Skip to main content

Cortical and Subcortical Contributions to Predicting Intelligence Using 3D ConvNets

  • Conference paper
  • First Online:
Book cover Adolescent Brain Cognitive Development Neurocognitive Prediction (ABCD-NP 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11791))

Abstract

We present a novel framework using 3D convolutional neural networks to predict residualized fluid intelligence scores in the MICCAI 2019 Adolescent Brain Cognitive Development Neurocognitive Prediction Challenge datasets. Using gray matter segmentations from T1-weighted MRI volumes as inputs, our framework identified several cortical and subcortical brain regions where the predicted errors were lower than random guessing in the validation set (mean squared error = 71.5252), and our final outcomes (mean squared error = 70.5787 in the validation set, 92.7407 in the test set) were comprised of the median scores predicted from these regions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akshoomoff, N., et al.: NIH toolbox cognition battery (CB): composite scores of crystallized, fluid, and overall cognition. Monographs of the Society for Research in Child Development (2013). https://doi.org/10.1111/mono.12038

    Article  Google Scholar 

  2. Carroll, J.B.: Human Cognitive Abilities. Cambridge University Press, Cambridge (2009). https://doi.org/10.1017/cbo9780511571312

    Book  Google Scholar 

  3. Cole, J.H., et al.: Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker. NeuroImage 163, 115–124 (2017). https://doi.org/10.1016/j.neuroimage.2017.07.059

    Article  Google Scholar 

  4. Dickie, D.A., et al.: Whole brain magnetic resonance image atlases: a systematic review of existing atlases and caveats for use in population imaging. Front. Neuroinformatics 11, 1 (2017). https://doi.org/10.3389/fninf.2017.00001

    Article  Google Scholar 

  5. Dronkers, N.F., Plaisant, O., Iba-Zizen, M.T., Cabanis, E.A.: Paul Broca’s historic cases: high resolution MR imaging of the brains of Leborgne and Lelong. Brain 130, 1432–1441 (2007). https://doi.org/10.1093/brain/awm042

    Article  Google Scholar 

  6. Fonov, V., Evans, A.C., Botteron, K., Almli, C.R., McKinstry, R.C., Collins, D.L.: Unbiased average age-appropriate atlases for pediatric studies. NeuroImage 54, 313–327 (2011). https://doi.org/10.1016/j.neuroimage.2010.07.033

    Article  Google Scholar 

  7. Grahn, J.A., Parkinson, J.A., Owen, A.M.: The cognitive functions of the caudate nucleus. Prog. Neurobiol. 86, 141–155 (2008). https://doi.org/10.1016/j.pneurobio.2008.09.004

    Article  Google Scholar 

  8. Hagler, D.J., et al.: Image processing and analysis methods for the adolescent brain cognitive development study. bioRxiv p. 457739 (2018). https://doi.org/10.1101/457739

  9. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv e-prints arXiv:1502.03167 (2015)

  10. Jernigan, T.: Introduction. Developmental Cognitive Neuroscience (2018). https://doi.org/10.1016/j.dcn.2018.02.002

    Article  Google Scholar 

  11. Kingma, D.P., Ba, J.L.: Adam: a method for stochastic gradient descent. In: ICLR: International Conference on Learning Representations (2015). https://arxiv.org/pdf/1412.6980.pdf

  12. Li, S.C., Lindenberger, U., Hommel, B., Aschersleben, G., Prinz, W., Baltes, P.B.: Transformations in the couplings among intellectual abilities and constituent cognitive processes across the life span. Psychol. Sci. 15, 155–163 (2004). https://doi.org/10.1111/j.0956-7976.2004.01503003.x

    Article  Google Scholar 

  13. Pfefferbaum, A., et al.: Altered brain developmental trajectories in adolescents after initiating drinking. Am. J. Psychiatry 175, 370–380 (2018). https://doi.org/10.1176/appi.ajp.2017.17040469

    Article  Google Scholar 

  14. Plis, S.M., et al.: Deep learning for neuroimaging: a validation study. Front. Neurosci. 8, 229 (2014). https://doi.org/10.3389/fnins.2014.00229

    Article  Google Scholar 

  15. Rohlfing, T., Zahr, N.M., Sullivan, E.V., Pfefferbaum, A.: The SRI24 multichannel atlas of normal adult human brain structure. Hum. Brain Mapp. 31, 798–819 (2010). https://doi.org/10.1002/hbm.20906

    Article  Google Scholar 

  16. Rushton, J.P., Ankney, C.D.: Brain size and cognitive ability: correlations with age, sex, social class, and race. Psychon. Bull. Rev. 3, 21–36 (1996). https://doi.org/10.3758/BF03210739

    Article  Google Scholar 

  17. Schmitt, L.I., Wimmer, R.D., Nakajima, M., Happ, M., Mofakham, S., Halassa, M.M.: Thalamic amplification of cortical connectivity sustains attentional control. Nature 545, 219 (2017). https://doi.org/10.1038/nature22073

    Article  Google Scholar 

  18. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)

    Google Scholar 

  19. Tisdall, M.D., Hess, A.T., Reuter, M., Meintjes, E.M., Fischl, B., Van Der Kouwe, A.J.: Volumetric navigators for prospective motion correction and selective reacquisition in neuroanatomical MRI. Magn. Reson. Med. 68, 389–399 (2012). https://doi.org/10.1002/mrm.23228

    Article  Google Scholar 

  20. Wang, L., Wee, C.Y., Suk, H.I., Tang, X., Shen, D.: MRI-based intelligence quotient (IQ) estimation with sparse learning. PLoS One 10, e0117295 (2015). https://doi.org/10.1371/journal.pone.0117295

    Article  Google Scholar 

  21. White, N., et al.: PROMO: real-time prospective motion correction in MRI using image-based tracking. Magn. Reson. Med. 63, 91–105 (2010). https://doi.org/10.1002/mrm.22176

    Article  Google Scholar 

Download references

Acknowledgement

We gratefully acknowledge Prof. Michael Zhu for facilitating centralized data storage, and Institute of Inflammation, Immunology and Infectious Disease for granting access to cluster computing resources provided by Information Technology at Purdue, West Lafayette, Indiana.

The data used in this report came from the ABCD Study Collection 3104 (https://nda.nih.gov/edit_collection.html?id=3104, accessed on or before March 24, 2019). Data access was in compliance with the NDA Data Use Certification and approved by the Institutional Review Board at Purdue University. The ABCD Study is supported by the National Institutes of Health and additional federal partners under award number U01DA041022, U01DA041028, U01DA041048, U01DA041089, U01DA041106, U01DA041117, U01DA041120, U01DA041134, U01DA041148, U01DA041156, U01DA041174, U24DA041123, U24DA041147, U01DA041093, and U01DA041025.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukai Zou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zou, Y., Jang, I., Reese, T.G., Yao, J., Zhu, W., Rispoli, J.V. (2019). Cortical and Subcortical Contributions to Predicting Intelligence Using 3D ConvNets. In: Pohl, K., Thompson, W., Adeli, E., Linguraru, M. (eds) Adolescent Brain Cognitive Development Neurocognitive Prediction. ABCD-NP 2019. Lecture Notes in Computer Science(), vol 11791. Springer, Cham. https://doi.org/10.1007/978-3-030-31901-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31901-4_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31900-7

  • Online ISBN: 978-3-030-31901-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics