Skip to main content

Surface-Based Brain Morphometry for the Prediction of Fluid Intelligence in the Neurocognitive Prediction Challenge 2019

  • Conference paper
  • First Online:
  • 1561 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11791))

Abstract

Brain morphometry derived from structural magnetic resonance imaging is a widely used quantitative biomarker in neuroimaging studies. In this paper, we investigate its usefulness for the Neurocognitive Prediction Challenge 2019.

An in-depth analysis of the features provided by the challenge (anatomical segmentation and volumes for regions of interest according to the SRI24 atlas) motivated us to process the native T1-weighted images with FreeSurfer 6.0, to derive reliable brain morphometry including surface based metrics. A combination of subcortical volumes and cortical thicknesses, curvatures, and surface areas was used as features for a support-vector regressor (SVR) to predict pre-residualized fluid intelligence scores. Results performing only slightly better than the baseline (uniformly predicting the mean) were observed on two internally held-out validation sets, while performance on the official validation set was approximately the same as the baseline.

Despite a large dataset of a specific cohort available for training, this suggests that structural brain morphometry alone has limited power for this challenge, at least with today’s imaging and post-processing methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Akshoomoff, N., et al.: VIII NIH toolbox cognition battery (CB): composite scores of crystallized, fluid, and overall cognition. Monogr. Soc. Res. Child Dev. 78(4), 119–132 (2013). https://doi.org/10.1111/mono.12038

    Article  Google Scholar 

  2. Avants, B.B., Tustison, N.J., Song, G., Cook, P.A., Klein, A., Gee, J.C.: A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage 54(3), 2033–2044 (2011). https://doi.org/10.1016/j.neuroimage.2010.09.025

    Article  Google Scholar 

  3. Avants, B.B., Tustison, N.J., Wu, J., Cook, P.A., Gee, J.C.: An open source multivariate framework for n-tissue segmentation with evaluation on public data. Neuroinformatics 9(4), 381–400 (2011). https://doi.org/10.1007/s12021-011-9109-y

    Article  Google Scholar 

  4. Buckner, R.L., et al.: A unified approach for morphometric and functional data analysis in young, old, and demented adults using automated atlas-based head size normalization: reliability and validation against manual measurement of total intracranial volume. Neuroimage 23(2), 724–738 (2004). https://doi.org/10.1016/j.neuroimage.2004.06.018

    Article  Google Scholar 

  5. Burgaleta, M., et al.: Subcortical regional morphology correlates with fluid and spatial intelligence. Hum. Brain Mapp. 35(5), 1957–1968 (2014). https://doi.org/10.1002/hbm.22305

    Article  Google Scholar 

  6. Casey, B., et al.: The adolescent brain cognitive development (ABCD) study: imaging acquisition across 21 sites. Dev. Cogn. Neurosci. 32, 43–54 (2018). https://doi.org/10.1016/j.dcn.2018.03.001

    Article  Google Scholar 

  7. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. (TIST) 2(3), 27 (2011). https://doi.org/10.1145/1961189.1961199

    Article  Google Scholar 

  8. Colom, R., et al.: Neuroanatomic overlap between intelligence and cognitive factors: morphometry methods provide support for the key role of the frontal lobes. Neuroimage 72, 143–152 (2013). https://doi.org/10.1016/j.neuroimage.2013.01.032

    Article  Google Scholar 

  9. Dale, A.M., Fischl, B., Sereno, M.I.: Cortical surface-based analysis: I. Segmentation and surface reconstruction. Neuroimage 9(2), 179–194 (1999). https://doi.org/10.1006/nimg.1998.0395

    Article  Google Scholar 

  10. Desikan, R.S., et al.: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31(3), 968–980 (2006). https://doi.org/10.1016/j.neuroimage.2006.01.021

    Article  Google Scholar 

  11. Destrieux, C., Fischl, B., Dale, A., Halgren, E.: Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. Neuroimage 53(1), 1–15 (2010). https://doi.org/10.1016/j.neuroimage.2010.06.010

    Article  Google Scholar 

  12. Fischl, B.: FreeSurfer. Neuroimage 62(2), 774–781 (2012). https://doi.org/10.1016/j.neuroimage.2012.01.021

    Article  Google Scholar 

  13. Fischl, B., et al.: Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33(3), 341–355 (2002). https://doi.org/10.1016/S0896-6273(02)00569-X

    Article  Google Scholar 

  14. Giedd, J.N., et al.: Brain development during childhood and adolescence: a longitudinal MRI study. Nat. Neurosci. 2(10), 861 (1999). https://doi.org/10.1038/13158

