Skip to main content

Solving ECDLP via List Decoding

  • Conference paper
  • First Online:
Provable Security (ProvSec 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11821))

Included in the following conference series:

Abstract

We provide a new approach to the elliptic curve discrete logarithm problem (ECDLP). First, we construct Elliptic Codes (EC codes) from the ECDLP. Then we propose an algorithm of finding the minimum weight codewords for algebraic geometry codes, especially for the elliptic code, via list decoding. Finally, with the minimum weight codewords, we show how to solve ECDLP. This work may provide a potential approach to speeding up the computation of ECDLP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beelen, P., Brander, K.: Efficient list decoding of a class of algebraic-geometrycodes. Adv. Math. Commun. 4(4), 485–518 (2010)

    Article  MathSciNet  Google Scholar 

  2. Berlekamp, E.R., McEliece, R.J., van Tilborg, H.C.: On the inherent intractability of certain coding problems. IEEE Trans. Inf. Theory 24(3), 384–386 (1978)

    Article  MathSciNet  Google Scholar 

  3. Cheng, Q.: Hard problems of algebraic geometry codes. IEEE Trans. Inf. Theory 54, 402–406 (2008)

    Article  MathSciNet  Google Scholar 

  4. Cheng, Q., Wan, D.: On the list and bounded distance decodability of Reed-Solomon codes (extended abstract). In: FOCS, pp. 335–341 (2004)

    Google Scholar 

  5. Driencourt, Y., Michon, J.F.: Elliptic codes over fields of characteristics 2. J. Pure Appl. Algebra 45(1), 15–39 (1987)

    Article  MathSciNet  Google Scholar 

  6. Elias, P.: List decoding for noisy channels. In: 1957-IRE WESCON Convention Record, pp. 94–104 (1957)

    Google Scholar 

  7. Frey, G., Rück, H.: A remark concerning m-divisibility and the discrete logarithm in the divisor class group of curves. Math. Comput. 62, 865–874 (1994)

    MathSciNet  MATH  Google Scholar 

  8. Galbraith, S.D., Gaudry, P.: Recent progress on the elliptic curve discrete logarithm problem. Des. Codes Cryptogr. 78(1), 51–72 (2016)

    Article  MathSciNet  Google Scholar 

  9. Gaudry, P., Hess, F., Smart, N.P.: Constructive and destructive facets of Weil descent on elliptic curves. J. Cryptol. 15(1), 19–46 (2002)

    Article  MathSciNet  Google Scholar 

  10. Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions. In: Proceedings of the Twenty First Annual ACM Symposium on Theory of Computing, pp. 25–32 (1989)

    Google Scholar 

  11. Goppa, V.D.: Codes on algebraic curves. Soviet Math. Dokl. 24(1), 170–172 (1981)

    MathSciNet  MATH  Google Scholar 

  12. Guruswami, V., Sudan, M.: Improved decoding of reed-solomon and algebraic-geometry codes. IEEE Trans. Inf. Theory 45(6), 1757–1767 (1999)

    Article  MathSciNet  Google Scholar 

  13. Guruswami, V., Sudan, M.: On representations of algebraic-geometric codes for list decoding. IEEE Trans. Inf. Theory 47(4), 1610–1613 (2001)

    Article  Google Scholar 

  14. Guruswami, V., Rudra, A.: Explicit codes achieving list decoding capacity: error-correction with optimal redundancy. IEEE Trans. Inf. Theory 54(1), 135–150 (2008)

    Article  MathSciNet  Google Scholar 

  15. Guruswami, V., Xing, C.: List decoding reed-solomon, algebraic-geometric, and gabidulin subcodes up to the singleton bound. In: Proceedings of the 45th Annual ACM Symposium on Theory of Computing (STOC), pp. 843–852. ACM (2013)

    Google Scholar 

  16. Kiayias, A., Yung, M.: Cryptographic hardness based on the decoding of reed-solomon codes. In: Widmayer, P., Eidenbenz, S., Triguero, F., Morales, R., Conejo, R., Hennessy, M. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 232–243. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45465-9_21

    Chapter  Google Scholar 

  17. Koblitz, N.: Elliptic curve cryptosystems. Math. Comput. 48, 203–209 (1987)

    Article  MathSciNet  Google Scholar 

  18. MAGMA Computational Algebra System. http://magma.maths.usyd.edu.au/magma/

  19. Menezes, A., Okamoto, T., Vanstone, S.: Reducing elliptic curve logarithms to logarithms in a finite field. IEEE Trans. Inf. Theory 39(2), 1639–1646 (1993)

    Article  MathSciNet  Google Scholar 

  20. McEliece, R.J.: On the average list size for the Guruswami-Sudan decoder. In: 7th International Symposium on Communications Theory and Applications (ISCTA), July 2003

    Google Scholar 

  21. Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986). https://doi.org/10.1007/3-540-39799-X_31

    Chapter  Google Scholar 

  22. Miller, V.: Short programs for functions on curves (1986, unpublished manuscript)

    Google Scholar 

  23. Moreno, C.: Algebraic Curves over Finite Fields. Cambridge Tracts in Mathematics, vol. 97. Cambridge University Press, Cambridge (1991)

    Google Scholar 

  24. Parvaresh, F., Vardy, A.: Correcting errors beyond the Guruswami-Sudan radius in polynomial time. In: 46th Annual IEEE Symposium on Foundations of Computer Science, pp. 285–294 (2005)

    Google Scholar 

  25. Pollard, J.M.: Monte Carlo methods for index computation mod p. Math. Comput. 32, 918–924 (1978)

    MathSciNet  MATH  Google Scholar 

  26. Semaev, I.A.: Evaluation of discrete logarithms in a group of p-torsion points of an elliptic curve in characteristic p. Math. Comput. 67(221), 353–356 (1998)

    Article  MathSciNet  Google Scholar 

  27. Smart, N.P.: The discrete logarithm problem on elliptic curves of trace one. J. Cryptol. 12(3), 193–196 (1999)

    Article  MathSciNet  Google Scholar 

  28. Satoh, T., Araki, K.: Fermat quotients and the polynomial time discrete log algorithm for anomalous elliptic curves. Comm. Math. Pauli 47(1), 81–92 (1998)

    MathSciNet  MATH  Google Scholar 

  29. Silverman, J.H.: The Arithmetic of Elliptic Curves. Springer, New York (1986). https://doi.org/10.1007/978-1-4757-1920-8

    Book  MATH  Google Scholar 

  30. Shokrollahi, M.A.: Minimum distance of elliptic codes. Adv. Math. 93, 251–281 (1992)

    Article  MathSciNet  Google Scholar 

  31. Shokrollahi, M.A., Wasserman, H.: List decoding of algebraic-geometric codes. IEEE Trans. Inf. Theory 45(2), 432–437 (1999)

    Article  MathSciNet  Google Scholar 

  32. Stichtenoth, H.: Algebraic Function Field and Codes. Springer, Heidelberg (1993)

    MATH  Google Scholar 

  33. Sudan, M.: Decoding of reed solomon codes beyond the error-correction bound. J. Complex. 13, 180–193 (1998)

    Article  MathSciNet  Google Scholar 

  34. Sudan, M.: List decoding: algorithms and applications. In: van Leeuwen, J., Watanabe, O., Hagiya, M., Mosses, P.D., Ito, T. (eds.) TCS 2000. LNCS, vol. 1872, pp. 25–41. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44929-9_3

    Chapter  Google Scholar 

  35. Tsfasman, M.A., VlÇŽdut, S.G.: Algebraic-geometric Codes. Kluwer Academic Publishers (1991)

    Google Scholar 

  36. Vardy, A.: The intractability of computing the minimum distance of a code. IEEE Trans. Inf. Theory 43(6), 1757–1766 (1997)

    Article  MathSciNet  Google Scholar 

  37. Washington, L.: Elliptic Curves: Number Theory and Cryptography. Chapman and Hall/CRC (2003)

    Google Scholar 

  38. Wozencraft, J.M.: List decoding. Quarterly Progress Report, Research Laboratory of Electronics, MIT, vol. 48, pp. 90–95 (1958)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 61672550 and 61672346) and the National Key R&D Program of China(2017YFB0802503).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fangguo Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, F., Liu, S. (2019). Solving ECDLP via List Decoding. In: Steinfeld, R., Yuen, T. (eds) Provable Security. ProvSec 2019. Lecture Notes in Computer Science(), vol 11821. Springer, Cham. https://doi.org/10.1007/978-3-030-31919-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31919-9_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31918-2

  • Online ISBN: 978-3-030-31919-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics