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Abstract. We study the formal verification of information-flow prop-
erties in the presence of speculative execution and side-channels. First,
we present a formal model of speculative execution semantics. This model
can be parameterized by the depth of speculative execution and is amenable
to a range of verification techniques. Second, we introduce a novel no-
tion of information leakage under speculation, which is parameterized by
the information that is available to an attacker through side-channels.
Finally, we present one verification technique that uses our formalism
and can be used to detect information leaks under speculation through
cache side-channels, and can decide whether these are only possible under
speculative execution. We implemented an instance of this verification
technique that combines taint analysis and safety model checking. We
evaluated this approach on a range of examples that have been proposed
as benchmarks for mitigations of the Spectre vulnerability, and show that
our approach correctly identifies all information leaks.

Keywords: Verification, Information Flow, Speculative Execution, Side
Channels

1 Introduction

The Spectre attacks have shown how speculative execution in modern CPUs can
lead to information leaks via side channels such as shared caches, even if the
program under consideration is secure under a standard execution model [22].
Since speculative execution is an essential optimization for the performance of
modern processors, the underlying vulnerability affects the vast majority of all
processors in use today, and is not easy to fix without sacrificing a lot of the
performance gains of recent years. The general assumption is that processors will
remain vulnerable to Spectre for the foreseeable future, and therefore security
can only be ensured on the software level, carefully taking into account the
vulnerability of the hardware. Based on this observation, we develop a method
to detect whether a given program can potentially leak sensitive information due
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to the interplay of speculative execution and side-channel attacks, or prove that
information-flow security properties hold despite these factors.

The Spectre vulnerability is exploited by (i) influencing the predictions that
lead to the speculative execution of instructions, (ii) by feeding operands to these
instructions that lead to secret data being stored or otherwise reflected in the
microarchitectural state of the CPU, and (iii) observing these changes to the
microarchitectural state through a side-channel. To achieve (i), the attacker can
manipulate the Pattern History Table that predicts the choice of conditional
branches [20, 22], the Branch Target Buffer that predicts branch destination
addresses [22], or the Return Stack Buffer that predicts return addresses [24].
To achieve points (ii) and (iii), the attacker can target different features of the
microarchitecture to be observed through a side-channel, for example port con-
tention [7] or, most commonly, caches [22].

In this paper, we provide a formal model for programs under a speculative
execution semantics, and a formal notion of information-flow security that takes
into account speculative execution and side-channels. Both the system model and
the notion of security are designed to remain as close as possible to existing for-
malisms, in order to alleviate the adaptation of existing verification approaches
to these new concepts. At the same time, they are sufficiently general and flexible
to cover a wide range of different types of speculation and side-channels. Based
on our new formalisms, we provide an algorithm that detects potential infor-
mation leaks under speculative execution with cache side-channels, and demon-
strate its capabilities on a benchmark set designed to test software for Spectre
vulnerabilities [21].

1.1 An Example Problem and Our Solution

The program in Figure 1 is a very basic example for a Spectre-style information
leak.4 Function main receives an input idx from the user. It checks whether
the value of idx corresponds to an entry in array1, and if so, uses the value of
array1[idx] to determine a position to read from in array2. The value of array2 at
that position is then stored in a temporary variable temp.

1 int main(int argn , char* args []) {
2 int temp = 0;
3
4 int idx = getc ();
5 if (idx < array1_size)
6 temp = array2[array1[idx ]*512];
7
8 return 0;
9 }

Fig. 1: Vulnerability example

4 It is, in fact, the basic example used in the Spectre paper [22].
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Under standard execution semantics, the piece of code is harmless: since the
condition on idx ensures that the access to array1 is within bounds, an attacker
(that controls input idx) cannot obtain any information that is not in array1 or
in the positions of array2 referenced by values in array1.

Under speculative execution, however, the command in line 6 can be executed
before the condition in line 5 is evaluated. This is not a problem regarding the
information available at the program level, since the value of temp will only be
written into memory after it is determined that the speculation was correct.
However, the read from array2 will load data into the cache at an address that
is determined by the value in array1[idx], thus changing the microarchitectural
state during speculation. Since the bounds check has not yet been evaluated,
the access to array1 can read an arbitrary byte from memory, the value of which
can leak to the attacker through a timing attack on the shared cache.

We provide a fully automatic method to detect such potential information
leaks. To check whether the program above has potential information leaks under
speculative execution, our implementation compiles the source code to LLVM
intermediate code, which is then interpreted according to a non-standard spec-
ulative execution semantics to obtain a formal representation as a transition
system. In its simplest form, the non-standard semantics allows us to ignore
conditional statements, as long as we set a flag that signals that we are now
operating under speculation. The resulting transition system is also equipped
with a leakage model that represents the attacker’s possible observations. In our
example, the address of any memory access will be leaked to the attacker, mod-
eling their capability to obtain this information through a side-channel attack.
On this transition system, we then use a combination of taint analysis and safety
model checking to determine whether there are information leaks, and whether
they are only possible under speculative execution.

Our implementation correctly determines that there is an information leak
in this example. Moreover, we support the insertion of a special stop command
into the code that will halt speculative execution, as is done by insertion of
serializing instructions such as LFENCE as an existing mitigation of Spectre. For
the modified code with a stop added after line 5, our implementation correctly
determines that no information leak is possible.

1.2 Contributions

The contributions of this work can be summarized as follows:

1. We provide a formal model for programs under a speculative execution se-
mantics. Programs are modeled as transition systems, where speculation is
added as an additional dimension. Moreover, the model supports specula-
tion barriers, which can be used to explicitly stop speculative execution in
branches that are deemed to handle sensitive information. Since this model
is a very natural generalization of a standard operational semantics, it is easy
to modify existing verification approaches to handle our model. Moreover,
the model is based on a very general notion of speculation and is flexible
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with regards to the information that is leaked to an attacker. Therefore, it
covers a wide range of security vulnerabilities that are due to speculation
and side-channel attacks.

2. We provide a formal notion of information-flow security under speculative
execution. Like our system model, it is a natural generalization of existing
formalisms, which means that existing approaches to security verification
can, at least in theory, be easily adapted to reason about our new notion of
security.

3. As an application of our formalisms, we present an algorithm that trans-
lates an input program into a transition system according to its specula-
tive execution semantics, based on a leakage model for cache side-channels.
The transition system is analyzed using a combination of taint analysis and
safety verification that explicitly checks for operations that happen under
speculation. This analysis finds potential information leaks that are due to
speculation.

4. Finally, we evaluate our algorithm on a set of benchmarks that has been
designed to test whether existing mitigations in compilers are effective in
preventing Spectre leaks [21]. We show that it correctly detects Spectre-
style information leaks in all cases, and correctly proves the absence of leaks
after the manual insertion of speculation barriers.

1.3 Related Work

Our work is inspired by the Spectre attacks [22], which combine manipulation of
speculative execution and side-channel attacks to read private data. There are
several variants of the idea (summarized in [9]), and the approach we present
in this paper can detect (potential) vulnerabilities of a program against Spectre
variants V1 [22], V1.1 and V1.2 [20], as well as V4 [18]. Moreover, our model
is sufficiently flexible to reason about leakage through a port contention side
channel [7] and possibly other side channels, as long as observations that are
possible through the side channel can be specified.

Several mitigations against Spectre have been proposed and partly imple-
mented in compilers [17, 25], but without any formal guarantee of security, and
in some cases already demonstrated to be insufficient in general [21]. Taram et
al. [30] introduced a method that introduces fences dynamically. They show that
this can greatly reduce the overhead compared to static conservative fencing, but
also do not give formal correctness guarantees.

There are several other variants of Spectre that rely on other features of
the microarchitecture, such as branch target buffers or return stack buffers that
are shared between users [22, 24], or lazy context switching between users for
FPU operations [29]. To support these, our model needs to be extended to a
programming language with indirect jumps or return instructions, which is out
of the scope of this paper.

Formal models for side-channel attacks and speculative execution. A
significant number of works have considered side-channel attacks in a formal
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framework. One approach is to verify that a (cryptographic) program satisfies
the constant-time security paradigm, which implies resistance against timing-
based side-channel attacks. The applied reasoning methods range from deductive
verification [3] and static analysis [27] to security type systems [1]. Almeida et
al. [2] give a formal semantics for programs together with a flexible specification
of side-channels similar to ours, and use an approach based on model-checking
to verify information-flow security. While all of these approaches support veri-
fication of side-channel security in some form, none of them supports security
under speculative execution, which is essential for our approach.

Correctness under speculative execution has been considered (i) at the level of
the processor, i.e., aiming to verify that a given processor model with speculative
execution satisfies some correctness criterion, and (ii) at the software level, based
on a form of non-standard semantics of programs. Regarding (i), we note that
to the best of our knowledge all of these works [16, 19, 23, 28, 32] only consider
functional correctness properties (that are insufficient to express information-
flow security), and also do not support side-channel leakage. One exception to
the above is the framework of Arons and Pnueli [4] that allows the user to define
which features of the microarchitecure can be used in the specification, in theory
allowing to take side-channels into consideration. Interest in (ii) has thus far been
very limited, and has also been restricted to functional correctness properties [8].

To the best of our knowledge, there are only two approaches that handle
both side-channel attacks and speculative execution in a more or less formal way,
both developed concurrently with our own approach. First, Wang et al. [33] have
developed a static analysis to detect Spectre and Meltdown vulnerabilities. In
contrast to our work, their focus has been on finding a practical solution that
is specific to this class of vulnerabilities, while our main goal was to define a
general model of speculative execution semantics and a corresponding notion of
information-flow security that can be the basis of a wide range of solutions for
the problem class. Second, Guarnieri et al. [13] have introduced a general notion
of speculative non-interference, which however uses a significantly more involved
model of speculative execution semantics, and results in a security notion that
requires to reason about knowledge that is derivable from attacker observations.
In comparison, our model and security notion are much simpler and closer to
existing formalisms.

2 Preliminaries

We formalize the basic problem under consideration: given a program P , verify
whether P is secure against timing attacks.

Transition Systems. Let X be a set of variables that is used to describe the
program state, and X ′ = {x′ | x ∈ X} a copy of X, in the following used
to represent the post-state of a transition. A transition system is given as a
tuple M = 〈X, Init(X),Tr(X,X ′)〉 where Init(X) is a (first-order) formula over
X representing the initial states, and Tr(X,X ′) is a formula representing the
transition relation.
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A formula over the set of variables X is called a state formula. A formula
ϕ(X,X ′) such that for every valuation V of X there is exactly one valuation V ′

of X ′ with ϕ(V, V ′) is called a state update function. We denote by unchanged(Y )
the state update function

∧
x∈Y x

′ = x for some Y ⊆ X. A state is a valuation
of all variables. For a state A and a variable x ∈ X, we denote by A[x] the value
of x in A, and by A[Y ] the valuation of a set of variables Y ⊂ X. An execution
of a transition system is a sequence of states π := A0, A1, . . . , An, such that
A0 ⇒ Init and for 1 ≤ i ≤ n: (Ai−1, Ai)⇒ Tr .

Standard Program Semantics. A transition system for a program can be
obtained based on its operational semantics (for a fully formalized description
see e.g. [2]). Programs in simple programming languages can be translated into a
transition system in a straightforward way by encoding each line of the program
into either a conditional or unconditional state update formula. A conditional
state update formula is of the form

τi := pc = i→ cond(X) ? ϕ(X,X ′) : ψ(X,X ′),

while an unconditional state update formula is of the form

τi := pc = i→ ϕ(X,X ′).

In both cases i ∈ N is the line of the program to be encoded, pc is a special
program variable (the “program counter”), cond(X) is a condition on the set of
variables X, and ϕ(X,X ′) and ψ(X,X ′) are state update functions that should
be executed when the condition is either true, or false, respectively. We refer
to instructions as either conditional or unconditional depending on their corre-
sponding state update formula. Moreover, the set of conditional instructions is
denoted by C ⊆ N, s.t. if i ∈ C, then τi is a conditional state update formula.

In addition, we consider a programming language that includes the special
annotation assume(cond(X)), which is encoded by

τi := pc = i→ cond(X) ? (pc′ = pc + 1 ∧ unchanged(X \ {pc}) : false.

This special annotation requires that at line i the condition cond(X) holds.5

By conjoining the formulas for all lines of the program, one obtains a symbolic
representation of the transition relation. Namely, Tr :=

∧
i τi.

We will discuss in Section 3 how to obtain a transition system for the program
under speculative semantics.

Safety Verification. Given a transition system M and a formula Bad(X), M
is unsafe w.r.t. Bad when there exists a run π := A0, A1, . . . , An of M s.t.
An ⇒ Bad . Such a run π is called a counterexample (CEX). If no such π exists,
M is safe w.r.t. Bad . The safety verification problem determines if M is safe or
unsafe w.r.t. Bad .

5 If it does not hold, then the transition relation will evaluate to false for all post-states,
i.e., the program halts.
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2.1 Information Flow Analysis

Many security properties can be cast as the problem of verifying secure in-
formation flow. Namely, by proving that confidential data does not flow to non-
confidential outputs (i.e. is not observable) during the execution of a system [12].
More formally, assume that H ⊂ X is a set of high-security (or secret) variables
and L := X \ H is the set of low-security (or public) variables. Moreover, let
L = Li∪· Lo, where Li are input variables that are controlled by the attacker, and
for each output variable x ∈ Lo, let Ox(X) be a predicate that determines when
x is observable. The set of output variables Lo and their observation predicates
Ox depend on the threat model being considered.

Example 1. In the example from Figure 1, we have Li = {argn, args, idx}, since
these are inputs that can be chosen by the attacker. Moreover, we have Lo = {x}
for an auxiliary variable x that, upon every array read a[i] is updated to the value
of i, and is observable whenever it has been updated.6 This models an attacker
that uses a cache side-channel attack.

The information flow problem asks whether there exists a run of M such that
the value of variables in H affects the value of a variable x ∈ Lo in a state where
Ox(X) holds. Intuitively, this means that variable x “leaks” secret information.

Definition 1. Let M be a transition system and let H ⊂ X be a set of high-
security variables and L := X\H a set of low-security variables with L := Li∪· Lo.
M leaks secret information, denoted by H  M L, iff there exists two executions
π1 = A1

0, . . . , A
1
n and π2 = A2

0, . . . , A
2
n of M s.t. the following formulas hold:

∀0 ≤ i ≤ n, x ∈ Li ·A1
i [x] = A2

i [x]
∃0 ≤ i ≤ n, x ∈ Lo · (A1

i ⇒ Ox) ∧ (A2
i ⇒ Ox) ∧A1

i [x] 6= A2
i [x]

When M does not leak secret information, we write H 6 M L. Moreover,
when M is clear from the context, we write H  L (and respectively, H 6 L).
Note that our definition can be instantiated to match a standard notion of non-
interference that requires two executions with equal low-security values in the
initial state to result in equal low-security values in the final state: assume that
variables in Li are not changed during execution (otherwise generate a copy of
the variable in Lo), and let all variables in Lo only be observable in the final
state.

There are two standard techniques that can be used to perform information
flow analysis: taint analysis and self-composition.