    Article  Google Scholar 

  15. Giedd, J.N., Rapoport, J.L.: Structural MRI of pediatric brain development: what have we learned and where are we going? Neuron 67(5), 728–734 (2010). https://doi.org/10.1016/j.neuron.2010.08.040

    Article  Google Scholar 

  16. Haier, R.J., Jung, R.E., Yeo, R.A., Head, K., Alkire, M.T.: Structural brain variation and general intelligence. Neuroimage 23(1), 425–433 (2004). https://doi.org/10.1016/j.neuroimage.2004.04.025

    Article  Google Scholar 

  17. Han, X., et al.: Reliability of MRI-derived measurements of human cerebral cortical thickness: the effects of field strength, scanner upgrade and manufacturer. Neuroimage 32(1), 180–194 (2006). https://doi.org/10.1016/j.neuroimage.2006.02.051

    Article  Google Scholar 

  18. Kievit, R.A., et al.: Distinct aspects of frontal lobe structure mediate age-related differences in fluid intelligence and multitasking. Nature Commun. 5, 5658 (2014). https://doi.org/10.1038/ncomms6658

    Article  Google Scholar 

  19. Kievit, R.A., Fuhrmann, D., Borgeest, G.S., Simpson-Kent, I.L., Henson, R.N.: The neural determinants of age-related changes in fluid intelligence: a pre-registered, longitudinal analysis in UK Biobank. Wellcome Open Res. 3, 38 (2018). https://doi.org/10.12688/wellcomeopenres.14241.2

    Article  Google Scholar 

  20. Madan, C.R., Kensinger, E.A.: Test-retest reliability of brain morphology estimates. Brain Inform. 4(2), 107–121 (2017). https://doi.org/10.1007/s40708-016-0060-4

    Article  Google Scholar 

  21. Martínez, K., et al.: Reproducibility of brain-cognition relationships using three cortical surface-based protocols: an exhaustive analysis based on cortical thickness. Hum. Brain Mapp. 36(8), 3227–3245 (2015). https://doi.org/10.1002/hbm.22843

    Article  Google Scholar 

  22. Morey, R.A., Selgrade, E.S., Wagner, H.R., Huettel, S.A., Wang, L., McCarthy, G.: Scan-rescan reliability of subcortical brain volumes derived from automated segmentation. Hum. Brain Mapp. 31(11), 1751–1762 (2010). https://doi.org/10.1002/hbm.20973

    Article  Google Scholar 

  23. Naumczyk, P., et al.: Cognitive predictors of cortical thickness in healthy aging. In: Pokorski, M. (ed.) Clinical Medicine Research. AEMB, vol. 1116, pp. 51–62. Springer, Cham (2018). https://doi.org/10.1007/5584_2018_265

    Chapter  Google Scholar 

  24. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12(Oct), 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  25. Pfefferbaum, A., et al.: Altered brain developmental trajectories in adolescents after initiating drinking. Am. J. Psychiatry 175(4), 370–380 (2017). https://doi.org/10.1176/appi.ajp.2017.17040469

    Article  Google Scholar 

  26. R Core Team: R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2018). https://www.R-project.org/

  27. Rohlfing, T., Zahr, N.M., Sullivan, E.V., Pfefferbaum, A.: The SRI24 multichannel atlas of normal adult human brain structure. Hum. Brain Mapp. 31(5), 798–819 (2010). https://doi.org/10.1002/hbm.20906

    Article  Google Scholar 

  28. Shaw, P., et al.: Intellectual ability and cortical development in children and adolescents. Nature 440(7084), 676 (2006). https://doi.org/10.1038/nature04513

    Article  Google Scholar 

Download references

Acknowledgements

Calculations were performed on UBELIX, the HPC cluster at the University of Bern.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Rebsamen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rebsamen, M., Rummel, C., Mürner-Lavanchy, I., Reyes, M., Wiest, R., McKinley, R. (2019). Surface-Based Brain Morphometry for the Prediction of Fluid Intelligence in the Neurocognitive Prediction Challenge 2019. In: Pohl, K., Thompson, W., Adeli, E., Linguraru, M. (eds) Adolescent Brain Cognitive Development Neurocognitive Prediction. ABCD-NP 2019. Lecture Notes in Computer Science(), vol 11791. Springer, Cham. https://doi.org/10.1007/978-3-030-31901-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31901-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31900-7

  • Online ISBN: 978-3-030-31901-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics