

Aalborg Universitet

Teaching Stratego to Play Ball

Optimal Synthesis for Continuous Space MDPs

Jaeger, Manfred; Jensen, Peter Gjøl; Larsen, Kim Guldstrand; Legay, Axel Bernard E;
Sedwards, Sean; Taankvist, Jakob Haahr
Published in:
Automated Technology for Verification and Analysis- 17th International Symposium, AVTA 2019, Proceedings

DOI (link to publication from Publisher):
10.1007/978-3-030-31784-3_5

Publication date:
2019

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Jaeger, M., Jensen, P. G., Larsen, K. G., Legay, A. B. E., Sedwards, S., & Taankvist, J. H. (2019). Teaching
Stratego to Play Ball: Optimal Synthesis for Continuous Space MDPs. In Y-F. Chen, C-H. Cheng, & J. Esparza
(Eds.), Automated Technology for Verification and Analysis- 17th International Symposium, AVTA 2019,
Proceedings: ATVA 2019: Automated Technology for Verification and Analysis (pp. 81-97). Springer.
https://doi.org/10.1007/978-3-030-31784-3_5

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 27, 2024

https://doi.org/10.1007/978-3-030-31784-3_5
https://vbn.aau.dk/en/publications/8215b9e2-fec0-48ab-9b02-b61d0058b401
https://doi.org/10.1007/978-3-030-31784-3_5

ATVA

EASY TO USE

C
O

NSIS
TENT

DOCUMENTED

C
O

M
PLETE

R
EPLIC

A
B

LE

Artifact

*

*

*

APPROVED

Teaching Stratego to Play Ball :
Optimal Synthesis for Continuous Space MDPs

Manfred Jaeger1, Peter Gjøl Jensen1, Kim Guldstrand Larsen1, Axel Legay1,2,
Sean Sedwards3, and Jakob Haahr Taankvist1

1 Department of Computer Science, Aalborg University, Denmark
2 Université catholique de Louvain, Belgium

3 University of Waterloo, Canada

Abstract. Formal models of cyber-physical systems, such as priced timed
Markov decision processes, require a state space with continuous and
discrete components. The problem of controller synthesis for such sys-
tems then can be cast as finding optimal strategies for Markov decision
processes over a Euclidean state space. We develop two different rein-
forcement learning strategies that tackle the problem of continuous state
spaces via online partition refinement techniques. We provide theoret-
ical insights into the convergence of partition refinement schemes. Our
techniques are implemented in Uppaal Stratego. Experimental results
show the advantages of our new techniques over previous optimization
algorithms of Uppaal Stratego.

1 Introduction

Machine learning and artificial intelligence have become standard methods for
controlling complex systems. For systems represented as priced timed Markov
decision processes (PTMDP), Uppaal Stratego [6] has demonstrated that
near-optimal strategies can be learned [11, 13, 5]. However, as we shall demon-
strate in this paper, for the rich class of PTMDPs we can still improve signifi-
cantly on the existing learning techniques, in terms of learning better strategies
and obtaining better convergence characteristics with respect to the training
data size.

In most machine learning applications one learns from real-world data that
is provided in batch, or as a data stream. However, for many cyber-physical
systems it is impossible to obtain sufficient data from the real-world system. On
the other hand, accurate formal models of the systems may be available. We
therefore base the controller synthesis on data generated from a model of the
system, an approach we refer to as in-silico synthesis.

We extend the method of David et. al [6, 5] by developing an online learning
method based on reinforcement learning principles. Since we are dealing with
systems operating in hybrid discrete-continuous state spaces, a suitable approach
to deal with continuous state spaces in a reinforcement learning setting needs to
be chosen. Traditional (linear) function approximations of value functions [18]
are not expressive enough to deal with the often highly non-linear, multi-modal

value functions we encounter in typical cyber-physical system models. Recent
developments in which neural network representations of non-linear state-value
functions are learned [15] have the drawback that the learned strategy faces
similar drawbacks as any neural network in terms of verification [9], and the lack
of safety guarantees. While we do not directly address safety of learned strategies
in this paper, we note that the simple partition-based function approximations
that we will employ are not only highly flexible regarding the types of functions
that can be approximated, but also closely aligned with continuous-time model-
checking techniques such as regions and zones.

In order to obtain an online method whose computational efficiency does
not deteriorate over time due to the accumulation of training data, we need
to base our approach on fixed-size running summaries of the data, specifically
online standard deviations and running means [17]. In this paper we develop two
versions of our basic partition refinement approach: one based on Q-learning [19]
and one related to Real Time Dynamic Programming [16, 1] (RTDP). While
Q-learning is a so-called model-free learning-method, RTDP is a model-centric
learning-method and we will thus denote the latter M-learning.

To demonstrate our approach we have implemented the proposed algorithms
in Uppaal Stratego and investigated their performance experimentally. We
also provide an Open Source C++ implementation of the algorithms.

Related Work: In the area of synthesis for reactive systems, David et al.
[5, 6] extended the work of Henriques et. al. [8] to continuous space systems.
In the work of Henriques et al. the problem of optimization is seen as one of
classification. As we shall later demonstrate experimentally, examples exist where
these algorithms do not converge towards optimal controllers.

Several abstraction and partition refinement-based methods have been ap-
plied to speed up verification of finite state MDPs [3, 10, 14], utilizing underlying
symbolic techniques. We distinguish ourselves from this approach by consider-
ing a richer class of MDPs, while doing an empirical partition refinement online,
based on statistical tests.

The partition refinement scheme we deploy can be seen as a classical regres-
sion or classification problem. As such, alternative approaches could be based on
classical decision and regression trees [2]. However, these often require a batch
of data samples to be kept in memory and are thus incompatible with our online
scheme.

2 Euclidean MDP and Expected Cost

In this section we introduce our formal system model and controller synthesis
objective.

Definition 1 ((K-Dimensional, Euclidean) Markov Decision Processes).
M = (S, Act , sinit,T , C,G) where:

– S ⊆ RK is a bounded and closed subset of the Euclidean space,
– Act is a finite set of actions,

– sinit ∈ S is the initial state,
– T : S ×Act → (S → R≥0) yields a probability density function over S
– C : S ×Act × S → R is a cost-function for state-action-state triples,
– G ⊆ S is the set of goal states.

A run π of an MDP is a sequence of alternating states and actions s1a1s2a2 · · ·
where s1 = sinit and T (si,αi)(si+1) > 0 for all i > 0. We denote the set of all runs

of an MDPM as ΠM, and all finite runs ofM as Πf
M. We use the notation π|i to

denote the prefix of the run up to si, i.e. π|i = s1a1s2a2 · · · ai−1si. We denote the
length of a run π = s1α1s2 · · · sn as |π| = n. We let ε denote the empty run and by
agreement let |ε| = 0. To define the cost of a run π = s1a1s2a2 · · · ∈ ΠM let simin

be the first state in π which is included in G, i.e. imin = mini∈N{si ∈ π | si ∈ G}.
Then the cost of π up to G is the sum of costs until imin, defined as the random
variable CG :

CG(π) =
∑

siaisi+1∈π|imin

C(si, ai, si+1).

Definition 2 (Strategy). A (memoryless) strategy for an MDP M is a func-
tion σ : S → (Act → [0, 1]), mapping a state to a probability distribution over
Act.

Given a strategy σ, the expected costs of reaching a goal state is defined as
the solution to a Volterra integral equation as follows:

Definition 3 (Expected cost of a strategy). Let G be a set of goal-states
and let σ be a strategy. The expected cost of reaching G starting in a state s –
EMσ (CG , s) – is the solution to the following system of equations4:

EMσ (CG , s) =
∑
a∈Act

σ(s)(a) ·
∫
t∈S

T (s, a)(t) ·
(
C(s, a, t) + EMσ (CG , t)

)
dt

when s 6∈ G and EMσ (CG , s) = 0 when s ∈ G.

The problem we address in this paper is to find the strategy σ which mini-
mizes EMσ (CG , sinit). Since analytic solutions of the integral equations of Defini-
tion 3 are usually unobtainable, we develop an approximation approach based
on finite partitionings of the state space.
Example 1. Consider the MDP in Fig. 1, described as a stochastic priced timed
game [4] over the clock x and the cost-variable C. Here the state space S is given
by the values of the clock x, i.e. S = [0, 10]. The action set is Act = {a, b}.

The goal set G is (9, 10]. In the (urgent) location `0 the (probabilistic)
choice between the actions a or b is made. Note that for x > 9, neither a
nor b affects the state. In the case x ≤ 9 choosing a will reset x (at no cost),
whereas b will increase the cost by 15. In both cases – now at location `1 –
the new state (i.e. the new value of the clock x) will be chosen uniformly

4 We shall assume that the equation system has a solution for the considered MDP
and goal set under any strategy.

𝑥 ≤ 9

𝑥 ≤ 10
𝐶′ = 2

𝑥 ≔ 0𝑥 ≤ 9

𝐶 ≔ 𝐶 + 15

U

𝑥 > 9
𝑎

𝑏
𝑎, 𝑏 ℓ0 ℓ1

Fig. 1: MDP described as a stochastic
priced timed game with sinit = 0.

from the current value of x to 10.
Thus, T (x, a)(y) = 1

10 for all y ∈
[0, 10], and T (x, b)(y) = 0 whenever
y < x and T (x, b)(y) = 1

10−x when
y ≥ x. Furthermore, C(x, a, y) = 2y
for y ∈ [0, 10], and C(x, b, y) = 2(y −
x) + 15 for y ≥ x.

Let σu be the random strategy choosing uniformly between a and b for any
value of x, i.e. σu(x)(a) = σu(x)(b) = 1

2 for any x ∈ [0, 10]. Then the expected
costs Eσu(x) of reaching G from state x satisfy the following integral equation

Eσu(x) =
1

2
·
∫ 10

y=0

2y + Eσu(y)

10
dy +

1

2
·
∫ 10

y=x

15 + 2(y − x) + Eσu(y)

10− x
dy

when x ≤ 9 and Eσu(x) = 0 when x > 9. Using statistical model checking [7],
we find that Eσu(G, sinit) ≈ 81.73. Considering the deterministic strategy σ7
with σ7(x)(a) = 1 for x ≤ 7 and σ7(x)(b) = 1 for x > 7, we find that
Eσ7(G, sinit) ≈ 51.91, thus providing an improvement over the random strat-
egy. Using the learning methods presented in the next sections, we find that the
optimal strategy σo has Eσo(G, sinit) ≈ 48.16 and chooses a when x ≤ 4.8 and b
otherwise.

3 Approximation by Partitioning

The expected cost of a strategy is the solution to a Volterra integral equation.
Such equations are notoriously hard to solve, even in the case of stochastic
priced timed games, as in Example 1. In this paper we offer a solution method
combining reinforcement learning with an online partition refinement scheme.

First let us formally introduce the notion of a partition and see how it may
be used symbolically to approximate the optimal expected cost. We say that
A ⊆ 2S is a partition of S if S =

⋃
ν∈A ν and for any ν, ν′ ∈ A we have

ν ∩ν′ = ∅ whenever ν 6= ν′. We call an element ν of A a region and shall assume
that each such ν is Borel measurable (e.g. a k-dimensional interval). Whenever
s ∈ S we denote by [s]A the unique region ν ∈ A such that s ∈ ν. For δ ∈ R>0

we shall say that that A has granularity δ if diam(ν) ≤ δ for any region ν ∈ A.
We say that a partition B refines a partition A if for any ν ∈ B there exist µ ∈ A
with ν ⊆ µ. We write A v B in this case.

Given an MDP, a partitionA of its state space induces an abstracting Markov
Interval Decision Process (MIDP) [10, 14] as follows:

Definition 4. Let M = (S, Act , sinit,T , C,G) be an MDP, and let A be a finite
partition of S consistent with G5. Then MA = (SA, Act , νinit,TA, CA,GA) is the
MIDP s.t.:

5 A is consistent with G if for any ν ∈ A either ν ⊆ G of ν ∩ G = ∅.

– SA = A,
– νinit = [sinit]A is the initial state,
– ν ∈ GA if ν ⊆ G,
– TA : A×Act → (A → [0, 1]× [0, 1]) is the transition-function,
– CA : A×Act ×A → R× R is the transition cost-function

where

TA(ν, a)(ν′) =

(
inf
s∈ν

∫
ν′
T (s, a)(t)dt, sup

s∈ν

∫
ν′
T (s, a)(t)dt

)
and

CA(ν, a, ν′) =

(
inf

s∈ν,s′∈ν′
C(s, a, s′), sup

s∈ν,s′∈ν′
C(s, a, s′)

)
For a region ν and an action a, let ∆(TA(ν, a)) be the set of probability

functions over A that are consistent with TA(ν, a), i.e. if p ∈ ∆(TA(ν, a)) then∑
ν′∈A p(ν

′) = 1 and p(ν′) ∈ TA(ν, a)(ν′) for all ν′.
We can now define the lower expected costs from partitions ν ∈ A to G as

the least solution to the following (finite) system of equations6:

Emin
M,A(CA, ν) = min

a∈Act
inf

p∈∆(TA(ν,a))

∑
ν′∈A

p(ν′) ·
(
CinfA (ν, a, ν′) + Emin

M,A(CA, ν′)
)

when ν ∩ G = ∅ and Emin
M,A(CA, ν) = 0 when ν ⊆ G. Similarly, we can define the

upper expected costs Emax
M,A(CA, ν) (simply replace the occurrences of inf with

sup in the above equation). The following Theorem shows their importance for
approximating the expected cost of the optimal strategy.

Theorem 1. Let M = (S, Act , sinit,T , C,G) be an MDP and let A be a finite
partition of S consistent with G. Then for all s ∈ S:

Emin
M,A(CA, [s]A) ≤ inf

σ
EMσ (C, s) ≤ Emax

M,A(CA, [s]A)

We also note that, whenever A v B, then B offers a (possible) better ap-
proximation than A in the sense that Emin

M,A(CA, [s]A) ≤ Emin
M,B(CA, [s]B) ≤

Emax
M,B(CA, [s]B) ≤ Emax

M,B(CA, [s]A) for any s ∈ S.

Example 1. Reconsider the MDP M from Fig. 1. Now consider the partition A
of the state-space [0, 10] given by the three parts [0, 5], (5, 9] and (9, 10]. Note
that this partition is consistent with the goal set (9, 10]. The finite-state Markov
Interval Decision Process in Fig. 2 provides the abstraction MA. From this it
may be found that Emin

M,A(CA, [0, 5]) = 23.6 is obtained by the strategy σmin

with σmin([0, 5]) = a and σmin((5, 9]) = b. Similarly, Emax
M,A(CA, [0, 5]) = 152 is

obtained by the strategy σmax with σmax([0, 5]) = σmax((5, 9]) = b.

A natural question to ask now is: under which conditions may the optimal
expected cost be approximated arbitrarily closely by successively refining parti-
tions? As we shall detail now, convergence is guaranteed for bounded horizon

6 Here CinfA (ν, a, ν′) = inf
s∈ν,s′∈ν′

C(s, a, s′).

𝑥
≤
5

5
<
𝑥
≤
9

𝑥
>
9

𝑥
≤
5

5
<
𝑥
≤
9

𝑥
>
9

𝑥
≤
5

5
<
𝑥
≤
9

𝑥
>
9

𝒂

𝒃

𝒃

𝒃

[
1

2
,
1

2
]

(0,10)

[
2

5
,
2

5
]

(10,18)

[
1

10
,
1

10
]

(18,20)

[0,
1

2
]

(15,25)

[
2

5
,
4

5
]

(15,33)[
1

10
,
1

5
]

(23,35)

[0,
4

5
]

(15,23)
[
1

5
, 1]

(15,25)

1

(15,15)

Fig. 2: Markov Interval Decision Process abstracting Fig. 1.

MDPs with continuous transition and cost functions. This class covers all the
MDPs that we consider in the evaluation of our new learning algorithms.

For an MDP M = (S, Act , sinit,T , C,G) and N ∈ N, we define the induced
bounded horizon MDP MN = (SN , Act , sNinit,T

N , CN ,GN), being essentially N
unfoldings of M, i.e. SN = {0, . . . ,N} × S, sNinit = (0, sinit), T

N ((n, s), a)((n+
1, t)) = T (s, a)(t), CN ((n, s),α, ((n+ 1), t)) = C(s,α, t) and (n, s) ∈ GN if (n =
N ∨ s ∈ G). Thus in MN we will with probability 1 be in a goal state after at
most N steps. Note that any partition A of S may be extended to a partition
AN of SN by ({i} × ν) ∈ AN whenever ν ∈ A and i ∈ {0, . . . ,N}.

Theorem 2. Let M = (S, Act , sinit,T , C,G) be an MDP with T and C being
continuous functions. Let A0 v A1 v · · · v Ai v · · · be a refining sequence of
partitions consistent with G and with decreasing granularity δ0 ≥ δ1 ≥ · · · ≥ δi ≥
· · · with lim

i→∞
δi = 0. Let MN be the induced bounded horizon MDP for N ∈ N.

Then for any s ∈ S:

inf
i→∞

Emin
MN ,Ai(C

N
Ai , [(0, s)]Ai) = inf

σ
EM

N

σ (CN , (0, s)) = inf
i→∞

Emax
MN ,Ai(C

N
Ai , [(0, s)]Ai)

Proof Sketch: We show by induction on (N − n) that:

∀ε > 0.∃i.∀ν ∈ Ai.∣∣Emax
MN ,Ai(C

N
Ai , {N − n} × ν)− Emin

MN ,Ai(C
N
Ai , {N − n} × ν)

∣∣ ≤ ε
Crucial for the induction step is uniform continuity of T and C due to compact-
ness of S, i.e. ∀ε > 0.∃i.∀ν, ν′ ∈ Ai.∀a. |TAi(ν, a)(ν′)| ≤ ε.

ut

4 Algorithms

While the previous section hints that a partition refinement scheme aids in the
computation of near-optimal strategies for continuous state MDPs, it assumes

that minimal and maximal values of the transition and cost functions are known.
It can be shown that these values, in general, are undecidable to attain for
stochastic hybrid systems (which can be modeled in Uppaal SMC). We shall
therefore in the sequel rely on simulation-based learning methods, using an online
partition refinement scheme.

We first present the underlying learning algorithms as if a fixed partition is
given, then return to the partition refinement scheme in Section 4.2.

We adopt the (adaptive, online) Q- and M-learning terminology from [18] and
thus see both as methods for solving the Bellman equations online, commonly
called Q-values, while guiding the search of the state space. While Q-learning is a
so-called model-free learning method, directly learning the Q-values, M-learning
attempts to derive the Q-values from the approximate transition-functions and
cost functions. Common for both learning-methods is the online nature of the
strategy synthesis, along with an online partition refinement scheme. We only
present the pseudocode of the Q-learning variants of our algorithms here due to
space limitations.

4.1 Learning on Static Partitions

In the sequel the reader will encounter maps and partial functions as X : 2R
K

↪→
. . . . We use such partial functions for brevity and one can think of them as: the

region ν ∈ 2R
K

is decorated with some information by the X function – and ν is a
specific (continuous) region of the state space. While these functions are defined

as partial we implement them as maps over 2R
K

in which non-updated elements
have the same default value. This allows us to memorize only the (finite) number
of non-default values, thus making these maps implementable.

In the sequel we let Aα ⊆ 2R
K

denote a partition for a given action α ∈ Act .
Notice that this differs slightly from the use of A in Section 3 where we omit the
action-indexing for clarity and readability.

For both Q-learning and M-learning we shall assume the existence of the

following global two modifiable functions. 1. Fα : 2R
K

↪→ N0, for each α ∈ Act ,

yielding an occurrence count for a given region, and 2. Q : Act × 2R
K

↪→ R,
yielding an approximation of the expected cost for a given action in a given

region. By default, we let Fα(ν) = 0 and Qα(ν) = 0 for all ν ∈ 2R
K

and all
α ∈ Act . Furthermore, we let the singleton set Aα = {RK}, for all α ∈ Act , be
the initial partition.

Q-Learning Q-learning is a model-free learning method where the Q-values
are derived directly from the samples [19]. For Q-learning, in addition to the
globally defined functions, we introduce a learning-rate constant R ∈ N. In Al-
gorithm 1 we present the Q-learning training algorithm. After a uniform strategy
σ is created (line 1), samples are drawn from the MDPM in accordance with σ
(lines 3-7), backpropagated to the learning algorithm (lines 8-14) until some ter-
mination condition is met (e.g. a sample budget). Notice that we use the textbook
Q-learning update function [19] on line 12, followed by our refinement-method

Input: An MDP M, an initial state sinit, a cost-function C, a termination
criterion and a set of goal states G

Output: A near-optimal, strategy σ for the MDP M under the cost function
C for the goal G.

1 Initially let σ(s)(α) = 1
|Act| for any s ∈ RK and any α ∈ Act

2 while Termination criterion is not met do
3 π ← ε, s← sinit
4 while s 6∈ G do
5 Draw α from Act according to σ(s)
6 Draw s′ from S according to T (s,α)
7 π ← (π ◦ (s,α, s′)), s← s′

8 for i from n to 1 with (s1,α1, s2) . . . (sn,αn, sn+1) = π do
9 Let α = αn

10 Let ν = Aα[sn], ν′ = Aα[sn+1]
11 Fα(ν)← min(Fα(ν) + 1,R)
12 Qα(ν)← (1− 1

Fα(ν)
)·Qα(ν)+ 1

Fα(ν)
·(C(sn,α, sn+1)+minα′∈Act Qα′(ν′))

13 (Q,F ,A)← RefineQ(Q,F ,A, (sn,α, sn+1))
14 σ ← normalize(Q)

15 return σ
Algorithm 1: The Q-learning training algorithm.

(line 13), and a normalization of Q-values into pseudo-probabilistic weights yield-
ing a stochastic strategy (line 14).

M-Learning For M-learning (otherwise known as RTDP [16]) the aim is
to produce an approximation of the transition- and cost-function of a finite-

state MDP, where each state comes from 2R
K

. We therefore need the additional

bookkeeping function Ĉα : 2R
K × 2R

K

↪→ R tracking the empirically obtained
cost-function. While Algorithm 1 learns the Q-function directly form samples,
the equivalent M-learning algorithm infers the Q-function based on the sampled
cost and frequency function.

Determinization A deterministic, near-optimal strategy can be obtained
from the Q-function returned by Algorithm 1 by selecting, for each state, the
action with the lowest Q-value (with ties broken by a random choice).

4.2 Refinement Functions

We say that ρ : 2R
K

↪→ 2R
K×2R

K

is a refinement function iff whenever (ν′, ν′′) =
ρ(ν) then ν′ ∩ ν′′ = ∅ and ν′ ∪ ν′′ = ν. For a given action α ∈ Act we consider a

finite set of functions denoted by Rα : 2R
K

↪→ 2R
K × 2R

K

.
Note that many such functions can exist, and the method puts no restraints

on these, other than what is given above. In our implementation we restrict our-
selves to computing refinement functions defined as single-dimensional difference
constraints (as done in Figure 2 but generalized to multiple dimensions). We thus
consider partition-functions of the form ρ(ν) = ({p ∈ ν | pi ≤ b}, {p ∈ ν | pi >

b}) for some constant b and fixed dimension 0 < i ≤ K. For practical reasons
our Rα-set only consists of one such refinement function for each dimension in
the implementation. Also note that in a practical setting, one such refinement
may contain only unreachable parts of the state space, and thus occasionally
we readjust our refinement functions. We can then readjust a refinement by in-
creasing or decreasing b according to the number of samples observed in the
two different sub-refinements. This adjustment is omitted from the presented
pseudocode, but does however occur at each call to Refine{Q,M}, and entails a
reset of the statistics of the specific readjusted partition function ρ, implying a
modification of Rα. Due to the loss of information, this operation occurs only
infrequently and is guarded by statistical tests.

Observe that this continued refinement induces a sequence of MIDP abstrac-
tions, leaning on the theoretical framework presented in Section 3.

Refinement Heuristics For each region ν in the current partition Aα and each
candidate refinement (ν′, ν′′) = ρ(ν) we maintain summary statistics of the Q-
values obtained at sampled states in ν, respectively ν′. In the case of M-learning,
we also maintain statistics on transition frequencies between pairs of regions. For
the remainder of this section we focus on Q-learning. The same principles are
applied in M-learning. Our summary statistics consist of triples

(m, v, f) ∈ Ξ := R× R× N0

representing empirical means, variances, and frequency counts7. Given a new
data point x ∈ R, the statistics are updated by the US update function (see
the online appendix 10), which makes use of Welford’s algorithm for an online
approximation of variance [20] and otherwise updates the mean and frequency
appropriately.

After each update of (m′, v′, f ′) or (m′′, v′′, f ′′) we calculate two functions W
and KS as indicators for whether the distributions of Q-values in ν′ and ν′′ are
different. The first function is inspired by the test statistic of the 2-sample t-test:

W((m′, v′, f ′), (m′′, v′′, f ′′)) :=
m′ −m′′√
f ′v′ + f ′′v′′

√
f ′ + f ′′ − 2

1/f ′ + 1/f ′′

The W value provides evidence for or against equality of the two meansm′,m′′.
In order to also take possible disparities in the variances into account, we use
a second function that is modeled on the Kolmogorov-Smirnov test statistic.
For this we interpret the given means m and variances v to be given by simple
distributions with “triangular” density functions of the form

d(x) =

0 x < m− c or x > m+ c
a(x−m+ c) m− c ≤ x ≤ m
−a(m+ c− x) m ≤ x ≤ m+ c

7 Notice that Definition 1 is only applicable to integrable transition functions, voiding
most statistical assumptions, including normality. We thus merely provide heuristics.

where a, c are uniquely determined by the conditions that d(x) is a probability
density function with variance v. We then compute KS((m′, v′, f ′), (m′′, v′′, f ′′))
as the product of the maximal difference of the cumulative distribution func-
tions of triangular distributions with means and variances (m′, v′), respectively
(m′′, v′′), and a weight factor f ′f ′′/(f ′ + f ′′). We note that triangular density
functions are here used for computational convenience, not because they are
assumed to be a particularly accurate model for the actual distributions of Q-
values.

Given three thresholds tl, tu and q, with tl < tu, we now make a four-fold
distinction for the obtained W and KS values. Abbreviating (m′, v′, f ′) =: a and
(m′′, v′′, f ′′) =: b:

DIFq,t(a, b) =


- if KS(a, b) > q and W(a, b) > tu

/ if a.m < b.m and W(a, b) < tl

. if b.m < a.m and W(a, b) < tl

• otherwise

Here the outcomes are heuristics as to whether (/) a has a significantly lower
mean than b (and vice-versa for .), (-) the distributions of a and b significantly
differ but a and b have similar mean, and (•) not enough data for a verdict or a
and b have similar distributions.

Using the outcome of DIFq,t(a, b) directly to decide whether to refine ν to
ν′, ν′′ can lead to a somewhat fragile behaviour, due to possible large fluctuations
of sampled Q-values on the one hand, and dependencies between successive sam-
ples on the other. We therefore maintain a discounted running count (x/,x.,x-)
of the three critical outcomes /, ., -, and perform a refinement when one of these
counts exceeds a given threshold ψ.

4.3 Q-Learning on Partitions

We present the partition refinement function for Q-learning in Algorithm 2.
The algorithm consists of two main parts, first the statistics are updated and
then a (if deemed necessary) a refinement occurs. In lines 2-8 we update the
statistics of candidate refinements. Lines 7 and 8 update the discounted counts
(x/,x.,x-) using a simple procedure LMS (see the online appendix 10).The LMS-
function maintains a least mean square-like filter over each of the three significant
outcomes of the DIF-function, essentially smoothing out jitter.

In line 9 we identify the candidate partitions that display significantly differ-
ent behaviour within their regions. If one or more candidates is deemed signifi-
cant, we choose one randomly and update the partition A, the Q-function and
the F-function in an appropriate manner (lines 13-16).

4.4 M-Learning on Partitions

While Algorithm 2, much in the spirit of Q-learning, infers the variance of a new
hypothetical split in a model-free way, we here adopt an M-learning approach for

Input: RefineQ(Q,F ,A, (s,α, s′))
Output: Refined Q, F and A-functions.

1 Let ν = Aα[s], ν′ = Aα[s′]
2 c← C(s,α, s′) + minα′∈Act Qα′(ν′)
3 for all ρ ∈ Rα(ν) do
4 Let (ν̃′, ν̃′′) = ρ(ν) and let ν̃ ∈ {ν̃′, ν̃′′} s.t. s ∈ ν̃
5 (m, v, f)← Statsα(ν̃)
6 Statsα(ν̃)← US(Statsα(ν̃), (1− 1

f
) ·m+ 1

f
· c)

7 ./← DIFq,t(Statsα(ν̃′), Statsα(ν̃′′))
8 LMSValρα(ν)← LMS(LMSValρα(ν), ./)

9 Let R′ ← {ρ ∈ Rα | max(x/,x.,x-) ≥ ψ where (x/,x.,x-) = LMSValρα(ν)}
10 if R′ 6= ∅ then
11 Pick ρ randomly from R′

12 Let (ν̃′, ν̃′′) = ρ(ν)
13 Aα ← (Aα \ ν) ∪ {ν̃′, ν̃′′}
14 (m′, v′, f ′)← Statsα(ν̃′), (m′′, v′′, f ′′)← Statsα(ν̃′′)
15 Qα(ν̃′)← m′, Qα(ν̃′′)← m′′

16 Fα(ν̃′)← f ′, Fα(ν̃′′)← f ′′

17 return 〈Q,F ,A〉
Algorithm 2: Partition refinement function for Q-learning

the inference of variance over the Q-values obtained, which in turn are computed
from the empirical cost (Ĉ) and transition-function (inferred from the frequency-
function). As such, the variance of the Q-function for M-learning cannot be
inferred from samples (as in Q-learning), but has to stem from an aggregate over
the empiric cost and transition functions. This change exacerbates some types
of errors compared to Q-learning (inaccuracies in aggregation) while reducing
others (sensitive to wildly fluctuating Q-values in the successor states). The full
pseudocode for RefineM is available in the online appendix 10.

5 Experimental Results

To evaluate the proposed methods we conduct a series of experiments on a num-
ber of different case studies, each generated from one of four scalable models
that we will shortly present in more detail. Furthermore, we provide the im-
plementation of the presented algorithms under the LGPL license8 as well as a
library for parsing and working with the strategies9. We run our experiments
on an AMD Opteron 6376 processor, limited to 16 GB of RAM. The models,
full table of results and the version of Uppaal Stratego implementing the
proposed algorithms is avalible in an online appendix10.

For each instance we learn a strategy from varying numbers of samples (i.e.
the training-budget). We measure time and memory consumption of learning.

8 http://doi.org/10.5281/zenodo.3252096
9 http://doi.org/10.5281/zenodo.3252098

10 http://doi.org/10.5281/zenodo.3268381

http://doi.org/10.5281/zenodo.3252096
http://doi.org/10.5281/zenodo.3252098
http://doi.org/10.5281/zenodo.3268381

We evaluate the quality of a strategy by measuring the cost on a test run of 1000
samples using the determinized version of the learned strategy. Each experiment
was repeated 50 times using a different initial random seed. We here report the
25% quantile and the 50% quantile (median) of the costs obtained in the test
runs.

The proposed algorithms are compared to those of David et. al. [5] (shortened
D-algorithms). The D-algorithms perform batch learning and therefore require
a slightly different learning regime. We train the D-algorithms on 20 batches,
each of 1

20 of the training budget. For each batch, we allow for an extra 1
20 of

the training budget to be used for strategy evaluation, to avoid overfitting. This
intermediate validation step gives an advantage to the D-algorithms over Q-
and M-learning, which are only evaluated after training on the full budget has
completed. In addition, we consider only the best-performing of the D-algorithms
for each model instance and training budget combination (measured in terms of
the 25% percentile).

For Q-learning we fix R = 2, tl = 0.15, tu = 1.75, q = 0.25, d = 0.99 and
∇ = 0.02. For M-learning we fix tl = 0.05, tu = 1.8, q = 0.2, d = 0.99 and
∇ = 0.97. These constants were settled by an initial set of experiments.

We note that all the presented case studies effectively fall in the class of
switch-control systems, in which we sample only until a finite horizon, thus also
residing inside the conditions of Theorem 2.

We next provide a short description of our models. Bouncing Ball: We
model N balls in the physical system displayed in Figure 3. The goal is to keep
the ball “alive” by utilizing the piston for hitting the ball - however, each hit
comes with a cost and only has an effect if the ball is above a certain height.
A sample trace can be seen in Figure 4 of the ball under an untrained strategy
(many hits, yet still a “dead” ball), and similar for a trained strategy (fewer and
more significant hits). A visualization of the learned cost function can be seen in
Figure 3. The middle image is the cost of the hitting action, the rightmost image
is the cost of not hitting. Floorheating: We slightly modify the case study of
Larsen et. al. [12] by replacing the outdoor temperature measurements/predic-
tions with a simplified sinusoidal curve. Highway Control: We model a set
of different highway scenarios for an autonomous vehicle. The goal of the con-
troller is to avoid collisions for as long as possible (i.e. minimize the time from
a crash until the time-bound of the simulation). Several environment cars are
in the models, each having stochastic behaviour and reacting in a non-trivial
(but intuitive) way to the proximity of other cars. A visualization can be found
in the online appendix 10. Mixed Integer Linear Programming: We have
obtained a series of MILP programs for optimizing a switch-control system from
an industrial partner. The purpose is to minimize the cost of energy utilization
of a residence-unit by the use of buffers and on-demand smart-metering. We note
that our methods are capable of delivering controllers which are sufficiently close
to the optimal solution s.t. these are usable within the domain of our partner,
often with significantly reduced computation times.

hit!

h'=v

v'=-9.81

v

h

(0,0)

(-17,21)

v

h

(0,0)

(-17,21)

Fig. 3: A visualization of the BouncingBall model and the learned, colour-coded
Q-function for hit and no − hit action (red being more expensive and green less)
in over the h (height) and v (velocity) state variables.

Results Due to brevity we only present a representative subset of the ex-
periments conducted, a full set of results can be found in the online appendix 10.

In general we observe significantly improved convergence tendencies when
applying M- and Q-learning compared to D-learning.

The D-learning algorithms exhibit a lack of convergence (BouncingBall), or
even divergence from the optimal controller (e.g. Highway-3car) which we be-
lieve can be attributed to the filtering-step [5], essentially biasing the training-
samples in an optimistic direction. In the BouncingBall experiments, the lack of
model refinement of the D-algorithms combined with the filtering-step explains
the degrading performance with the addition of balls whereas the Highway-
3car experiment degrades with the sampling-size, suggesting a higher degree of
the aforementioned biased samples from filtering. These effects can, to a lesser
degree, be observed in the Floorheating experiments, where the D-algorithms
perform equally well to M- and Q-learning with a low sampling budget but Q-
and M-learning eventually overtake the D-algorithms.

While both Q- and M-learning show similar tendencies, differences remain
in the speed of convergence. In [16] the authors note a faster convergence of
M-learning (in terms of sample-size) at the cost of a computational overhead,
with both effects attributed to the explicit model representation and the de-
layed propagation of Q-values when applying Q-learning. Another benefit of
M-learning is the omission of the learning rate R, yielding full use of historical
samples. To some degree we observe a similar tendency in the MILP, FloorHeat-

Fig. 4: A plot of the bouncing ball under control of a learned strategy (top) and
a random strategy (bottom) with vertical lines indicating a hit .

ing and Highway-3car experiments (in terms of convergence), with M-learning
eventually outperforming Q-learning in these experiments.

In the remaining experiments we observe the computationally simpler Q-
learning being dominant. While M-learning can converge faster if the learned
transition relation and the learned partitions are reasonably accurate, we hy-
pothesize that complex cost functions impede performance due to the difficulty
of learning this explicit representation. On the other hand, Q-learning trains
directly on the Q-functions and can thus manage with simpler representation.
This is in particular what is observed in the BouncingBall examples.

Q-learning puts higher weight on new samples given the learning-rate (R), im-
plicitly forgetting old samples. When the underlying partition of the statespace
changes, Q-learning will be quicker to adapt, while M-learning has to re-train
parts of the approximate transition function. This works well when changes are
minor but is impeding when drastic changes in the explicit representation occur.

Finally, to briefly touch upon the runtime, we observe in general that Q-
learning uses roughly 50%-70% of the time of the D-algorithms, while M-learning
is slightly slower than Q-learning, utilizing 70%-85% of the time of D-learning.
However, we notice that the Highway-examples take up to 5 times longer for
M-learning than Q-learning, warranting further investigation.

6 Conclusion

Throughout this paper we have argued for the correctness and theoretical sound-
ness of applying Q- and M-learning on a MIDP-abstraction of a Euclidean MDP.
Leaning on this theoretical argumentation, we introduced an online partition re-
finement adaptions of Q- and M-learning, facilitating a data-driven refinement
scheme. While we leave the theoretical question of convergence open for online
refinement, our experiments demonstrate convergence-like tendencies for both
Q- and M-learning. In particular, we observe that better convergence is attained
with little or no additional overhead compared to the methods of [6]. In fact,
for certain examples like the Bouncing Ball, we see that methods of [6] show
no signs of convergence. We also observe that Q-learning seems to be computa-
tionally lighter, but with generally slower convergence compared to M-learning,
supporting the claims of Strehl et. al. [16].

Several directions of future work are opened by this paper, including direct
comparison with Neural Network alternatives, verification of the learned strate-
gies, feature-reductions and online partition simplification. We also think that
alternate refinement heuristics could improve the performance of the methods,
such as using rank-based statistical tests. More complex refinement functions
and function representation could also improve the proposed methods.

Bibliography

[1] A. G. Barto, S. J. Bradtke, and S. P. Singh. Learning to act using real-
time dynamic programming. Artif. Intell., 72(1-2):81–138, Jan. 1995. ISSN

Alg 25% 50% 25% 50% 25% 50% 25% 50% 25% 50% 25% 50% 25% 50%

Runs 100 250 500 1000 2500 5000 10000

BouncingBall-1

M 100 188 57 73 46 53 42 46 40 41 39 39 38 39

Q 61 75 47 71 44 49 41 47 40 42 40 41 39 40

D 317 354 5044 5052 5042 5050 78 100 70 88 68 104 66 160

BouncingBall-2

M 203 367 204 376 151 242 134 179 124 184 82 101 72 102

Q 152 236 117 189 112 153 94 134 95 114 76 86 69 76

D 361 4840 3865 8550 10096 10103 171 254 487 1624 935 3265 1244 6015

BouncingBall-3

M 392 1032 430 1017 364 1198 402 739 197 388 187 230 154 250

Q 257 362 204 283 142 242 181 345 120 166 114 136 106 128

D 377 10635 3373 10168 15136 15155 417 1043 1952 4144 1791 6763 2595 9283

Floorheating-1-5

M 394 419 381 391 366 380 327 341 283 289 272 276 264 267

Q 491 568 368 405 340 398 285 302 283 292 281 287 273 278

D 344 367 370 393 374 413 341 369 335 353 335 347 296 310

Floorheating-6-11

M 395 450 357 389 343 371 323 337 300 305 285 290 277 282

Q 1059 1394 614 767 450 553 387 457 296 307 288 298 284 287

D 487 527 496 520 495 530 438 468 419 437 383 415 355 384

Highway-3car

M 113 138 81 119 54 85 38 57 22 31 16 22 11 14

Q 108 163 70 118 25 97 11 31 9 15 8 12 5 8

D 0 0 0 3 2 10 2 13 3 9 1 5 1 6

Highway-4car-overtake4

M 131 156 134 147 106 123 96 107 49 69 18 28 8 12

Q 126 160 97 140 108 128 80 104 58 73 31 49 17 22

D 103 104 56 100 57 94 33 67 43 67 38 63 31 71

MILP-sfhd-4500

M 35 39 30 32 28 29 25 26 23 23 22 23 22 22

Q 228 243 82 205 37 47 32 34 29 30 28 28 26 26

D 38 40 36 40 37 40 36 39 35 38 33 37 32 35

MILP-sfhd-9500

M 65 81 80 99 53 62 55 63 60 66 59 64 57 61

Q 77 77 56 63 55 61 56 59 56 61 58 65 61 70

D 77 77 77 77 72 77 69 76 71 77 65 71 68 75

Table 1: Comparison of {M ,Q,D}-learning in terms of expected cost of the strat-
egy synthesized. We report the 25 percentile and the median. All experiments
were repeated 50 times.

0004-3702. doi: 10.1016/0004-3702(94)00011-O.

[2] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification
and regression trees. 1984.

[3] P. R. D’Argenio, B. Jeannet, H. E. Jensen, and K. G. Larsen. Reduction
and refinement strategies for probabilistic analysis. In Process Algebra and
Probabilistic Methods: Performance Modeling and Verification, pages 57–76.
Springer, 2002. ISBN 978-3-540-45605-6.

[4] A. David, K. G. Larsen, A. Legay, M. Mikucionis, D. B. Poulsen, J. van
Vliet, and Z. Wang. Statistical model checking for networks of priced
timed automata. In FORMATS 2011, pages 80–96, 2011. doi: 10.1007/
978-3-642-24310-3\ 7.

[5] A. David, P. G. Jensen, K. G. Larsen, A. Legay, D. Lime, M. G. Sørensen,
and J. H. Taankvist. On time with minimal expected cost! In ATVA 2014,

pages 129–145. Springer, 2014.
[6] A. David, P. G. Jensen, K. G. Larsen, M. Mikučionis, and J. H. Taankvist.

Uppaal Stratego. In TACAS 2015, pages 206–211. Springer, 2015.
[7] A. David, K. G. Larsen, A. Legay, M. Mikucionis, and D. B. Poulsen. Uppaal

SMC tutorial. STTT, 17(4):397–415, 2015. doi: 10.1007/s10009-014-0361-y.
[8] D. Henriques, J. G. Martins, P. Zuliani, A. Platzer, and E. M. Clarke.

Statistical model checking for markov decision processes. In QEST 2012,
pages 84–93, Sept 2012. doi: 10.1109/QEST.2012.19.

[9] X. Huang, M. Kwiatkowska, S. Wang, and M. Wu. Safety verification of
deep neural networks. In R. Majumdar and V. Kunčak, editors, CAV 2017,
pages 3–29, Cham, 2017. Springer International Publishing. ISBN 978-3-
319-63387-9.

[10] M. Z. Kwiatkowska, G. Norman, and D. Parker. Game-based abstraction
for markov decision processes. In (QEST 2006), pages 157–166. IEEE Com-
puter Society, 2006. ISBN 0-7695-2665-9. doi: 10.1109/QEST.2006.19.

[11] K. G. Larsen, M. Mikučionis, and J. H. Taankvist. Safe and Optimal
Adaptive Cruise Control, pages 260–277. Springer International Publishing,
Cham, 2015. ISBN 978-3-319-23506-6. doi: 10.1007/978-3-319-23506-6 17.

[12] K. G. Larsen, M. Mikučionis, M. Muñiz, J. Srba, and J. H. Taankvist.
Online and compositional learning of controllers with application to floor
heating. In M. Chechik and J.-F. Raskin, editors, TACAS 2016, pages
244–259, Berlin, Heidelberg, 2016. Springer Berlin Heidelberg. ISBN 978-
3-662-49674-9.

[13] K. G. Larsen, A. Le Coënt, M. Mikučionis, and J. H. Taankvist. Guaranteed
control synthesis for continuous systems in uppaal tiga. In R. Chamber-
lain, W. Taha, and M. Törngren, editors, Cyber Physical Systems. Model-
Based Design, pages 113–133, Cham, 2019. Springer International Publish-
ing. ISBN 978-3-030-23703-5.

[14] Y. Z. Lun, J. Wheatley, A. D’Innocenzo, and A. Abate. Approximate ab-
stractions of markov chains with interval decision processes. In ADHS 2018,
pages 91–96, 2018. doi: 10.1016/j.ifacol.2018.08.016.

[15] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Belle-
mare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al.
Human-level control through deep reinforcement learning. Nature, 518
(7540):529, 2015.

[16] A. L. Strehl, L. Li, and M. L. Littman. Incremental model-based learners
with formal learning-time guarantees. CoRR, 2012.

[17] L. Sun, Y. Guo, and A. Barbu. A Novel Framework for Online Supervised
Learning with Feature Selection. arXiv e-prints, art. arXiv:1803.11521,
2018.

[18] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction.
MIT press, 2018.

[19] C. J. C. H. Watkins. Learning from delayed rewards. PhD thesis, King’s
College, Cambridge, 1989.

[20] B. P. Welford. Note on a method for calculating corrected sums of squares
and products. Technometrics, 4(3):419–420, 1962. doi: 10.1080/00401706.
1962.10490022.

A Bookkeeping Algorithms

We here present Algorithm 3 for updating mean, variance and frequency-count,
with the running-variance approximation computed using Welfords algorithm
and Algorithm 4 for maintaining the discounted outcomes of the DIF-check using
a least-mean-squares like filter.

Input: A tuple (m, v, f) ∈ Ξ and a new sample-point x ∈ R
Output: An updated tuple (m̂, v̂, f̂) ∈ Ξ

1 f̂ ← f + 1

2 m̂← x+m·f
f̂

3 v̂ ← (|m−x|·|m̂−x|−v)+v·f
f̂

4 return (f̂ , m̂, v̂)
Algorithm 3: The US function update.

Input: LMS((x/,x.,x-), d) with d ∈ {/, ., -, •}
Output: New values (x′/,x

′
.,x
′
-).

1 if d = • then
2 return (x/,x.,x-)

3 x′d ← xd + (1− xd) · ∇
4 for d′ ∈ {/, ., -} \ {d} do
5 x′d′ ← xd′ + (0− xd′) · ∇
6 return (x′/,x

′
.,x
′
-)

Algorithm 4: The LMS algorithm for maintaining discounted counts.

B M-Learning

Initially, let us re-cast the frequency-count function F to accommodate the needs

of the M-learning approach. We let Fα : 2R
K ×2R

K → N0, for each α ∈ Act , yield
an occurrence count for a given region pair. Using this new function, we can
introduce a short-hand function for the probability-estimates.

P̂α(ν, ν′) =
Fα(ν, ν′)∑

ν′′∈Aα Fα(ν, ν′′)

In addition, we introduce the following definition of “the historical union of
all partitions”.

– Aα ⊆ 2R
K

denoting the union of the current and all prior partitionings,
initially Aα = Aα, and

Input: An MDP M, an initial state sinit, a cost-function C, a termination
criterion and a set of goal states G

Output: A near-optimal, strategy σ for the MDP M under the cost function
C for the goal G.

1 Initially let σ(s)(α) = 1
|Act| for any s ∈ RK and any α ∈ Act

2 while Termination criterion is not met do
3 π ← ε, s← sinit
4 while s 6∈ G do
5 Draw α from Act according to σ(s)
6 Draw s′ from S according to T (s,α)
7 π ← (π ◦ (s,α, s′)), s← s′

8 for i from n to 1 with (s1,α1, s2) . . . (sn,αn, sn+1) = π do
9 Let α = αn

10 Let ν = Aα[sn], ν′ = Aα[sn+1]
11 Fα(ν, ν′)← Fα(ν, ν′) + 1

12 Ĉα(ν, ν′)← C(sn,α,sn+1)+Ĉα(ν,ν′)·(Fα(ν,ν′)−1)

Fα(ν,ν′)

13 Qα(ν)←
∑
ν′′∈Aα〈(Ĉα(ν, ν′′) + minα′∈Act〈Qα′(ν′′)〉) · P̂α(ν, ν′′)〉

14 (Q,F , Ĉ,A)← RefineM(Q,F , Ĉ,A, (sn,α, sn+1))
15 Aα ← Aα ∪ Aα
16 For all α′′ ∈ arg minα′∈Act\{α}Qα′(ν′′′) where ν′′′ ∈ Aα′′ and sn ∈ ν′′′

Qα′′(ν′′′)←
∑
ν′′∈Aα〈(Ĉα′′(ν′′′, ν′′)+minα′∈Act〈Qα′(ν′′)〉)·P̂α(ν′′′, ν′′)〉

17 return σ
Algorithm 5: The M-learning training algorithm. The algorithm is similar
to Algorithm 1 except for the body of the reversing loop in line 8.

– A =
⊎

α∈Act

Aα.

Initially we let Ĉα(ν, ν′) = 0 for any α ∈ Act and any ν, ν′ ∈ 2R
K

and define
P as follows where we by agreement let division by zero yield zero. If we consider
a fixed partition and assume that the refinement step in line 14 of Algorithm 7
as the identity-function, we can see that the only difference with the algorithms
original construction [16] is the update of alternative in lines 16 of Algorithm 7.
We observed that the introduction of these extra backpropagations improved
the performance of the method without a major performance hit.

C Refinement Function for M-Learning

In M-learning we have to compute aggregates over several cost-functions (and
their futures), in the form of elements of Ξ. We therefore introduce the in-line
statistics-combinator ⊕ : ξ × ξ → ξ.

⊕((m, v, f), (m′, v′, f ′)) = (m+m′, max(v, v′), f)

We also define a statistics aggregator over multiset of statistics in Algo-
rithm 6.

Input: A multiset X of elements from Ξ.
Output: An aggregated normal distribution.

1 f ←
∑

(m′,v′,f ′)∈X f
′

2 m← 1
f

∑
(m′,v′,f ′)∈X m

′f ′

3 v ← 0
4 for all (m′, v′, f ′) from X do

5 s′ ←
√
v′

6 v ← v + f ·((m−(m′+s′))2+(m−(m′−s′))2)
2

7 return (m, v
f

, f)

Algorithm 6: The ⊗ algorithm for aggregating a multiset of elements of Ξ.

Furthermore, we assume that Algorithm 5 stores the computed variance along

with the Q-value; i.e. we assume that Qα(ν) ∈ Ξ for any α ∈ Act and ν ∈ 2R
K

(This computation can be deduced from the above aggregation-functions and
the Algorithm 7).

We can now present the main pseudo-code of RefineM. Algorithm 7 has three
main parts; first the hypothetical model (for each hypothetical partition) is up-
dated (lines 4-9). Then, if one or more refinement-functions are found significant
(line 10), we update the partition-function and populate the transition and cost
functions (lines 15-19) of the new model with the values previously computed
(ξρ). Lastly we update the “ancestor” regions of ν (omitted for brevity) as in-
coming empiric transitions might still exist leading to these. In the ancestor
update on line 21 we let the ancestor assume the highest Q-value of its immedi-
ate children, update recursively in a direct line from ν.

D Model Description

The Bouncing Ball: N balls are bouncing off the ground, each with a (small)
random offset, and a (small) random change in speed every time it hits the
ground or hits the bat of the controller. Over time, the ball looses energy, and
will eventually be out of the range for the bat, at which point the ball is declared
“dead” and will be thrown anew.

The controller will now incur a heavy cost every time a ball reaches the
“dead” state, and a small cost every time the bat is swung. An optimal controller
will thus use as few swings as possible to keep the balls alive. All balls within
range are hit when the bat is swung and the bat can only be swung on clock ticks.
In Figure 4 we can see two simulations of a bouncing ball; one computed using
a random controller and one computed using a learned controller. We observe
that even though the random strategy hits with a higher rate than the learned,
the ball eventually “dies” (at timestep 23) - which is not the case for the learned
strategy.

Floorheating: We have modified the model of the Floorheating case study
of Larsen et. al. [12], to optimize the control over a 24-hour period. We model a

Input: RefineM(Q,F , Ĉ,A, (s,α, s′))
Output: New Q, F , Ĉ and A-functions

1 Let ν = Aα[s], ν′ = Aα[s′]
2 Let ξ′ρ = ξ′′ρ = (0, 0, 0) for all ρ ∈ Rα(ν)
3 for all ρ ∈ Rα(ν) do
4 Let (ν̃′, ν̃′′) = ρ(ν) and let ν̃ ∈ {ν̃′, ν̃′′} s.t. s ∈ ν̃
5 Statsα(ν̃, ν′)← US(Statsα(ν̃, ν′), C(s,α, s′))

6 ξ′ρ ← ⊗

(⊎
ν′′∈A

{Statsα(ν̃′, ν′′)⊕minα′∈Act(Qα′(ν′′))}

)

7 ξ′′ρ ← ⊗

(⊎
ν′′∈A

{Statsα(ν̃′′, ν′′)⊕minα′∈Act(Qα′(ν′′))}

)
8 ./← DIFq,t(ξ

′, ξ′′)
9 LMSValρα(ν)← LMS(LMSValρα(ν), ./)

10 Let R′ ← {ρ ∈ Rα | max(x/,x.,x-) ≥ ψ where (x/,x.,x-) = LMSValρα(ν)}
11 if R′ 6= ∅ then
12 Pick ρ randomly from R′

13 Let (ν̃′, ν̃′′) = ρ(ν)
14 (m′, v′, f ′)← ξ′ρ, (m′′, v′′, f ′′)← ξ′′ρ
15 Qα(ν̃′)← m′, Qα(ν̃′′)← m′′

16 for all ν′′ ∈ A do
17 (m′, v′, f ′)← Statsα(ν̃′, ν′′), (m′′, v′′, f ′′)← Statsα(ν̃′′, ν′′)

18 Ĉα(ν̃′, ν′′)← m′, Ĉα(ν̃′′, ν′′)← m′′

19 Fα(ν̃′, ν′′)← f ′

2
, Fα(ν̃′′, ν′′)← f ′′

2

20 Aα ← (Aα \ {ν}) ∪ ρ(ν)

21 Do a recursive update on the ancestors of ν

22 return 〈Q,F , Ĉ,A〉
Algorithm 7: The partition refinement algorithm for M-learning

simple outdoor weather sequence, letting the temperature range over (approxi-
mately) 0-10 degrees in a sinusoidal form during the day. Both the parameters
of the sinusoid and the configuration of the doors are influenced by stochastics.
At the same time, the controller will only manage roughly 50% of the heating
system at any time, with the remainder being under the control of a bang-bang
controller. We use the original cost measure of comfort, which has to be mini-
mized, but report scaled-down results (by a factor of 100) for brevity.

Highway Control: In this example, the controller is tasked with steering a
car on a highway. Next to the controller, on a two track highway, N −1 cars will
be placed. Each other car will have a simple, but stochastic, hardcoded strategy
for their behavior, such that they react to the movement of the controller and
the other cars. At each clock tick, the controller (and the other cars) can choose
to either accelerate or decelerate in accordance with nine predefined vectors. As
input to the controller we only give the measures of 8 different proximity sensors
(and their delta since the last clock tick) along with the current velocity vector
of the car (18 features in total).

If the controller crashes into another car, it will be punished heavily, similarly
if it drives off the road. In contrast, we give a small reward to the controller for
each time unit it remains without crashes.

A good controller is one that stays on the road, avoids the other cars and
has a reasonable speed. We evaluate the controller on its ability to minimize the
time remaining of an episode (210 seconds) after a crash has occurred.

Mixed Integer Linear Programming: Our fourth case study is given as
a Mixed Integer Linear Program, modeling the heating system of a modern one-
family house.The model arises from a collaboration with an industrial partner.
While an optimization problem formalized as a MILP can be solved analytically,
such a computation might be too slow for the given application area. The sys-
tem differs from that of Larsen et. al.[12] in multiple ways; no probabilities are
present, the thermodynamics of the building are modeled in greater detail and
the overall setup of the heating system is radically different. As it is out of the
scope of this paper, we refrain from discussing the quality of the approximate
solutions compared to their analytic counterpart. While we make the Bounc-
ing Ball and Highway models available online, the MILP problems cannot be
published per request of our industrial partner.