Taint Analysis. Taint analysis instruments a program with taint variables and
taint tracking code, which is used to simulate the flow of confidential data to
public outputs. It operates by marking high-security variables with a “taint”
and checking if this taint can propagate to low-security variables. It can be per-
formed statically by analyzing the program’s code [15,26] or symbolically when

6 We assume that the compiler separates nested array reads into two separate reads.
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described as a safety verification problem [34]. While taint analysis is efficient,
it is imprecise since it over-approximates the possible leaks of the program.

Self-Composition. In the most common use-case of safety verification, the goal
is to prove a safety property that can be checked on a single run, such as func-
tional correctness. Secure information flow, however, is a property that involves
a comparison of two executions of the system, i.e., it is a hyper-property [11]. One
approach to handling hyper-properties is self-composition [6], where the program
P is composed with one or more copies of itself. This composition results in a
new program P ′ such that a single run of P ′ represents several runs of P in par-
allel. By that, reasoning about hyper-properties is reduced to reasoning about
properties of individual runs of the self-composed program P ′. This allows to
reason about hyper-properties using standard software model checkers [10, 14].
However, in many cases, this approach does not scale to real-life programs [31].

3 A Formal Model for Speculative Execution

Speculative execution is an optimization technique for concurrent execution in-
side CPUs that reduces the idling time of a CPU by executing code speculatively,
i.e., without knowing whether the given part of the program will actually be
reached. To this end, it makes assumptions on branching conditions that may or
may not turn out to be true in the future. Speculative execution is one of the cor-
nerstones of modern out-of-order execution, and is to a large extent responsible
for the dramatic performance improvement of CPUs in recent years.

We are interested in proving information-flow properties of programs that are
executed in such an environment. To this end, we need a formal execution model
that takes speculative execution into account. In the following, we introduce two
variants of such a model and explain how to transform a given program into its
formal representation.

3.1 Simple Speculative Execution Semantics

We explain the idea of a simple speculative execution semantics on an example.

Example 2. Consider the two programs that appear in Figure 2. The program
to the left (Figure 2a) represents the standard execution semantics where the
array is updated at index i only if i is in the range, and otherwise location 0
is updated. The program to the right (Figure 2b), however, behaves differently.
The condition that guards the array update is replaced with a non-deterministic
choice, and either the then or else branch is taken. Moreover, the execution
of a branch depends on both the condition and the possibility of speculative
execution. This behavior is forced by the assumptions added in each branch. Note
that the possibility of speculative execution is captured by a non-deterministic
Boolean variable spec.
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1 int insert(int[] A, int len) {
2 int v=f(), i=g();
3 assume (i >= 0);
4
5 if (i < len) {
6
7 A[i] = v;
8 } else {
9

10 A[0] = v;
11 }
12 return v;
13 }

(a) Standard execution

1 int insert(int[] A, int len) {
2 int v=f(), i=g();
3 assume (i >= 0);
4 bool spec = *;
5 if (*) {
6 assume(i < len ^ spec);
7 A[i] = v;
8 } else {
9 assume(i >= len ^ spec);

10 A[0] = v;
11 }
12 return v;
13 }

(b) Speculative execution

Fig. 2: Execution semantics example

Translation to Simple Speculative Execution Semantics. We now for-
malize the above example. Let M = 〈X, Init ,Tr〉 be the transition system for a
program P according to its standard program semantics. To account for specu-
lative execution we define a new transition system M̂ = 〈X ∪ {spec}, Init , T̂r〉,
where spec is a new Boolean variable. spec is initialized non-deterministically
and its post-state is defined by

τsi := pc = i→ (¬spec ∧ i ∈ C) ? spec′ = ∗ : spec′ = spec.

Informally, this means that speculative execution can start whenever a con-
ditional instruction executes, but then it will remain enabled for the rest of the
program execution.

The effect of speculative execution is encoded by replacing every conditional
instruction τi with:

τ̂i := pc = i→ ∗ ?

(¬spec⇒ (cond(X) Y spec′)) ∧ ϕ(X,X ′) :

(¬spec⇒ (¬cond(X) Y spec′)) ∧ ψ(X,X ′)

where Y represents an exclusive or. Note that a conjunct is added to the then
and else parts of the conditional instruction. The conjunct forces the value of
spec to become true when a branch is executed speculatively. Namely, the branch
executes even though its condition does not hold. We emphasize that the added
conjunct is guarded by the current-state value of spec. This is needed for the
case of nested branches. If spec is already true when executing the conditional
instruction, then the conjunct holds. Hence, if the program is already in specu-
lative execution mode, then either branch can be taken. However, if spec is false,
then the exclusive or ensures that either the guard (e.g. a condition of an if state-
ment) for that branch holds, or the branch is executed speculatively (by forcing
spec to become true), but both cannot happen simultaneously. This captures our
intention of only detecting information leaks caused by misprediction.
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1 int insert(int[] A, int len) {
2 int v=f(), i=g();
3 assume (i >= 0);
4
5 if (i < len) {
6
7 A[i] = v;
8
9 } else {

10
11 A[0] = v;
12
13 }
14 return v;
15 }

(a) Standard execution

1 int insert(int[] A, int len) {
2 int v=f(), i=g();
3 assume (i >= 0);
4 int spec = *;
5 if (*) {
6 assume(i < len ^ 0 < spec < sigma);
7 A[i] = v;
8 if spec > 0 then spec += w();
9 } else {

10 assume(i >= len ^ 0 < spec < sigma );
11 A[0] = v;
12 if spec > 0 then spec += w();
13 }
14 return v;
15 }

(b) Bounded speculative execution

Fig. 3: Execution semantics with bound example

Unconditional instructions are kept unchanged, namely τ̂i := τi. The transi-
tion relation is then defined as T̂r := (

∧
i τ̂i ∧ τsi ).

In addition to the standard constructs of a simple language as sketched above,
we assume a special command stop that acts as a barrier for stopping speculative
execution. The stop command is defined by

τi := pc = i→ ¬spec ? (pc′ = pc + 1 ∧ unchanged(X \ {pc}) : false,

which is the same as assume(¬spec).

3.2 An Architecture-Dependent Speculative Execution Semantics

In order to execute instructions speculatively, a recovery mechanism for undoing
speculated instructions on miss-predicted branches or on exceptions is required.
This “rollback” mechanism is implemented using a reorder buffer (ROB), which
stores the results of instructions that are executed speculatively. When a miss-
prediction is discovered, the ROB is flushed, otherwise a commit is performed.
Note that the size of the ROB is fixed, hence it implies a bound on the number
of instructions that can be executed speculatively.

In order to take this mechanism, of either rollback or commit, into account
and make our analysis more precise, we introduce an advanced model where the
system has a bound on the maximal depth of speculative execution (i.e., the
number of steps that can be taken before execution under speculation is halted).
We model this bound as a value σ ∈ N ∪ {∞}, called the speculative execution
parameter.

Example 3. The programs in Figure 3 show the difference between standard
semantics and bounded speculative execution semantics. As before, the left-hand
side (Figure 3a) represents the standard execution semantics. The right-hand
side (Figure 3b) again replaces the condition for the array update with a non-
deterministic choice, but now the execution contains a condition on not only
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whether speculation has been enabled before, but also that the number of steps
under speculation is below our bound σ. Note that the type of variable spec has
changed from a Boolean to an integer. It is also important to note that spec is
incremented by some value if it is enabled. The reason for this arbitrary value
(represented by w() in our example) is that every instruction is translated into
a different number of micro-ops. Hence, it occupies a different number of slots
in the ROB.

Translation to Architecture-Dependent Speculative Execution Seman-
tics. To formalize the idea, let again M = 〈X, Init ,Tr〉 be a transition system
for a program P . To model bounded speculative execution, we define a new
speculative transition system M̌ = 〈X ∪ {spec}, Init , Ťr〉, where spec is a new
variable of type N. spec is initialized non-deterministically to either 0 or 1 and
its post-state is defined by

τ̌si := pc = i→ spec′ = (spec > 0 ? spec + w(i) : (i ∈ C ? {0, w(i)} : 0))
∧ spec′ < σ

where {0, w(i)} is interpreted as non-deterministic choice between integers 0 and
w(i), and w(i) represents the number of slots occupied in the ROB by instruc-
tion i. Informally, this means that speculative execution can start whenever a
conditional instruction executes, but then it will remain enabled until we reach
the speculation bound σ.

The effect of speculative execution is encoded by replacing every conditional
instruction τi by:

τ̌i := pc = i→ ∗ ? (spec = 0⇒ (cond(X) Y spec′ = w(i)) ∧ ϕ(X,X ′)
: (spec = 0⇒ (¬cond(X) Y spec′ = w(i)) ∧ ψ(X,X ′)

and keeping unconditional instructions unchanged, namely τ̌i := τi. The tran-
sition relation is defined by Ťr := (

∧
i τ̌i ∧ τ̌si ). Similarly, we support a barrier

command stop, which is in this case is defined by

τi := pc = i→ spec = 0 ? (pc′ = pc + 1 ∧ unchanged(X \ {pc}) : false,

equivalent to assume(spec = 0).

4 Information-Flow Security under Speculative Execution

Our formal model for speculative execution represents the program as a transi-
tion system, which makes it amenable to many standard verification techniques.
Moreover, our notion information-flow security (Definition 1) has been chosen
with speculative execution in mind: since changes to the program state (in mem-
ory) based on speculative computations are only applied when it has been estab-
lished that speculation was correct, the standard notion of non- interference is
not affected by speculation at all. Therefore, we have to consider a notion that
takes into account information about the microarchitectural state of the system
that can be detected through side-channels. In the following, we generalize this
notion of security to systems with speculative execution semantics.
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Example 4. To motivate our definition, consider again the example in Figure 1.
The program receives an index idx from the user, accesses array1 at location idx,
and then array2, based on the value of array1. To prevent an illegal access to
array1, the access is guarded by an if statement. However, during speculative
execution, the arrays may be accessed even when the condition does not hold.
While this access will not change the state of the program in memory, it may
alter the state of the cache, and therefore may leak sensitive information through
a cache side-channel. If our attacker model includes cache side-channels, then the
set of variables Lo will contain a variable that is updated with every memory
access a[i] to the address i, and is observable when the access happens.

Note that in order to take advantage of speculative execution, an attacker
needs to be able to train the branch predictor, giving him some amount of
control over speculative execution. As a conservative approximation, we assume
that speculative execution is completely controlled by the attacker. Therefore,
the new variable spec that indicates if speculative execution is performed in our
model of speculative execution semantics should be controlled by the attacker.
This very naturally leads us to the following definition of speculative information-
flow:

Definition 2. Let P be a program, and let M̌ be the corresponding speculative
transition system of P . Let H,L ⊂ X be the sets of high and low security vari-
ables in X with L := Li ∪· Lo and spec ∈ Li. We say M̌ leaks information under
speculative execution if H  M̌ L.

That is, we can reduce speculative information leaks to non-speculative in-
formation leaks by considering a model with speculative execution semantics
and assuming that spec is under control of the attacker. Intuitively, if a path
in P that is only enabled due to speculative execution leaks private data, then
we can detect this by comparing runs of that path with different values for H
but identical values for Li, including identical speculation behavior. Note that if
spec remains 0 (or false) for the whole run, then this notion of security coincides
with Definition 1.

Since our notion of information-flow security under speculative execution is
based on transition systems and is a natural generalization of existing notions, in
theory it is not hard to extend existing approaches for verification of information
flow such as self-composition or taint analysis to cover it. In practice however,
the additional behaviors introduced by speculation will likely make an approach
based on naive self-composition intractable. An implementation that handles
non-trivial programs will require a specialized and more scalable solution.

4.1 Detecting Speculative Execution Leaks

We present an approach that uses the above formal model for detecting potential
information leaks under speculative execution. More precisely, we are looking for
Spectre leaks, i.e., leaks through memory accesses that can be influenced by the
user, using a cache side channel. To this end, it tries to find memory accesses
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a[i] such that i can be chosen or influenced by the attacker, and checks whether
these accesses can happen under speculative execution. A high-level description
of our approach appears in Algorithm 1.

1 M̌ ← GetSpecTr(P, σ)

2 I ← AnalyzeInfFlow(M̌)
3 while I 6= ∅ do
4 pick i ∈ I
5 if i is memory access then
6 res← CheckSpeculation(M̌, i)
7 if res = > then
8 return possible Spectre leak

9 I ← I \ {i}
10 return no Spectre leaks

Algorithm 1: Detecting Spectre Attacks

The algorithm receives as an input a program P to be analyzed, and a specu-
lation bound σ. It then starts by creating a transition system M̌ , which includes
speculative execution semantics as described in Section 3 (line 1). Then, in-
formation flow analysis is performed to identify all instructions that may be
affected by an attacker (line 2). All affected instructions are returned in I. This
is done by tracking the effect low security variables have on high security vari-
ables. There are various ways to achieve this goal, such as taint analysis [26] and
self-composition [5]. Since performing self-composition is often intractable, here
we implemented a variant of the algorithm that uses taint analysis for this task.

Once I is computed, the algorithm then analyzes all memory accesses in I. For
every such memory access, a safety verification problem is generated and verified
(line 6). This is achieved by adding an assertion that checks wether speculative
execution is enabled at the location of the memory access (i.e. assert(spec = 0)).
If any of these verification problems is unsafe and a counterexample is gener-
ated, then the algorithm concludes that the memory access can be executed
speculatively. Moreover, this speculative execution can be manipulated by an
attacker.

Theorem 1. Algorithm 1 is sound.

Proof idea. If Algorithm 1 returns “no Spectre leaks” for inputs P and σ, then
in M̌ there is no memory access that can be influenced by the user and execute
speculatively.

We emphasize that Algorithm 1 can prove the absence of Spectre-like attacks.
However, it can not conclusively determine that such an attack exists. This is due
to two reasons. First, identifying that a memory access can execute speculatively
does not necessarily imply that it leaks secret information. Second, in the variant
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we implemented, we use taint analysis to compute such memory accesses that can
be affected, and hence the set I is an over-approximation. Making the algorithm
more precise is left as an avenue for future work.

5 Evaluation and Conclusion

We have implemented our algorithm on top of the SeaHorn verification frame-
work [14]. Taint analysis and the instrumentation of speculative execution se-
mantics are implemented on top of LLVM.

For our evaluation, we used the examples from Paul Kocher’s blog post [21]
that have been designed to test whether existing mitigations against Spectre are
sufficient to prevent information leaks. Our implementation identifies all of these
examples as unsafe (possible leak due to speculative execution). In addition, we
created a few SAFE examples (based on those from [21]). On these examples as
well, our implementation identified the programs as SAFE.

Due to the size of these examples the runtime was small (about 1s). We note
that while these examples are only short code snippets, they cover a large range
of cases in which speculation-based attacks may be possible.

To conclude, in this paper, we have introduced novel formalisms that allow us
to reason about security vulnerabilities in the presence of speculative execution
and side-channels, and give formal correctness guarantees by proving the absence
of such vulnerabilities.

Our formalisms are designed to be as simple as possible, while still covering a
wide range of Spectre-type attacks. They are also very natural generalizations of
existing concepts, which makes it easy to extend existing verification algorithms
to our more general setting, as demonstrated in our example algorithm based on
taint analysis and safety verification.

As a future work, we aim at implementing other variants of our approach,
which use our formalism and provide more precision and guarantees while re-
maining efficient.
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