity can be exploited to accelerate parameter synthesis.
Monotonicity has an enormous potential to simplify pMC analysis; e.g., check-
ing whether all points within a rectangle satisfy ϕ reduces to checking whether
a line fragment satisfies ϕ when one parameter is monotonic. Thus, the verifi-
cation problem for an n+k-dimensional hyper-rectangle reduces to checking an
n-dimensional rectangle when the pMC at hand is monotonic in k parameters.
Similarly, determining a parameter instantiation that maximises the probabil-
ity of ϕ (optimal synthesis) simplifies considerably if all—just a single instance
suffices—or some parameters are monotone. Similar problems at the heart of
model repair [5, 12, 13, 24, 40] also substantially benefit from monotonicity.

Unfortunately, determining monotonicity is as hard as parameter synthesis.
The key idea therefore is to construct—using the graph structure of the pMC and
local transition probabilities—a pre-order on the states that is used to check a suf-
ficient condition for monotonicity. The paper gradually develops a semi-decision
algorithm, starting with acyclic pMCs, to the general setting with cycles. The
algorithm uses assumptions indicating whether a state is below (or equivalent
to) another one, and techniques are described to discharge these assumptions.
Possible outcomes of our algorithms are: a pMC is monotonic increasing in a
certain parameter for a given region, monotone decreasing, or unknown. Exper-
iments with a prototypical implementation built on top of Storm show that
monotonicity is detected automatically and scalable in several benchmarks from
the literature. In addition, exploiting monotonicity in a state-of-the-art param-
eter synthesis can lead to speed-ups of up to an order of magnitude. (Proofs of
our results can be found in the appendix.)

2 Preliminaries and Problem Statement

A probability distribution over a finite or countably infinite set X is a function
µ : X → [0, 1] ⊆ R with

∑

x∈X µ(x) = 1. The set of all distributions on X is
denoted by Distr(X). Let a ∈ Rn denote (a1, . . . , an), and ei denote the vector
with ej = 1 if i = j and ej = 0 otherwise. The set of multivariate polynomials
over ordered variables x = (x1, . . . , xn) is denoted Q[x]. An instantiation for a
finite set V of real-valued variables is a function u : V → R. We typically denote
u as a vector u ∈ Rn with ui := u(xi). A polynomial f can be interpreted as
a function f : Rn → R, where f(u) is obtained by substitution i.e., f [x ← u],
where each occurrence of xi in f is replaced by u(xi).
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Fig. 1. Three simple pMCs

Definition 1 (Multivariate monotonic function). A function f : Rn → R

is monotonic increasing in xi on set R ⊂ Rn, denoted f↑Rxi
, if

f(a) ≤ f(a+ b · ei) ∀a ∈ R ∀b ∈ R≥0.

A function f is monotone decreasing in xi on R, denoted f↓Rxi
, if (−f)↑Rxi

. A
function f is monotone increasing (decreasing) on R, denoted f↑R (f↓R), if
f↑Rxi

(f↓Rxi
) for all xi ∈ x, respectively.

If function f is continuously differentiable on the open set R ⊂ Rn, then

∀u ∈ R.
∂

∂xi

f(u) ≥ 0 =⇒ f↑Rxi
. In particular, any f ∈ Q[x] is continuously

differentiable on Rn.

Definition 2 (pMC). A parametric Markov Chain (pMC) is a tuple M =
(S, sI , T , V ,P) with a finite set S of states, an initial state sI ∈ S, a finite set
T ⊆ S of target states, a finite set V of real-valued variables (parameters) and
a transition function P : S × S → Q[V ].

We define succ(s) = {s′ ∈ S | P(s, s′) 6= 0}. A pMC M is a (discrete-time)
Markov chain (MC) if the transition function yields well-defined probability
distributions, i.e., P(s, ·) ∈ Distr(S) for each s ∈ S. A state s is called parametric,
if P(s, s′) 6∈ Q for some s′ ∈ S. Applying an instantiation u to a pMC M
yields M[u] by replacing each f ∈ Q[V ] in M by f(u). An instantiation u is
well-defined (for M) if the M[u] is an MC. A well-defined instantiation u is
graph-preserving (for M) if the topology is preserved, that is, for all s, s′ ∈ S
with P(s, s′) 6= 0 implies P(s, s′)(u) 6= 0. A set of instantiations is called a
region. A region R is well-defined (graph-preserving) if ∀u ∈ R, u is well-defined
(graph-preserving).

Example 1. Fig. 1 shows three pMCs, all with a single parameter p. Instantiation
u = {p 7→ 0.4} is graph-preserving for all these pMCs. Instantiation u

′ = {p 7→
1} is well-defined, but not graph-preserving, while u

′′ = {p 7→ 2} is not well-
defined.

Remark 1. Most pMCs in the literature are linear, i.e., all transition probabili-
ties are linear. Many pMCs—including those in Fig. 1—are simple, i.e., P(s, s′) ∈
{p, 1−p | p ∈ V } ∪Q for all s, s′ ∈ S. For simple pMCs, all well-defined instanti-
ations (graph-preserving) are in [0, 1]|V | (in (0, 1)|V |).
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For a parameter-free MCM, PrsM(♦T ) ∈ [0, 1] ⊆ R denotes the probability
that from state s the target T is reached. For a formal definition, we refer to,
e.g., [4, Ch. 10]. For pMCM, PrsM(♦T ) is not a constant, but rather a function
Prs→T

M : V → [0, 1], s.t. Prs→T
M (u) = PrsM[u](♦T ). We call Prs→T

M the solution
function, and for conciseness, we typically omitM. For two graph-preserving in-
stantiations u,u′, we have that Prs→T (u) = 0 implies Prs→T (u′) = 0 (analogous
for =1). We simply write Prs→T = 0 (or =1).

Example 2. For the pMC in Fig. 1(a), the solution function Prs→T is p+(1−p)2.
For the pMCs in Fig. 1(b) and 1(c), it is −p3+p2+p and p2+(1−p)2, respectively.

The closed-form of Prs→T on a graph-preserving region is a rational function over
V , i.e., a fraction of two polynomials over V . Various methods for computing this
closed form on a graph-preserving region have been proposed [18, 19, 22, 27, 30].
Such a closed-form can be exponential in the number of parameters [30], and is
typically (very) large already with one or two parameters [19, 27]. On a graph-
preserving region, Prs→T is continuously differentiable [41].

The parameter feasibility problem considered in e.g. [14, 15, 19, 23, 27, 30, 41]
is: Given a pMC M, a threshold λ ∈ [0, 1], and a graph-preserving region R, is
there an instantiation u ∈ R s.t. PrsI→T

M (u) ≥ λ? This problem is square-root-
sum hard [14]. For any fixed number of parameters, this problem is decidable in
P [30].

Example 3. For the pMC in Fig 1(a), R = [0.4, 0.6], and λ = 0.9, the result to
the parameter feasibility is false, as maxu∈R Prs→T (u) < 0.9.

Definition 3 (Monotonicity in pMCs). For pMCM = (S, sI , T , V ,P), pa-
rameter p ∈ V , and graph-preserving region R, we callM monotonic increasing
in p on R, written M↑Rp , if Pr

sI→T ↑Rp . Monotonic decreasing, written M↓Rp , is
defined analogously.

Example 4. The pMC in Fig. 1(b) is monotonic in p on (0, 1), as its derivative
−3p2 + 2p + 1 is strictly positive on (0, 1). The pMC in Fig. 1(a) is not, as
witnessed by the derivative 1− 2(1−p).

The above example immediately suggests a complete algorithm to decide whether
M↑Rp (or analogouslyM↓Rp ): Compute the solution function, symbolically com-
pute the derivative w.r.t. parameter p, and ask a solver (e.g., an SMT-solver for
non-linear real arithmetic [33]) for the existence of a negative instantiation in R.
If no such instantiation exists, thenM↑Rp . Observe that the size of the solution
function and its derivative are in the same order of magnitude. This algorithm
runs in polynomial time for any fixed number of parameters, yet the practical
runtime even for medium-sized problems is unsatisfactory, due to the high costs
of the symbolic operations involved. The result below motivates to look for suf-
ficient criteria for monotonicity that can be practically efficiently checked.

Theorem 1. pMC verification1 is polynomial-time reducible to the decision prob-
lem whether a pMC is monotonic.

1 The complement of the parameter feasibility problem.
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Proving non-monotonicity is often simpler—finding three instantiations along
a line that disprove monotonicity sufficess—, and less beneficial for parameter
synthesis. This paper focuses on proving monotonicity rather than disproving it.

Example 5. The three instantiations on Fig. 1(a): p 7→ 0.3, 0.5, 0.9 yield reach-
ability probabilities: 0.79, 0.75, 0.91. Thus neither M↑Rp nor M↓Rp on R =
[0.3, 0.9].

Problem statement. Given a pMC M, a parameter p, and a region R, con-
struct an efficient algorithm that determines eitherM↑Rp ,M↓

R
p , or “unknown”.

In the following, letM = (S, sI , T , V ,P) be a pMC with R a graph-preserving
region. Let ( ) denote all states s ∈ S with Prs→T = 1 (Prs→T = 0). By a
standard preprocessing [4], we assume a single and state. We call a parameter
p monotonic, if the solution function of the pMC is monotonic in p.

3 A Sufficient Criterion for Monotonicity

In this section, we combine reasoning about the underlying graph structure of a
pMC and local reasoning about transition probabilities of single states to deduce
a sufficient criterion for monotonicity.

Reachability orders.

Definition 4 (Reachability order/RO-graph). An ordering relation �R,T

⊆ S × S is a reachability order w.r.t. T ⊆ S and region R if for all s, t ∈ S:

s �R,T t implies ∀u ∈ R. Prs→T (u) ≤ Prt→T (u).

The order �R,T is called exhaustive if the reverse implication holds too. The
Hasse-diagram2 for a reachability order is called an RO-graph.

The relation �R,T is a reflexive (aka: non-strict) pre-order. The exhaustive
reachability order is the union of all reachability orders, and always exists. Let
≡R,T denote the kernel of�R,T , i.e., ≡R,T =�R,T ∩ �

−1
R,T . If �R,T is exhaustive:

s ≡R,T t iff ∀u ∈ R. Prs→T (u) = Prt→T (u).

We often omit the subscript R, T from � and ≡ for brevity. Let [s] denote
the equivalence class w.r.t. ≡, i.e., [s] = {t ∈ S | s ≡ t}, and [S] denote the
set of equivalence classes on S. We lift � to sets in a point-wise manner, i.e.,
s � X denotes s � x for all x ∈ X . In the following, we use w.l.o.g. that each
reachability order � satisfies � S \ { } and S \ { } � .

2 That is, G = (S,E) with E = {(s, t) | s, t ∈ S ∧ s � t ∧ ( 6 ∃s′ ∈ S. s � s′ � t)}.
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Fig. 2. RO-graphs for some of the pMCs in Fig. 1

Example 6. Consider pMC M1 in Fig. 1(a) with arbitrary region R. Fig. 2(a)
shows the RO-graph of the exhaustive reachability order, with [s0] = {s0, s1}.
Fig. 2(b) shows a non-exhaustive reachability order for M1. Next, consider
Fig. 1(c) with region R = (0, 1). States s1 and s2 are incomparable: For u1 ∈ R
with u1(p) < 1

2 : Prs1→T (u1) < Prs2→T (u1), while for u2 ∈ R with u2(p) >
1
2 : Prs1→T (u2) > Prs2→T (u2). Analogously, s0, s1 and s0, s2 are pairwise in-
comparable. Fig. 2(c) depicts the corresponding exhaustive reachability order.

Local monotonicity. Next, we show how a local notion of monotonicity suffices
to infer monotonicity.

Definition 5 (Locally monotonic increasing). Prs→T is locally monotonic
increasing in parameter p (at s) on region R, denoted Prs→T ↑ℓ,Rp , if ∀u ∈ R:




∑

s′∈succ(s)

(
∂

∂p
P(s, s′)

)

· Prs
′→T



 (u) ≥ 0.

Locally monotonic decreasing, denoted Prs→T ↓ℓ,Rp , is defined analogously (≤ 0).
Thus, while global monotonicity considers the derivative of the full solution
function, local monotonicity only considers the derivative of the first transition.

Example 7. For state s0 in Fig. 1(b), we compute:

(
∂

∂p
p

)

· Prs1→T +

(
∂

∂p
(1− p)

)

· Prs2→T = 1 ·
(
p+ (1− p)·p

)
− 1 · p = p− p2.

By checking for which instantiations this function is non-negative, we obtain
that s0 is locally monotonic increasing on any graph-preserving R. Similar com-
putations show that s1 and s2 are locally monotonic increasing. In Fig. 1(c),
s1 is locally monotonic increasing, s2 is locally monotonic decreasing, and s0 is
neither locally monotonic increasing nor decreasing.

Observe that non-parametric states are monotonic increasing and decreasing in
any parameter. Reachability orders may induce local monotonicity:

Lemma 1. Let succ(s) = {s1, . . . , sn}, P (s, si) = fi and ∀j > i.sj � si. Then:

Prs→T ↑ℓ,Rp iff ∃i ∈ [1, . . . , n].
(

∀j ≤ i. fj↑
R
p and ∀j > i. fj↓

R
p

)

.
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Theorem 2. (

∀s ∈ S.Prs→T ↑ℓ,Rp

)

=⇒ PrsI→T ↑Rp .

Example 8. Consider Fig. 1(b), observe that s2 � s1. Applying Lem. 1 to s0
with monotonic increasing f=p, yields that s0 is locally monotonic increasing.
All states are locally monotonic increasing, thus M2 is (globally) monotonic
increasing.

Sufficient reachability orders. Above, we only regard the reachability or-
der locally, in order to deduce (local) monotonicity. Thus, to deduce (global)
monotonicity from a reachability order, it suffices to compute a subset of the
exhaustive reachability order.

Definition 6 (Sufficient reachability order). Reachability order � is suffi-
cient for s ∈ S if for all s1, s2 ∈ succ(s): (s1 � s2 ∨ s2 � s1) holds. The reach-
ability order is sufficient for M if it is sufficient for all parametric states.

A reachability order � is thus sufficient for s if (succ(s),�) is a total order. A
sufficient reachability order does not necessarily exist.

Example 9. The reachability order in Fig. 2(a) is sufficient for all states. The
reachability order in Fig. 2(c) is not sufficient for s0.

Corollary 1. Given a pMCM s.t. all states s ∈ S have |succ(s)| ≤ 2, and only
monotonic transition functions. If reachability order � is sufficient for s, then
Prs→T is locally monotonic increasing/decreasing on region R in all parameters.

The proof follows immediately from Def. 6 and Lem. 1. A similar statement holds
for the general case with arbitrarily many successors. The reachability order �
is called a witness for monotonicity of parameter p on R whenever either all
states are locally increasing or all are locally decreasing in p. A sufficient � (for
M) does in general not imply global monotonicity ofM.

Example 10. While the order shown in Fig. 2(a) is sufficient for pMC M1

(Fig. 1(a)), M1 is not monotonic: state s1 is locally increasing, but state s2
is locally decreasing.

We call such reachability orders (with the pMC) inconclusive for p and R.

4 Automatically Proving Monotonicity

In this section, we discuss how to automatically construct a sufficient reachability
order to deduce monotonicity of (some of) the parameters in the given pMC. The
following negative result motivates us to consider a heuristic approach:

Lemma 2. pMC verification is polynomial-time reducible to the decision prob-
lem whether two states are ordered by the exhaustive reachability order.

7



Our algorithmic approach is based on RO-graphs. We first consider how
these graphs can be used to determine monotonicity (Sect. 4). The main part
of this section is devoted to constructing RO-graphs. We start with a basic idea
for obtaining reachability orders for acyclic pMCs (Sect. 4.1). To get sufficient
orders, the algorithm is refined by automatically making assumptions, such as
s � s′ and/or s′ � s (Sect. 4.2). We then describe how these assumptions can be
discharged (Sect. 4.2), and finally extend the algorithm to treat cycles (Sect. 4.3).

Checking monotonicity using a reachability order. The base is to check
whether the RO-graph is a witness for monotonicity. This is done as follows.
Using the RO-graph, we determine global monotonicity of the pMC by checking
each parametric state s for local monotonicity (cf. Thm 2). To decide whether
s is local monotonic, we consider the ordering of its direct successors and the
derivatives of the probabilistic transition functions and apply Lem. 1.

4.1 Constructing reachability orders

Our aim is to construct a (not necessarily sufficient) reachability order from
the graph structure of a pMC. Let us introduce some standard notions. For
reachability order � and X ⊆ S, ub(X) = {s ∈ S | X � s} and lb(X) = {s ∈
S | s � X} denote the upper and lower bounds of X . As � S and S � , these
sets are non-empty. Furthermore, let min(X) = {x ∈ X | 6 ∃x′ ∈ X.x′ � x}, and
max(X) = {x ∈ X |6 ∃x′ ∈ X.x � x′}. If (X,�) is a lattice, then it has a unique
minimal upper bound (and maximal lower bound). Then:

Lemma 3. For s ∈ S, either succ(s) ⊆ [s] or lb(succ(s)) ≺ s ≺ ub(succ(s)).

The first case essentially says that if ∃s′ ∈ succ(s) with succ(s) ⊆ [s′], then
also s ∈ [s′]. Lem. 3 enables to construct reachability orders:

Example 11. Reconsider the pMCM1 from Fig. 1(a). Clearly ≺ . Now con-
sider the pMC in reverse topological order (from back to front). We start with
state s2. By Lem. 3, we conclude ≺ s2 ≺ . Next, we consider s1, and analo-
gously conclude s2 ≺ s1 ≺ . Finally, considering s0 gives succ(s0) ⊆ [s1] thus,
s0 ∈ [s1]. The resulting (exhaustive) reachability order is given in Fig. 2(a).

This reasoning is automated by algorithm Alg. 1. It takes as input an acyclic
pMC and iteratively computes a set of reachability orders, starting from the
trivial order ≺ . In fact, it computes annotated orders (A,�A) where A
is a set of assumptions of the form s � s′. At this stage, the assumptions are
not relevant and not used; they become relevant in Sect. 4.2. The algorithm
uses a Queue storing triples consisting of 1) annotations, 2) the order so far,
and 3) the remaining states to be processed. The queue is initialised (l. 1) with
no annotations, the order ≺ , and the remaining states. In each iteration,
an order is taken from the queue. If all states are processed, then the order is
completed (l. 5). Otherwise, some state s is selected (l. 7) to process, and after
a possible extension, the queue is updated with the extended order (l. 12). The
states are selected in reverse topological order. Thus, when considering state s,

8



Algorithm 1 Construction of an RO-graph

Input: Acyclic pMCM = (S, sI , T , V ,P)
Output: Result = a set of annotated orders �A (represented as their RO-graph)
1: Result ← ∅, Queue ← (A : ∅,≺ : {( , )}, S′ : S \ { , })
2: while Queue not empty do
3: A,�A, S′ ← Queue.pop()
4: if S′ = ∅ then
5: Result ← Result ∪ {(A,�A)}.
6: else
7: select s ∈ S′ with s topologically last
8: if ∃s′ ∈ succ(s) s.t. succ(s) ⊆ [s′] then
9: extend RO-graph(�A) with: s ≡ succ(s)

10: else
11: extend RO-graph(�A) with all:

s ≺A min ub(succ(s)) and max lb(succ(s)) ≺A s

12: Queue.push(A,�A, S′ \ {s})
13: return Result

all states in succ(s) have been considered before. Using Lem. 3, either s belongs
to an already existing equivalence class (l. 9), or it can be added between some
other states (l. 11). In both cases, the RO-graph of the order � is extended
(where l. 9 uses the extension of � to equivalence classes). As assumptions are
not used, Alg. 1 in fact computes a single reachability order; it runs linear in the
number of transitions.

Lemma 4. Algorithm 1 returns a set with one reachability order.

Even if there exists a sufficient reachability order for region R, Alg. 1 might not
find such an order, as the algorithm does not take into account R at all — it
is purely graph-based. Alg. 1 does obtain a sufficient reachability order if for all
(parametric) states s ∈ S, succ(s) is totally ordered by the computed �.

4.2 Making and discharging assumptions

Next, we aim to locally refine our RO-graph to obtain sufficient reachability
orders. Therefore, we exploit the annotations (called assumptions) that were
ignored so far. Recall from Def. 6 that a reachability order is not sufficient at a
parametric state s, if its successors s1 and s2, say, are not totally ordered. We
identify these situations while considering s in Alg. 1. We then continue as if the
ordering of s1 and s2 is known. By considering all possible orderings of s1 and
s2, we remain sound. The fact that parametric states typically have only two
direct successors (as most pMCs are simple [15,34]) limits the number of orders.

Example 12. Consider the pMC in Fig. 3(a). Assume that Alg. 1 yields the RO-
graph in Fig. 3(b), in particular s4 ≺ s5. Alg. 1 cannot order the successors
of state s1. But any region can be partitioned into three (potentially empty)
subregions: A region with s2 ≺ s3, a region with s2 ≡ s3, and a region with

9
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(c) RO-graphs for the assumptions made by Algorithms 1+2

Fig. 3. Illustrating the use of assumptions

s3 ≺ s2. We below adapt Alg. 1 such that, instead of adding s1 between s4 and
s5(l. 11), we create three copies of the reachability order. In the copy assuming
s2 ≺ s3 we can order s1 as in Fig. 3(c). The other copies reflect s3 ≺ s2 and
s2 ≡ s3, respectively.

Below, we formalise and automate this. Let A = (A≺,A≡) be a pair of sets of
assumptions such that (s, t) ∈ A≺ means s ≺ t while (s, t) ∈ A≡ means s ≡ t.

Definition 7 (Order with assumptions). Let � be a reachability order, and
A = (A≺,A≡) a pair with assumptions A≺,A≡ ⊆ S×S. Then (�A,A) is called
an order with assumptions where �A =

(
� ∪A≺ ∪ A≡

)∗
.

The next result asserts that the pre-order �A is a reachability order if all as-
sumptions conform to the ordering of the reachability probabilities.

Lemma 5. If assumptions A = (A≺,A≡) satisfy:

(s, t) ∈ A≺ implies ∀u ∈ R. Prs→T (u) < Prt→T (u), and

(s, t) ∈ A≡ implies ∀u ∈ R. Prs→T (u) = Prt→T (u),

then �A is a reachability order, and we call A (globally) valid.

Algorithm 2 adds assumptions to the reachability order. It comes before Line 11
of Alg. 1. If the reachability order �A contains two incomparable successors s1
and s2 of state s, we make three different assumptions: In particular, we assume
either s1 ≺A s2, s2 ≺A s1, or s1 ≡A s2. We then put the updated orders in the
queue (without having processed state s). As the states s1, s2 were incomparable,
the assumptions are new and do not contradict with the order so far.

The algorithm does not remove states from the queue if their successors are
not totally ordered. Consequently, we have:

Theorem 3. For every order with assumptions (�A,A) computed by
Algorithm 1+2. Then: if �A is a reachability order, then it is sufficient.

10



Algorithm 2 Assumption extension (put before l. 11 in Alg. 1).

1: if �A is not a total order for succ(s) then
2: pick s1, s2 ∈ succ(s) s.t. neither s1 �

A s2 nor s2 �
A s1

3: Queue.push((A≺ ∪ {(s1, s2)},A≡),�
A extended with s1 ≺ s2, S

′)
4: Queue.push((A≺ ∪ {(s2, s1)},A≡),�

A extended with s1 ≡ s2, S
′)

5: Queue.push((A≺,A≡ ∪ {(s1, s2)}),�
A extended with s2 ≺ s1, S

′)
6: continue

Discharging assumptions Algorithm 1+2 yields a set of orders. By Thm. 3,
each order ≺A is a (proper) reachability order if the assumptions in A are valid.

The following result states that the assumptions can sometimes be ignored.

Theorem 4. If all orders computed by Algorithm 1+2 are witnesses for a pa-
rameter to be monotonic increasing (decreasing), then the parameter is indeed
monotonic increasing (decreasing).

This can be seen as follows. Intuitively, a region R is partitioned into (possibly
empty) regions RA for each possible set of assumptions A. If on each region RA

the order �A is a witness for monotonicity (and all witnesses agree on whether
the parameter is ↑R or ↓R), then the parameter is monotonic on R.

If Thm. 4 does not apply, we establish whether or not assumptions are valid
on R in an on-the-fly manner, as follows: Let (�A,A) be the current order, and
suppose we want to check whether s1 ≺ s2 is a new assumption. If the outcome is
s1 ≺ s2, then we extend the RO-graph with s1 ≺ s2, do not add this assumption,
and ignore the possibilities s1 ≡ s2 and s2 ≺ s1. If s1 6� s2, we do not assume
s1 ≺ s2 (and ignore the corresponding order). Both cases prune the number of
orders. In case of an inconclusive result, s1 ≺ s2 is added to A≺.

To check whether s1 ≺ s2 we describe three techniques.

Using a local NLP. The idea is to locally (at s1 and s2) consider the pMC
and its characterising non-linear program (NLP) [4, 5, 15, 19], together with the
inequalities encoded by �A. To refute an assumption to be globally valid, a
single instantiation u refuting the assumption suffices. This suggests to let a
solver prove the absence of such an instantiation u by considering a fragment of
the pMC (see Example 14, Appendix B). If successful, the assumption is globally
valid. Otherwise, we don’t know: the obtained instantiation u might be spurious.

Using model checking. This approach targets to cheaply disprove assumptions.
We sample the parameter space at suitable points (as in e.g. [9, 13]), and re-
duce the amount of solver runs, similar to [19]. In particular, we instantiate the
pMC with instantiations u from a set U , and evaluate the (parameter-free) MC
M[u] via standard model checking. This sampling yields reachability probabil-
ities PrsM[u](♦T ) for every state s, and allows to disprove an assumption, say
s1 ≺ s2, by merely looking up whether Prs1M[u](♦T ) ≥ Prs2M[u](♦T ) for some
u ∈ U .

Using region checking. Region verification procedures (e.g. parameter lifting [41])
consider a region R, and obtain for each state s an interval [as, bs] s.t.

11
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(a) M4
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(b) M4 after SCC elimination

Fig. 4. An example pMC consisting of a single SCC

PrsM[u](♦T ) ∈ [as, bs] for all u ∈ R. Assumption s1 ≺ s2 can be proven by
checking bs1 ≤ as2 .

4.3 Treating cycles

So far, we considered acyclic pMCs. We use two techniques to treat cycles.

SCC elimination [31] contracts each SCC into a set of states, one for each entry
state of the SCC. Fig. 4(b) shows the pMC of Fig. 4(a) after SCC elimination.

Cycle-breaking. If SCC elimination is not viable, we use an alternative. The
following analogue to Lem. 3 is insightful and tailored to simple pMCs.

Lemma 6. For any state s with succ(s) = {s1, s2} the following holds: 1. if
s1 ≡ s, then s2 ≡ s, 2. if s1 ≺ s, then s ≺ s2, 3. if s ≺ s1, then s2 ≺ s.

This suggests to take state s on a cycle and insert it into the RO-graph computed
so far, which is always (trivially) possible, and then adding further states using
Lem. 6. We illustrate this idea by an example.

Example 13. Reconsider Fig. 4(a). Lem. 3 does not give rise to extending the
trivial order ≺ . To treat the cycle, one of the states s0, s1 or s2 is to be
added. Selecting s0 yields (as for any other state) ≺ s0 ≺ . To order s1 or
s2, Lem. 3 is (still) not applicable. Using ≺ s0, Lem. 6 applied to s1 yields
s0 ≺ s1. For s2, we obtain s1 ≺ s2 in a similar way.

The strategy is thus to successively pick states from a cycle, insert them into
the order � so far, and continue this procedure until all states on the cycle are
covered (by either Lem. 3 or 6). The extension to Alg. 1+2 is given in Appendix B.
We emphasise that Theorems 3 and 4 also apply to this extension.

It remains to discuss: how to decide which states to select on a cycle? This
is done heuristically. A good heuristic selects states that probably lead to cycle
“breaking”. The essential criteria that we empirically determined are: take cycles
in SCCs that are at the front of the reverse topological ordering of SCCs, and
prefer states with successors outside the SCC (as in the above example).

5 Experimental Evaluation

We realised a prototype of the algorithm from Sect. 4 on top of Storm (v1.3) [20]
and evaluated two questions. To that end, we took all ten benchmarks sets

12



Table 1. Automatically inferring monotonicity

benchmark instance A/C |V | #states #trans monotonic
model

building
mon.
check

sol.
func.

brp

[17]

(2,16)
A 2

613 803
↓pK , ↓pL

< 1 < 1 < 1

(10,2048) 45059 90115 6 1 MO

(15,4096) 131075 262147 16 13 MO

crowds

[42]

(5,6)
C 2

18817 32677
↑badC , ↑pF

< 1 1 < 1

(10,6) 352535 722015 6 1 < 1

(20,6) 10633591 27151191 232 1 < 1

gambler

[12]

(14800,1480)
C 1

16281 32560
↑p

< 1 1 TO

(29600,2960) 32561 65120 < 1 6 TO

(59200,5920) 65121 130240 2 21 TO

mes. auth.

[21]

(3840)
A 2

19201 30720
↑p, ↑q

3 < 1 < 1

(7680) 38401 61440 4 < 1 < 1

(15360) 76801 122880 4 < 1 < 1

zeroconf

[7]

(6400)
C 2

6404 12805
↑p, ↑q

< 1 < 1 1090

(25600) 25604 51205 < 1 < 1 TO

(102400) 102404 204805 3 3 TO

with pMCs and non-trivial reachability properties from the PARAM website [1],
and from [28], and [12]. The benchmark sets egl [37], craps [4], nand [39] and
herman [29, 38] are not monotonic. Their non-monotonicity can be shown by
uniformly taking 100 samples on the parameter space. The benchmark haddad-

monmege [25] contains only a single non-sink state after preprocessing, it is
trivially monotonic. All experiments ran on a MacBook ME867LL/A. We use a
12 GB memory-out (MO), and a 4h time-out (TO).

Can the algorithm determine monotonicity on the benchmarks? We
consider the performance of the proposed algorithm. First and foremost, for all
six benchmark sets with monotonic parameters, the algorithm automatically and
without user interference determines monotonicity.

Table 1 presents details: it lists the benchmark and their instances. We then
list whether the pMC is acyclic (A) or cyclic (C), the number |V | of parameters,
and the size of the pMC. The column monotonic gives the obtained results for
the pMC parameters. Model building includes the time for construction, default
preprocessing by Storm, and bisimulation minimisation. Mon. check shows tim-
ings for inferring monotonicity from the built model. To place these numbers
in perspective, column sol. func shows the time to obtain the solution function
from the built model by Storm (default settings, same preprocessing, based on
the implementation in [19]). These times are a lower bound on the time to show
monotonicity via the solution function. Timings for taking the derivative and
analysing this derivative via an SMT solver are omitted (but significant).

The proposed method quickly determines monotonicity. For (only) crowds,
the method applies an essential SCC elimination on the various smaller SCCs.
For the available benchmarks, the method computes a single reachability order.
Unsurprisingly, the method is orders of magnitude faster and scales better than
obtaining monotonicity from the solution function. Naturally, our algorithm can-
not establish monotonicity on all cases. The algorithm has difficulties handling
subregions on non-monotonic benchmarks. Take Herman: The solution function
has (up to) three local extrema [38]. On subregions, however, the graph structure
easily induces inconclusive orders. A tighter integration with region verification,
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Fig. 5. What coverage (x-axis) in how much time (y-axis)? when using PLA (dotted)
or Monotonicity/Sampling (solid) . The two colours indicate two different thresholds.

partially applied state elimination, or using a notion of multi-step local mono-
tonicity (used in the proof of Thm. 2) are avenues for improvement.

Does monotonicity allow for faster parameter synthesis? We consider
three variants of parameter synthesis in the presence of monotonicity:

Feasibility: i.e., is there an instantiation for which a specification ϕ is satisfied?
becomes mostly trivial in the presence of monotonicity. For simple pMCs, a
single parameter-free MC evaluation suffices, which is clearly superior to other—
typically sampling-based—approaches [13, 15].

Region verification: i.e., do all parameter values within a region satisfy ϕ? is
similarly trivialised for regions given as linear polyhedra. For our benchmarks,
PLA [41]—approximating region verification by MDP model checking—is very
competitive. In particular, PLA does not over-approximate on locally monotonic
pMCs, and needs no refinements (the reverse does not hold: even for tight bounds,
one cannot infer monotonicity with PLA). Thus, whereas sampling checks a
single MC, PLA checks one MDP. Typically, the MC can be checked ∼20%
faster.

Parameter space partitioning: this procedure, implemented in PROPhESY, Storm,
and PARAM, iteratively divides a region into subregions that satisfy ϕ or ¬ϕ,
respectively. We implemented an alternative prototype based on sampling and ex-
ploiting monotonicity: therefore, region splits can be taken much more informed.
We compared to Storm (using PLA). Fig. 5 (log-log scale) displays cumulative
model-checking runtimes to achieve a given coverage. Obtaining a coverage up
to 90% is trivial. For higher coverage, our method is (on crowds and zeroconf)
up to an order of magnitude faster, due to less model-checking calls. This trend
is independent of the threshold. We see some room for improvement by a more
sophisticated selection of samples, and by speeding up the sampling [23].

6 Related Work

Monotonicity. Monotonicity in MCs goes back to Daley [16], aiming to bound
stationary probabilities of a stochastically monotone MC by another MC. These
stochastic orderings ≤st require ordered rows in the matrix P , and are quite
different from reachability orders. MCs can be compared if P is monotone w.r.t.
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≤st for all probability vectors. Such orderings have been used for multi-valued
model checking of interval MCs [26], but not applied to pMCs.

Pre-orders. A never-worse relation (NWR) on MDP states [6, 43] is similar in
spirit to reachability orders: states are ordered according to their maximal reach-
ability probabilities but without taking the probabilities into account. Dependen-
cies between the state probabilities are thus not taken into account. Like in our
setting, computing the NWR is based on the graph structure. Its usage how-
ever is quite different, reducing the size of the MDP prior to model checking.
NWR captures most heuristics to reduce the MDP before linear programming
or value iteration. The coNP-completeness [43] indicates that checking this order
is simpler than our pre-order unless coETR and coNP coincide.

Monotonicity in parameter synthesis. Parameter lifting [41] exploits a form of
local monotonicity to remove parameter dependencies in a pMC. (A similar obser-
vation for continuous-time MCs was made in [8].) The resulting monotonic pMC
is replaced by an MDP that over-approximates the original pMC. No efforts are
made to determine global monotonicity. Interval MCs [11,32] lack dependencies,
thus all states are locally monotonic (but it remains unclear whether they are
monotonically increasing or decreasing). Monotonicity also affects complexity.
Hutschenreiter et al. [30] recently showed that the complexity of model checking
(a monotone fragment of) PCTL on monotonic pMC is lower than PCTL model
checking on general pMCs. They use a very restrictive sufficient criterion for a
pMC to be monotonic: This includes none of the pMCs considered in this paper.
Monotonicity has also been considered in the context of model repair. Pathak et
al. [40] provide an efficient greedy approach to repair monotonic pMCs3. Recently,
Gouberman et al. [24] show that particular perturbations of direct predecessors
of or in a continuous-time MC are monotonic in the perturbation factor.

7 Conclusion and Future Work

We proposed a method that automatically infers the monotonicity of pMCs from
the literature. To the best of our knowledge, our paper is the first automated pro-
cedure for determining monotonicity. Future work includes a tighter integration
with parameter synthesis, and extensions to pMDPs and rewards.
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44. Winkler, T., Junges, S., Pérez, G.A., Katoen, J.: On the complexity of reachability
in parametric markov decision processes. CoRR abs/1904.01503 (2019)

17



M′

M

sI

A B

C

λ

1− λ

1

1

Fig. 6. Outline of the construction for the proof of Lem. 2

A Proofs

A.1 Proof of Theorem 1 and Lem. 2

Reductions are many-to-one reductions. The proofs use notions from Sect. 3.
We use the following formal definition of the decision problems:

– (pMC-V)Given a pMCM with a threshold λ ∈ [0, 1], and a graph-preserving
region R, does Prs→T

M (u) ≥ λ hold for all u ∈ R?
– (pMC-RO) Given a pMC M with a graph-preserving region R, and two

states s1 and s2, does s1 �R,T s2 hold, where �R,T denotes the exhaustive
reachability order?

– (pMC-Mon) Given a pMC M with a parameter p ∈ V , and a graph-
preserving region R, does M↑Rp hold?

Theorem 1. pMC verification4 is polynomial-time reducible to the decision prob-
lem whether a pMC is monotonic.

Lemma 2. pMC verification is polynomial-time reducible to the decision prob-
lem whether two states are ordered by the exhaustive reachability order.

With that Lem. 2 thus states that pMC-V is reducible to pMC-RO, and
Theorem 1 states that pMC-V is reducible to pMC-Mon.

Proof (of Lem. 2). Given an instance of pMC-V, we construct an instance of
pMC-RO as follows (see also Fig. 6): We construct a newM′ = (S′, sI

′, T ′, V ′,P ′)
by takingM = (S, sI , T , V ,P) and adding an (unconnected) gadget consisting
of three states A,B,C. Let B,C be sink states. We add a transition from A to
B with probability λ. Formally:

– S′ = S ⊎ {A,B,C}
– s′

I
= sI

4 The complement of the parameter feasibility problem.

18



M′

M

s1

s2

D

1− p

p

Fig. 7. Outline of the construction for the proof of Lem. 7

– T ′ = T ∪ {B}
– V ′ = V

– P ′(s, s′) =







P(s, s′) if s, s′ ∈ S

λ if s = A, s′ = B

1− λ if s = A, s′ = C

1 if s = s′ = B

1 if s = s′ = C

0 otherwise

States s1 and s2 now correspond to A and sI , respectively. This transformation
clearly is in polynomial time.

Now, the probability to reach the target from A is λ for any parameter
instantiation. Thus, A ≺ sI iff PrsI→T

M (u) ≥ λ for all u ∈ R. ⊓⊔

We now turn our attention to Theorem 1. We first show:

Lemma 7. pMC-RO is polynomially reducible to pMC-Mon.

Proof. Given an instance of pMC-RO, with a graph-preserving region R, and
two states s1 and s2, we construct an instance of pMC-Mon as follows. For
M = (S, sI , T , V ,P), we construct M′ = (S′, sI

′, T ′, V ′,P ′) by extending M,
see also Fig. 7. We introduce a fresh variable p and a fresh initial state D, and
connect D with s1 with probability 1 − p, and D with s2 with probability p.
Formally:

– S′ = S ⊎ {D}
– s′

I
= D

– T ′ = T
– V ′ = V ⊎ {p}

– P ′(s, s′) =







P(s, s′) if s, s′ ∈ S

1− p if s = D, s′ = s1

p if s = D, s′ = s2

0 otherwise

s
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States s1 and s2 now correspond to A and sI from the previous reduction proof.
This transformation clearly is in polynomial time.

First assume s1 � s2: Then, for any instantiation u ∈ R s.t. Prs1→T
M (u) ≤

Prs2→T
M (u). Clearly, increasing p then increases PrD→T

M′ (u), soM′ is monotonic
increasing in p on R.

Now assume s1 6� s2: Then, there is an instantiation u ∈ R s.t. Prs1→T
M (u) ≥

Prs2→T
M (u). This even holds when varying p, as Prs1→T

M (u), Prs2→T
M (u) are inde-

pendent of p. We observe that for this instantiation u increasing p decreases the
value of PrD→T

M′ (u), soM′ is not monotonic increasing in p.
⊓⊔

Theorem 1 is now an immediate corollary to Lemmas 2 and 7.

A.2 Proof of Lem. 1

We prove Lemma 8, which is Lemma 1 restricted to two successors. We then
sketch the proof for the case with three successors (n = 3). Lemma 1 can be
proven for any other n > 3 in a similar manner.

Lemma 8. Let s ∈ S with succ(s) = {s1, s2} and s2 � s1. Furthermore let
P(s, s1) = f and P(s, s2) = 1− f for f ∈ Q[V ]. Then for any parameter p:

Prs→T ↑ℓ,Rp iff f↑Rp .

Proof (Lem. 8).

Prs→T ↑ℓ,Rp

Def. 5
⇐⇒




∑

s′∈succ(s)

Prs
′→T ·

∂

∂p
P(s, s′)



 (u) ≥ 0 ∀u ∈ R

⇐⇒

(

Prs1→T ·
∂

∂p
f + Prs2→T ·

∂

∂p
(1− f)

)

(u) ≥ 0 ∀u ∈ R

⇐⇒
∂

∂p
f(u) ·

(

Prs1→T − Prs2→T
)

(u)
︸ ︷︷ ︸

≥0 as s2�s1

≥ 0 ∀u ∈ R

⇐⇒
∂

∂p
f(u) ≥ 0 ∀u ∈ R.

⊓⊔

Lemma 1. Let succ(s) = {s1, . . . , sn}, P (s, si) = fi and ∀j > i.sj � si. Then:

Prs→T ↑ℓ,Rp iff ∃i ∈ [1, . . . , n].
(

∀j ≤ i. fj↑
R
p and ∀j > i. fj↓

R
p

)

.

For the case with n = 3 we have:

Prs3→T ≤ Prs2→T ≤ Prs1→T as s3 � s2 � s1, and

(f1 + f2 + f3)(u) = 1 as the valuation should be well-defined.
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We have to prove that:

Prs→T ↑ℓ,Rp

Lem. 1
⇐⇒







f1↑R, f2↓R and f3↓R (i = 1), or

f1↑R, f2↑R and f3↓R (i = 2), or

f1↑
R, f2↑

R and f3↑
R (i = 3).

We have to show (Def. 5):




∑

s′∈succ(s)

Prs
′→T ·

∂

∂p
P(s, s′)



 (u) ≥ 0 ∀u ∈ R

For i = 1 we make the following observation:




∑

s′∈succ(s)

Prs
′→T ·

∂

∂p
P(s, s′)



 (u)

=

(

Prs1→T ·
∂

∂p
f1 + Prs2→T ·

∂

∂p
f2 + Prs3→T ·

∂

∂p
f3

)

(u)

=

(

Prs1→T ·
∂

∂p
(1 − f2 − f3) + Prs2→T ·

∂

∂p
f2 + Prs3→T ·

∂

∂p
f3

)

(u)

=
∂

∂p
f2(u) ·

(

Prs2→T − Prs1→T
)

(u) +
∂

∂p
f3(u) ·

(

Prs3→T − Prs1→T
)

(u)

We observe that:

∂

∂p
f2(u)

︸ ︷︷ ︸

≤0

·
(

Prs2→T − Prs1→T
)

(u)
︸ ︷︷ ︸

≤0

+
∂

∂p
f3(u)

︸ ︷︷ ︸

≤0

·
(

Prs3→T − Prs1→T
)

(u)
︸ ︷︷ ︸

≤0

≥ 0

From this, it follows that Lem. 1 holds if the condition for i = 1 holds. The
second case is proved in a similar manner.

For i = 3 we observe the following:

∂

∂p
(f1 + f2 + f3)(u) =

∂

∂p
1 = 0

Therefore, not all derivatives can be negative.
For n > 3 the proof follows in a similar way.
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A.3 Proof of Theorem 2

Theorem 2.
(

∀s ∈ S.Prs→T ↑ℓ,Rp

)

=⇒ PrsI→T ↑Rp .

In order to proof Theorem 2, we first introduce the notion of paths in pMCs,
and provide two auxiliary Lemma’s on paths. Then we lift local monotonicity
(Def. 5) to local monotonicity for n steps.

An infinite path of a pMCM is a non-empty infinite sequence π = s0s1s2 . . .
of states si ∈ S such that P(si, si+1) > 0 for i ≥ 0. A finite path of a pMC M
is a finite, non-empty prefix of an infinite path inM. We define the length of a
finite path |π| = n for π = s0s1 . . . sn, and let πi be the ith state of a path. Let
Paths

n(s) (Paths(s)) be the set of all finite paths with length n (infinite paths)

starting from state s ∈ S. Let Pr(π) =
∑n−1

i=0 P(si, si+1) be the probability of
a finite path π = s0s1 . . . sn. This can be lifted to the probability of an infinite
path via a cylinder set construction [4].

For a finite path π = s0s1 . . . sn we let [π |= ♦T ] be 1 if there exists a state
si such that si ∈ T , and 0 otherwise.

From this we observe that for any s ∈ S:

Prs→T (u) =
∑

π∈Paths(s)

Pr(π) · [π |= ♦T ].

Let Z ⊆ S be the set of zero states (∀s ∈ Z.Prs→T = 0). Observe that if
[π |= ♦T ] = 1 ([π |= ♦Z] = 1) then [π |= ♦Z] = 0 ([π |= ♦T ] = 0). We can write
the set of paths from s ∈ S as the union of three disjoint sets.

Lemma 9. Let Pathsn(s) = Paths
n
T (s)∪Paths

n
Z(s)∪Paths

n
? (s) where Paths

n
T (s),

Paths
n
Z(s), and Paths

n
? (s) are disjoint, and

– Paths
n
T (s) = {Paths

n(s) |π |= ♦T } ,

– Paths
n
Z(s) = {Paths

n(s) |π |= ♦Z} , and

– Paths
n
? (s) = {Paths

n(s) |π 6|= ♦T ∧ π 6|= ♦Z}.

By definition of T (Z), we obtain for Paths
n
T (s) (PathsnZ(s)): Prπn→T = 1

(Prπn→T = 0). In a similar way, we can split the infinite paths. Observe that
Paths?(s) = ∅.

Lemma 10. Let Paths(s) = PathsT (s)∪PathsZ(s)∪Paths?(s) where PathsT (s),
PathsZ(s), and Paths?(s) are disjoint, and

– PathsT (s) = {Paths(s) |π |= ♦T },

– PathsZ(s) = {Paths(s) |π |= ♦Z}, and

– Paths?(s) = {Paths(s) |π 6|= ♦T ∧ π 6|= ♦Z} = ∅.
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Definition 8 (Locally monotonic increasing for n steps). Prs→T is lo-
cally monotonic increasing for n steps in parameter p (at s) on region R, denoted
Prs→T ↑ℓ,n,Rp , if for all u ∈ R:




∑

π∈Paths
n
(s)

(
∂

∂p
Pr(π)

)

· Prπn→T



 (u) ≥ 0.

Locally monotone decreasing for n steps, denoted Prs→T ↓ℓ,n,Rp , is defined anal-
ogously.

We observe that for n = 1, Def. 8 corresponds to Def. 5.

Proof (Theorem 2). We showcase the proof for ∀s ∈ S.|succ(s)| ≤ 2. The general
case can be shown analogously.

We want to show:

(

∀s ∈ S.Prs→T ↑ℓ,Rp

)

=⇒ Prs→T ↑Rp .

To that end, we make the following claims:

(

∀s ∈ S.Prs→T ↑ℓ,Rp

)

=⇒ lim
n→∞

(

Prs→T ↑ℓ,n,Rp

)

(1)

and

lim
n→∞








∑

π∈Paths
n
(sI )

(
∂

∂p
Pr(π)

)

· Prπn→T



 (u)



 ≥ 0

=⇒
∂

∂p




∑

π∈Paths(sI )

Pr(π) · [π |= ♦T ]



(u) ≥ 0 (2)

Then we derive:

(

∀s ∈ S.Prs→T ↑ℓ,Rp

)
Eq. (1)
=⇒ lim

n→∞

(

Prs→T ↑ℓ,n,Rp

)

Def. 8
=⇒ lim

n→∞








∑

π∈Paths
n
(sI )

(
∂

∂p
Pr(π)

)

· Prπn→T



 (u)



 ≥ 0

Eq. (2)
=⇒

∂

∂p




∑

π∈Paths(sI )

Pr(π) · [π |= ♦T ]



(u) ≥ 0
Def. 1
⇐⇒ Prs→T ↑Rp

It remains to show our claims.
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Proof of (1). By induction on n we show:

(

∀s ∈ S.Prs→T ↑ℓ,Rp

)

=⇒ ∀n.Prs→T ↑ℓ,n,Rp .

Furthermore, we observe that:

(

∀n.Prs→T ↑ℓ,n,Rp

)

=⇒ lim
n→∞

Prs→T ↑ℓ,n,Rp

Base case: n = 1. This immediately follows from Def. 5.
Induction step: Assume that for n ≤ k, the following holds:

(

∀s ∈ S.Prs→T ↑ℓ,Rp

)

=⇒ PrsI→T ↑ℓ,n,Rp . (IH)

We want to show for n = k + 1:

(

∀s ∈ S.Prs→T ↑ℓ,Rp

)

=⇒ Prs→T ↑ℓ,k+1,R
p .

Let π = π′πk+1. From Def. 8 we obtain:

Prs→T ↑ℓ,k+1,R
p ⇐⇒ ∀u ∈ R.






∑

π∈Paths
k+1

(s)

(
∂

∂p
Pr(π)

)

· Prπk+1→T




 (u) ≥ 0.

As we are only considering graph-preserving valuations (and assume at most 2
successors), we distinguish two cases. If πk has one successor, then P(πk, πk+1) =
1. Therefore, Prπk→T = Prπk+1→T . For this the induction step holds. If πk has
two successors, then πk+1 ∈ {s1, s2}. Let P(πk, s1) = f , and P(πk, s2) = 1 − f .
As Prπk→T ↑ℓ,Rp , we obtain s2 � s1 and f↑Rp .
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∑

π∈Paths
k+1

(
∂

∂p
Pr(π)

)

· Prπk+1→T

=
∑

π′∈Paths
k

(
∂

∂p
(f · Pr(π′))

)

· Prs1→T +

(
∂

∂p
((1− f) · Pr(π′))

)

· Prs2→T

Chain Rule
=

∑

π′∈Paths
k

((
∂

∂p
f

)

· Pr(π′) +

(
∂

∂p
Pr(π′)

)

· f

)

· Prs1→T

+

((
∂

∂p
(1− f)

)

· Pr(π′) +

(
∂

∂p
Pr(π′)

)

· (1− f)

)

· Prs2→T

=
∑

π′∈Paths
k

Pr(π′) ·

((
∂

∂p
f

)

· Prs1→T +

(
∂

∂p
(1− f)

)

· Prs2→T

)

+

((
∂

∂p
Pr(π′)

)

· f · Prs1→T

)

+

((
∂

∂p
Pr(π′)

)

· (1− f) · Prs2→T

)

=
∑

π′∈Paths
k

Pr(π′) ·

((
∂

∂p
f

)

· Prs1→T +

(
∂

∂p
(1− f)

)

· Prs2→T

)

+

((
∂

∂p
Pr(π′)

)

· Prπk→T

)

︸ ︷︷ ︸

(f ·Prs1→T+(1−f)·Prs2→T )=Prπk→T

=
∑

π′∈Paths
k

Pr(π′) ·

((
∂

∂p
f

)

· Prs1→T +

(
∂

∂p
(1− f)

)

· Prs2→T

)

︸ ︷︷ ︸

≥0 as s2�s1 and f↑ℓ,R
p

+
∑

π′∈Paths
k

((
∂

∂p
Pr(π′)

)

· Prπk→T

)

︸ ︷︷ ︸

≥0 follows from (IH)

Proof of (2). We show the stronger statement:

lim
n→∞

(
∑

π∈Paths
n

(
∂

∂p
Pr(π)

)

· Prπn→T

)

=
∂

∂p




∑

π∈Paths

Pr(π) · [π |= ♦T ]



 (3)

We observe that:

lim
n→∞




∑

π∈Paths
n

?

(
∂

∂p
Pr(π)

)

· Prπn→T



 = 0.
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We outline the steps below:

lim
n→∞




∑

π∈Paths
n

(
∂

∂p
Pr(π)

)

· Prπn→T





= lim
n→∞

( ∑

π∈Paths
n

T

(
∂

∂p
Pr(π)

)

· Prπn→T

+
∑

π∈Paths
n

?

(
∂

∂p
Pr(π)

)

· Prπn→T
)

= lim
n→∞




∑

π∈Paths
n

T

(
∂

∂p
Pr(π)

)

· Prπn→T





=
∑

π∈PathsT

(
∂

∂p
Pr(π)

)

· [π |= ♦T ]

=
∂

∂p




∑

π∈PathsT

Pr(π) · [π |= ♦T ]



 as [π |= ♦T ] = 1

=
∂

∂p




∑

π∈Paths

Pr(π) · [π |= ♦T ]





⊓⊔

A.4 Proof of Lem. 3

Lemma 3. For s ∈ S, either succ(s) ⊆ [s] or lb(succ(s)) ≺ s ≺ ub(succ(s)).

Proof (Lem. 3). To prove Lem. 3 it is sufficient to show:

∃s′ ∈ succ(s).succ(s) ⊆ [s′] and s ∈ [s′]

⇐⇒ ¬ (lb(succ(s)) ≺R,T s ≺R,T ub(succ(s)))

We make the following claim:

s ∈ lb(succ(s)) ∨ s ∈ ub(succ(s)) ⇐⇒ s ∈ lb(succ(s)) ∧ s ∈ ub(succ(s)) (4)
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Then we derive:

∃s′ ∈ succ(s).succ(s) ⊆ [s′] and s ∈ [s′]

⇐⇒ ∀s1, s2 ∈ succ(s).Prs1→T = Prs2→T ∧ Prs→T = Prs1→T

⇐⇒ ∀s′ ∈ succ(s).s ≡ s′

⇐⇒ ∀s′ ∈ succ(s).s � s′ ∧ s′ � s

⇐⇒ s ∈ lb(succ(s)) ∧ s ∈ ub(succ(s))
︸ ︷︷ ︸

ub(X)={s∈S|X�s} and lb(X)={s∈S|s�X}

Eq. (4)
⇐⇒ s ∈ lb(succ(s)) ∨ s ∈ ub(succ(s))

⇐⇒ ¬
(
lb(succ(s)) ≺R,T s

)
∨ ¬
(
s ≺R,T ub(succ(s))

)

⇐⇒ ¬
(
lb(succ(s)) ≺R,T s ≺R,T ub(succ(s))

)

We are left to prove our claim (4):

s ∈ lb(succ(s)) ∨ s ∈ ub(succ(s))

⇐⇒ ∀s′ ∈ succ(s)∀u ∈ R.Prs→T (u) ≤ Prs
′→T (u)

∨ ∀s′ ∈ succ(s).∀u ∈ R.Prs→T (u) ≥ Prs
′→T (u)

⇐⇒ ∀s′ ∈ succ(s).∀u ∈ R.Prs→T (u) = Prs
′→T (u)

︸ ︷︷ ︸

as ∀u∈R.Prs→T (u)=
∑

s′∈succ(s) Pr
s′→T (u)

⇐⇒ ∀s′ ∈ succ(s).∀u ∈ R.Prs→T (u) ≤ Prs
′→T (u)

∧ ∀s′ ∈ succ(s).∀u ∈ R.Prs→T (u) ≥ Prs
′→T (u)

⇐⇒ s ∈ lb(succ(s)) ∧ s ∈ ub(succ(s)).

⊓⊔

A.5 Proof of Lem. 6

Lemma 6. For any state s with succ(s) = {s1, s2} the following holds: 1. if
s1 ≡ s, then s2 ≡ s, 2. if s1 ≺ s, then s ≺ s2, 3. if s ≺ s1, then s2 ≺ s.

Proof (Lem. 6). First of all, we observe that ∀u ∈ R:

Prs→T (u) =
(

P(s, s1) · Pr
s1→T

)

(u) +
(

P(s, s2) · Pr
s2→T

)

(u)

=
(

P(s, s1) · Pr
s1→T

)

(u) +
(

(1− P(s, s1)) · Pr
s2→T

)

(u)

1. s1 ≡ s. That is, ∀u ∈ R.Prs→T (u) = Prs1→T (u). We obtain for each u ∈ R:

Prs→T (u) =
(

P(s, s1) · Pr
s→T

)

(u) +
(

(1− P(s, s1)) · Pr
s2→T

)

(u)

From which follows:
(

(1 − P(s, s1)) · Pr
s→T

)

(u) =
(

(1 − P(s, s1)) · Pr
s2→T

)

(u)

So, ∀u ∈ R.Prs→T (u) = Prs2→T (u). Therefore, s ≡ s2.
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2. s1 ≺ s. That is, ∀u ∈ R.Prs1→T (u) < Prs→T (u). We obtain for eachu ∈ R:

Prs→T (u) <
(

P(s, s1) · Pr
s→T

)

(u) +
(

(1− P(s, s1)) · Pr
s2→T

)

(u)

From which follows:
(

(1 − P(s, s1)) · Pr
s→T

)

(u) <
(

(1 − P(s, s1)) · Pr
s2→T

)

(u)

So, ∀u ∈ R.Prs→T (u) < Prs2→T (u). Therefore, s ≺ s2.
3. s ≺ s1. That is, ∀u ∈ R.Prs→T (u) < Prs1→T (u). We obtain for each u ∈ R:

Prs→T (u) >
(

P(s, s1) · Pr
s→T

)

(u) +
(

(1− P(s, s1)) · Pr
s2→T

)

(u)

From which follows:
(

(1 − P(s, s1)) · Pr
s→T

)

(u) >
(

(1 − P(s, s1)) · Pr
s2→T

)

(u)

So, ∀u ∈ R.Prs→T (u) < Prs2→T (u). Therefore, s ≺ s2. ⊓⊔
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B Full Algorithm

We consolidate the algorithm developed in Sect. 4–4.3, resulting in Alg. 3. To
treat cycles, we can apply Lem. 6 (l. 13-16). Also, we may add a cycle breaking
state s′ to the RO-graph (l. 17-20). If assumptions are needed (l. 21-26), then
we push the three assumptions to the Queue. Therefore, l. 27, should not be
executed, so we continue to the next iteration of the while loop after adding
assumptions (l. 26) At the end, we check for global monotonicity (l. 29-37).

Remark 2. Any extension of an inconclusive ordering (recall Example 10) is
inconclusive too. If the goal is to find a witness for global monotonicity, an
orderings that is inconclusive for every parameter can be immediately discarded.

Discharging assumptions using a local NLP Example 14 showcases how a
local NLP can be used to discharge assumptions.

Example 14. Consider Fig. 3(a) and s2 ≺ s3. Let s4 ≺
A s5. For R = (0.5, 0.8)×

(0.1, 0.3), the satisfiability of the following conjunction is checked, where xi en-
codes the reachability probability from state si:

0.5 < p < 0.8 ∧ 0.1 < q < 0.3 (5)

x2 = p · x4 + (1−p) · x5 (6)

x3 = q · x4 + (1−q) · x5 (7)

0 < x4 < 1 ∧ 0 < x5 < 1 (8)

x4 < x5 (9)

x2 ≥ x3 (10)

Eq. (5) describes the region. Eqs. (6)–(7) encode the reachability probabilities
of s2 and s3, respectively. For states s4, s5, we only know that the reachability
probabilities are between 0 and 1 (Eq. (8)), and s4 ≺ s5 (Eq. (9)). Finally, to
validate the assumption s2 ≺ s3, we add constraint ¬(s2 ≺ s3) (Eq. (10)). If the
resulting constraint system has no solution, it follows s2 ≺ s3.

Treating cycles through SCC elimination.This method contracts each SCC
into a set of states, one for each entry state of the SCC. Applied to pMCs [31],
it preserves the reachability probabilities of target set T . For each SCC, all non-
entry states (i.e., states without incoming transitions from outside the SCC) are
eliminated by state elimination [18,27] and transitions between entry states are
deleted [19]. In the resulting acyclic pMCM′, transitions from entry state s of
an eliminated SCC directly lead to states t outside this SCC. Their transition
probabilities in M′ encode the (multi-step) reachability of reaching t from s
in the cyclic M. This procedure works well if the pMC has several SCCs, but
if the pMC is just a single SCC, this yields the complete solution function,
which we intended to avoid. If an SCC has many successor states (outside the
SCC), this results in multiple successor states inM′, possibly leading to multiple
assumptions in Alg. 1+2.
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Algorithm 3 Monotonicity checking without assumption discharging

Input: Acyclic pMCM = (S, sI , T , V ,P)
Output: RO = a set of assumptions A with a monotonicity array
1: Orders ← ∅
2: Queue ← (A : ∅,≺: {( , )}, S′ : S \ { , })
3: while Queue not empty do
4: A,�A, S′ ← Queue.pop()
5: if S′ = ∅ then
6: Orders ← Orders ∪ {(A,�A)}.
7: else
8: select s ∈ S′ s.t. s topologically last or if s lies within an SCC and this SCC

is topologically last
9: if ∃s′ ∈ succ(s) s.t. succ(s) ⊆ [s′] then

10: extend RO-graph(�A) with: s ≡ succ(s)
11: else if �A a total order for succ(s) then
12: extend RO-graph(�A) with:

s ≺A min ub(succ(s)) and max lb(succ(s)) ≺A s

13: else if �A is not a total order for succ(s) = {s1, s2} and s1 ≺
A s then

14: extend RO-graph(�A) with: s ≺A s2
15: else if �A is not a total order for succ(s) = {s1, s2} and s2 ≺

A s then
16: extend RO-graph(�A) with: s2 ≺

A s

17: else if s part of an SCC and succ(s) = {s1, s2} then
18: pick a cycle breaking state s′ ∈ S′ and s′ in SCC
19: set s to s′

20: extend RO-graph(�A) with: ≺A s and s ≺A

21: else {�A is not a total order for succ(s)}
22: pick t1, t2 ∈ succ(s) s.t. neither t1 �

A t2 nor t2 �
A t1

23: Queue.push((A≺ ∪ {(t1, t2)},A≡),�
A, S′)

24: Queue.push((A≺ ∪ {(t2, t1)},A≡),�
A, S′)

25: Queue.push((A≺,A≡ ∪ {(t1, t2)}),�
A, S′)

26: continue
27: Queue.push(A,�A, S′ \ {s})
28:

29: for every order �A in Orders do
30: set for every parameter p ∈ V mon[p]→{T,T}
31: for every parametric state s do
32: let succ(s) = s1, . . . , sn, sorted based on �A

33: for every parameter p ∈ V occuring at s, and mon[p] 6= {F,F} do

34: if 6 ∃i ∈ [1, . . . , n].
(

∀j ≤ i. fj↑
R
p and ∀j > i. fj↓

R
p

)

then

35: mon[p][0] = F

36: if 6 ∃i ∈ [1, . . . , n].
(

∀j ≤ i. fj↓
R
p and ∀j > i. fj↑

R
p

)

then

37: mon[p][1] = F
Result ← Result ∪ {(A,mon)}

38: return Result
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