arXiv:1905.10831v1 [g-bio.NC] 26 May 2019

ABCD Neurocognitive Prediction Challenge
2019: Predicting individual fluid intelligence
scores from structural MRI using probabilistic
segmentation and kernel ridge regression

Agoston Mihalik"2*(), Mikael Brudfors'3*(), Maria Robu"4(), Fabio S.
Ferreira!2(, Hongxiang Lin'(®, Anita Rau"*@, Tong Wu' 2, Stefano B.
Blumberg! (), Baris Kanber®{), Maira Tariq'/(®, Maria Del Mar Estarellas
Garcia!, Cemre Zor!»2(%, Daniil I. Nikitichev™*(), Janaina
Mourao-Miranda®?# (%, and Neil P. Oxtoby!#

! Centre for Medical Image Computing (CMIC),
Department of Computer Science &
Department of Medical Physics and Biomedical Engineering,
2 Max Planck UCL Centre for Computational Psychiatry and Ageing Research,
3 The Wellcome Centre for Human Neuroimaging,
4 Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS),
5 Department of Clinical and Experimental Epilepsy,
Queen Square Institute of Neurology;

University College London, Gower Street, London, WC1E 6BT, United Kingdom

* # These authors contributed equally to this work.

Abstract. We applied several regression and deep learning methods to
predict fluid intelligence scores from T1-weighted MRI scans as part of
the ABCD Neurocognitive Prediction Challenge (ABCD-NP-Challenge)
2019. We used voxel intensities and probabilistic tissue-type labels de-
rived from these as features to train the models. The best predictive
performance (lowest mean-squared error) came from Kernel Ridge Re-
gression (KRR; A = 10), which produced a mean-squared error of 69.7204
on the validation set and 92.1298 on the test set. This placed our group
in the fifth position on the validation leader board and first place on the
final (test) leader board.
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1 Introduction

Establishing the neurobiological mechanisms underlying intelligence is a key area
of research in Neuroscience [I} [2]. General intelligence at a young age is predictive
of later educational achievement, occupational attainment, and job performance
[3HE]. Moreover, intelligence in childhood or early adulthood is associated with
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health outcomes later in life as well as mortality [5], [7HI0]. Thus, understanding
the mechanisms of cognitive abilities in children potentially has important impli-
cations for society and can be used to enhance such abilities, for example through
targeted interventions such as education and the management of environmental
risk factors [4] [I1].

Neuroimaging can play a key role in advancing our understanding of the neu-
robiological mechanisms of cognitive ability. Several brain-imaging studies have
shown that total brain volume is the strongest brain imaging derived predic-
tor of general intelligence [I2HI4] (r ~ 0.3 — 0.4). To a somewhat lesser degree,
regional cortical volume and thickness differences in the frontal, temporal, and
parietal lobes have also been linked to intelligence [12, 13| [I5HI7]. Converging
neuroimaging evidence led to the proposal of the parieto-frontal integration the-
ory [I8] whereby a distributed network of brain regions is responsible for the
individual variability in cognitive abilities. This theory is also supported by hu-
man lesion studies [19] 20].

The ABCD-NP Challenge 2019 asked the question “Can we predict fluid
intelligence from T1-weighted MRI?” We took an exploratory, data-driven ap-
proach to answering this question — a hackathon organised by our local re-
search centres: the UCL Centre for Medical Image Computing (CMIC) and
Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS).
Our centres aim to address key medical challenges facing 21st century soci-
ety through world-leading research in medical imaging, medical image analysis,
and computer-assisted interventions. OQur expertise extends from feature extrac-
tion/generation through to image-based modelling [2I], machine learning [22-
24, and beyond. The hackathon involved researchers across research groups in
our centres, in addition to colleagues from the affiliated Wellcome Centre for Hu-
man Neuroimaging and the Department of Clinical and Experimental Epilepsy
at UCL. The hackathon took place on an afternoon in February 2019, after which
we followed up with regular progress meetings.

In this paper we report our findings for predicting fluid intelligence in 9/10-
year-olds from T1-weighted MRI using machine learning regression and deep
learning methods (convolutional neural networks — CNNs). Our paper is struc-
tured as follows. The next section describes the challenge data and our methods.
Section [3] presents our results, which we discuss in section [f] before concluding.

2 Methods

2.1 Data

The ABCD-NP Challenge data consists of pre-processed T1-weighted MRI scans
and fluid intelligence scores for children aged 9-10 years. The imaging protocol
can be found in [25]. Pre-processing included skull-stripping, noise removal, cor-
rection for field inhomogeneities [26] 27], and affine alignment to the SRI24 adult
brain atlas [28]. SRI24 segmentations and corresponding volumes were also pro-
vided.
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The cohort was split into training (N = 3739), validation (N = 415), and
test (IV = 4515) sets. The training and validation sets also include scores of fluid
intelligence, which are measured in the ABCD Study using the NIH Toolbox
Neurocognition battery [29]. For the challenge, fluid intelligence was residualised
to remove linear dependence upon brain volume, data collection site, age at
baseline, sex at birth, race/ethnicity, highest parental education, parental income
and parental marital status.

2.2 Features derived from the data

We trained the models to predict fluid intelligence both from the provided T1-
weighted images (voxel intensity) as well as voxel-wise feature maps generated
from these images using a probabilistic segmentation approach. There are many
different methods to extract various features from T1-weighted images [30], such
as tissue-type labels obtained from probabilistic segmentations. These segmenta-
tions can be constructed in a way to capture not only the relative tissue compo-
sition in a voxel, but also information about shape differences between individu-
als. This requires mapping each subject to a common template — a fundamental
technique of computational anatomy [31]. Here we constructed such a template
from all available T1-weighted MRI scans (S = train + validation + test =
3,739 +415+4,515 = 8,669), which generated normalised (non-linearly aligned
to a common mean) tissue segmentations for each subject.

Fig. 1. Template generated from fitting the generative model to all of the subjects in
the ABCD population (S = 8,669). Green corresponds to grey matter tissue, blue to
white matter, and red to other.

We used a generative model [32] to probabilistically segment each T1-weighted
MRI in the challenge data set into three tissue types: grey-matter, white-matter,
other — see Figure The in-house modeﬂ used here contains key improvements
over the one in [32]: (1) we place a smoothing prior on the template; (2) we ob-
tain better initial values by first working on histogram representations of the
images; (3) we normalise over population image intensities in a principled way,
within the model; (4) we place a prior on the proportions of each tissue, which is

5 Available from https://github.com/WCHN/segmentation-model.
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also learned during training. There are two types of normalised segmentations:
non-modulated and modulated. Modulated segmentations include the relative
shape change when aligning to the common template.

Seven features per voxel were considered: T1-weighted intensity plus our six
derived features corresponding to modulated and non-modulated probabilities
for each tissue type. All images, including the feature maps from probabilistic
segmentations, were spatially smoothed with a Gaussian kernel of 12mm FWHM
[30] and masked to remove voxels outside of the brain.

2.3 Predicting fluid intelligence: Machine Learning Regression

We explored several machine learning regression algorithms of varying com-
plexity, including Multi-Kernel Learning (MKL) [33], Kernel Ridge Regression
(KRR) [34], Gaussian Process Regression (GPR) [35] and Relevance Vector Ma-
chines [36]. The inputs to these models consisted of different concatenated com-
binations of our seven voxel-wise features described in section[2.2] Analyses were
run in PRoNTo version 3 [22,[37], a software toolbox of pattern recognition tech-
niques for the analysis of neuroimaging data, as well as custom-written code.

In our preliminary analyses, we trained different combinations of regres-
sion algorithms and features using 5-fold cross-validation within the training
set to select the best combination of algorithm and features as measured by
lowest cross-validated mean-squared error (MSE). We then rtrained the best-
performing model using the entire training set and used this trained model to
generate predictions of fluid intelligence scores for the validation and test sets.
Our best-performing model was KRR using all six voxel-wise derived features
(tissue-type probabilities) concatenated into an input feature vector of length
~ 1.7 million per individual. We set the regularization hyperparameter to A = 10
[34], which was optimised through 5-fold nested cross-validation within the train-
ing set in preliminary analyses.

We investigated robustness/stability of our KRR model using modified jack-
knife resampling (80/20 train/test split). Explicitly, we trained the model on a
random subsample of 80% of the training set and generated predictions for both
the held out 20% of the training set and the full validation set. We repeated this
procedure 1000 times to generate confidence bounds on performance (MSE).

2.4 Predicting fluid intelligence: Convolutional Neural Networks

Separately, we explored the use of CNNs. The motivation was to incorporate
spatial information that is not explicitly modelled as features. The CNNs were
trained directly on the pre-processed T1-weighted images. Similarly to previous
work that predicted brain age, Alzheimer’s disease progression, or brain regions
from MRI scans [38H40] we applied various layers of 3D-convolutional kernels
with filter size of 3x3x3 voxels on down-sampled images with dimensions of
61x61x61 voxels. We trained and validated multiple neural networks including
those in [24]. Our best performing CNN (lowest MSE) consisted of four convo-
lutional layers and three fully-connected layers followed by dropout layers with
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a probability of 0.5. The first six layers were activated by rectified linear units.
The convolutional layers were followed by batch normalization and max-pooling
operations. We used the Adam optimizer with an initial learning rate of 10° and
a decay of 10°, and we stopped training at the 100?" epoch. To evaluate the
network, we randomly sampled 10 subsets of 1870 subjects from the training
set, applied them to train 10 CNN models and evaluated performance on the
validation set. We report MSE averaged over the ten passes.

