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Preface

The ABCD Neurocognitive Prediction Challenge (2019 ABCD-NP-Challenge; https://
sibis.sri.com/abcd-np-challenge) invited researchers to submit methods for predicting
fluid intelligence from T1-weighted MRI of 8669 children (age 9–10 years) recruited
by the Adolescent Brain Cognitive Development Study (ABCD) study—the largest
long-term study of brain development and child health in the United States to date. The
first ABCD-NP-Challenge was organized in conjunction with the 22nd International
Conference on Medical Image Computing and Computer Assisted Intervention
(MICCAI) held in October 2019 in Shenzhen, China. In total, 124 teams registered for
the challenge. There were no limits or restrictions on team members as long as the team
complied with the National Institute of Mental Health (NIMH) Data Archive Data Use
Certification of the ABCD project and members of the team were not from labs
associated with the ABCD study (https://abcdstudy.org/). Each team was instructed to
use the NIMH Data Archive (NDA) portal to download the T1-weighted MRI, which
the organizers had skull-stripped and affinely aligned to the SRI 24 atlas. In addition,
the challenge organizers provided brain parcellations defined by the atlas and a CSV
file with the corresponding volume measurements of each region of interest (ROI).
Information about the ABCD Data Repository can be found at https://nda.nih.gov/
abcd/about.

The NDA portal also provided the residual fluid intelligence scores of 4154 subjects
for training (3739 samples) and validation (415 samples). Fluid intelligence is a major
component in determining general intelligence. Determining the neural mechanisms
underlying general intelligence is fundamental to understanding cognitive develop-
ment, how this relates to real-world health outcomes, and how interventions (education,
environment) might improve outcomes through adolescence and into adulthood. The
fluid intelligence scores recorded by the ABCD study were measured via the NIH
Toolbox Neurocognition battery. The scores provided by the challenge organizers were
pre-residualized on data collection site, sociodemographic variables, and brain volume.
The R code for computing the residual scores was accessible through the challenge
website. The residual fluid intelligence scores of the 4515 subjects used to test each
method were not released but had to be predicted based on the provided T1-weighted
MRI. The corresponding raw fluid intelligence scores and demographic factors were
first made accessible to the public via the ABCD Data Release 2.0, which was released
after the submission deadline (March 24, 2019) of the challenge.

There were 29 submissions, of which 24 were accepted to the challenge after
passing a single-blinded review. An eligible submission consisted of a CSV file
containing the predictions of the fluid intelligence based only on the provided
T1-weighted MRIs of at least 99% of the 4402 test subjects, the source code generating
those predictions, and a manuscript describing the method and findings. The document
needed to clearly describe the data used for prediction, the method, and findings
including the prediction error during training and validation. Authors submitting
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multiple manuscripts needed to describe methods and results that were different from
each other and from previously published material. With these criteria, manuscripts of
some submissions were merged resulting in a total of 21 papers, which are included in
this book regardless of the ranking in the challenge. Each paper is described in one
chapter and includes detailed implementations steps, analysis of the results, and
comparison with baseline methods.

Contestants were ranked separately on the validation data set and on the test data
sets. For each data set, the organizers computed the mean squared error (MSE) between
their predicted scores and the pre-residual fluid intelligence scores according to
publicly available R code. The error of missing predictions was the largest MSE from
among the set of values produced by the same algorithm on the subjects in the dataset.
Overall, 19 submissions (out of 24) were better than a naïve predictor, i.e., the mean
intelligence score based on the training data. These results revealed that the 2019
ABCD-NP-Challenge was grand. Structural T1-weighted MRI should contain more
information about fluid intelligence as at that age intelligence is not yet considered a
result of education and thus mostly associated with family history, including genetics.
Of the MRI modalities acquired by ABCD, T1-weighted MRI modalities most closely
linked to genetics.

August 2019 Kilian M. Pohl
Wesley K. Thompson

Ehsan Adeli
Marius George Linguraru
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