3 Results

Our best-performing regression model was KRR using our six derived voxel-wise
features as input. This produced MSE = 69.72 on the validation set. By compar-
ison, our best-performing CNN achieved MSE = 70.82 (average MSE = 73.40)
on the validation set. However, we observed that the better-performing CNNs
on the training set did not generalise well to the validation set, possibly due to
over-fitting, or mismatch between training and validation data (as suggested by
the considerable difference in variances).

Table [1| shows MSE and Pearson’s correlation coefficient (mean + std) for
training and validation predictions from our top-performing methods. We found
that KRR performed the best and we used this model to generate our challenge
submission, which resulted in MSE = 92.13 on the test set.

Table 1. Model performance for the training and validation sets.

Training set Validation set Test set
Method
MSE Correlation MSE Correlation MSE
KRR 77.64 0.1427 69.72 0.0311 92.13
ONN 69.10 £+ 3.13 | 0.1913 £ 0.0423 | 73.40 £+ 2.13 | —0.0202 + 0.0296 N/A
(best: 64.39) | (best: 0.2542) | (best: 70.82) | (best: 0.0157)

Figure [2| shows model robustness results from modified jackknife resampling
(1000 repetitions, 80/20 split). Confidence in our predicted MSE on the valida-
tion set is within +1 residual IQ point.

Figure [3|shows the residual fluid intelligence score prediction errors for KRR
on the training and validation sets. The V shape of the curves shows that smaller
residual scores have lower errors, since the model is predicting close to the mean
value.
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Fig. 2. Model robustness for KRR using modified jackknife re-sampling. MSE distri-
butions for 1000 predictions: 20% of the training set (left); full validation set (right);
for models trained on the other 80% of the training set. Red line indicates the mean.

4 Discussion

We found that predicting residual fluid intelligence from structural MRI images is
challenging. The correlation between predicted and actual intelligence scores was
low for all methods we tested (r &2 0.05—0.15). This contrasts with previous stud-
ies for predicting (non-residualised) fluid intelligence, which have demonstrated
that both total brain volume and regional cortical volume/thickness differences
are relatively strong predictors (r ~ 0.3 — 0.4) [12H14].

The lower predictive performance we observed might be influenced by the
residualisation, which prevents modelling of covariance between the residuali-
sation factors and the image-based features. Moreover, there is evidence that
including variables in the residualisation procedure that are correlated with the
regression targets/labels is likely to remove important variability in the data
leading to predictive models with low performance [41].

We note that previous studies used small sample sizes (of order 10-100),
whilst the ABCD-NP Challenge dataset comprised a very large-scale dataset (of
order 1000-10000). Whereas subject recruitment for small samples tend to be
well controlled, resulting in homogeneous sample characteristics, large samples
are more heterogeneous by nature, thus predictive models are more challenging
to build. Accordingly, a recent study has demonstrated that the accuracy of
classification results tends to be smaller for larger sample sizes [42].

Our image-based features were voxel-wise probabilistic tissue-type labels:
grey matter, white matter, and other. Beyond tissue-type labels, there might be
value in investigating other features generated by the generative segmentation
model. One such interesting feature is scalar momentum [30], which has been
shown to be predictive for a range of different problems [30].
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Fig. 3. Absolute prediction errors against residual fluid intelligence scores for KRR
(training set on the left, validation set on the right).

Finally, we mention a possible limitation of our approach. In recent years, it
has become standard practice to create study-specific group templates in neu-
roimaging [31], especially in Voxel-Based Morphometry (VBM) analyses. Origi-
nally, this approach was proposed for group analysis using mass univariate statis-
tics (e.g., statistical parametric mapping). However, one needs to exercise cau-
tion when applying such an approach in machine learning, as it might lead to
slightly optimistic predictions by creating dependence across the overall dataset.
In order to avoid this potential issue, one would need to create templates based
only on the training set. This might be computationally challenging when cross-
validation strategies are used. To the best of our knowledge, no studies have
investigated whether study-specific templates indeed result in slightly inflated
predictions, and it remains an interesting question for future work.

5 Conclusion

Our paper presents the winning method for the ABCD Neurocognitive Predic-
tion Challenge 2019. We found that kernel ridge regression outperformed more
complex models, such as convolutional neural networks, when predicting residual
fluid intelligence scores for the challenge dataset using our custom tissue-type
features derived from the preprocessed T1-weighted MRI. The correlation be-
tween the predicted and actual scores is very low (r = 0.03 for the KRR on
the validation set), implying that the association between structural images and
residualised fluid intelligence scores is low. It may be that structural images con-
tain very little information on residualised fluid intelligence, but further study
is warranted.
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