

Vrije Universiteit Brussel

Deep Multi-Agent Reinforcement Learning in a Homogeneous Open Population
Radulescu, Roxana; Legrand, Manon; Efthymiadis, Kyriakos; Roijers, Diederik; Nowe, Ann

Published in:
Artificial Intelligence

DOI:
10.1007/978-3-030-31978-6_8

Publication date:
2018

Document Version:
Accepted author manuscript

Link to publication

Citation for published version (APA):
Radulescu, R., Legrand, M., Efthymiadis, K., Roijers, D., & Nowe, A. (2018). Deep Multi-Agent Reinforcement
Learning in a Homogeneous Open Population. In M. Atzmueller, & W. Duivesteijn (Eds.), Artificial Intelligence:
30th Benelux Conference, BNAIC 2018, ‘s-Hertogenbosch, The Netherlands, November 8–9, 2018, Revised
Selected Papers (pp. 177-191). (Belgian/Netherlands Artificial Intelligence Conference). Springer International
Publishing. https://doi.org/10.1007/978-3-030-31978-6_8

Copyright
No part of this publication may be reproduced or transmitted in any form, without the prior written permission of the author(s) or other rights
holders to whom publication rights have been transferred, unless permitted by a license attached to the publication (a Creative Commons
license or other), or unless exceptions to copyright law apply.

Take down policy
If you believe that this document infringes your copyright or other rights, please contact openaccess@vub.be, with details of the nature of the
infringement. We will investigate the claim and if justified, we will take the appropriate steps.

Download date: 26. Apr. 2024

https://doi.org/10.1007/978-3-030-31978-6_8
https://cris.vub.be/en/publications/deep-multiagent-reinforcement-learning-in-a-homogeneous-open-population(6bad77bf-af31-4015-bdaf-a539a6bc3900).html
https://doi.org/10.1007/978-3-030-31978-6_8

Deep Multi-Agent Reinforcement Learning in a
Homogeneous Open Population

Roxana Rădulescu1, Manon Legrand ?, Kyriakos Efthymiadis1,
Diederik M. Roijers1,2, and Ann Nowé1

1 Vrije Universiteit Brussel
Brussels, Belgium

{roxana.radulescu, kyriakos.efthymiadis, ann.nowe}@vub.be
2 Vrije Universiteit Amsterdam

Amsterdam, The Nederlands
d.m.roijers@vu.nl

Abstract. Advances in reinforcement learning research have recently
produced agents that are competent, or sometimes exceed human per-
formance, in complex tasks. Most interesting real world problems how-
ever, are not restricted to one agent, but instead deal with multiple
agents acting in the same environment and have proven to be challeng-
ing tasks to solve. In this work we present a study on a homogeneous
open population of agents modelled as a multi-agent reinforcement learn-
ing (MARL) system. Using the SimuLane highway traffic simulator as a
test-bed we show experimentally that using a single-agent learnt policy
to initialise the multi-agent scenario, which we then fine-tune to the task,
out-performs agents that learn in the multi-agent setting from scratch.
Specifically we contribute an open population MARL configuration, how
to transfer knowledge from single- to a multi-agent setting and a training
procedure for a homogeneous open population of agents.

Keywords: multi-agent systems · reinforcement learning · open popu-
lation · highway traffic

1 Introduction

Recently, a great surge in reinforcement learning research has led to competent
artificial agents for increasingly complex tasks, such as playing Atari games and
Go [19, 25], and robotics [27]. Through these advances, solutions for many real-
world problems are now within reach.

A feature of many real-world learning problems is that they require inter-
actions between agents [1, 3, 7, 22] — both human agents, and increasingly also
other artificial agents. Such a multi-agent aspect makes these problems partic-
ularly challenging. Specifically, artificial agents need to learn to anticipate the
behaviour of other agents; typically, failing to do so greatly diminishes the per-
formance. Furthermore, if agents are not fully cooperative (or zero-sum) [15, 32],
learning algorithms may have trouble identifying a suitable equilibrium policy.

? Contribution done during the master thesis studies at the Vrije Universiteit Brussel.

2 R. Rădulescu et al.

In this paper, we study the behaviour of a population of homogeneous learn-
ing agents that is continuously changing, as new agents are entering the system,
possibly at different rates than the ones exiting. We characterize this problem
as an open population of homogeneous learning agents. To tackle this scenario,
the agents are sharing the same policy and are learning simultaneously, in the
presence of other agents (e.g., human drivers) modelled as part of the environ-
ment. The policy-sharing aspect has the advantage that only one policy needs
to be learned, and that the agents (both human and artificial) can more easily
anticipate the behaviour of the other learning agents. Furthermore, we believe
that in many situations humans will be able to more easily predict what the
agents will do, which we believe to be a desirable aspect in many systems that
also include human agents.

We situate our study in (simulated) traffic on a highway. Not only is this a
suitable domain for studying homogeneous agents that share their policy — a
car manufacturer probably will want to sell autonomous cars with one policy
only — but it also illustrates why we would like to be able to learn around other
agents, i.e., humans, and why predictable agents would be desirable. We propose
a new simulator for highway traffic, which we briefly discuss in Section 3. For a
more extensive discussion of the simulator, please refer to [11] and [12].

To learn a policy for our artificial agents, we mainly build upon the Deep
Q-learning [18, 19] approach. First, we apply this algorithm to learn a policy for
a single agent (Section 5.1), and test how suitable this policy is for the multi-
agent setting. Second, we tackle the multi-agent scenario through the central-
ized learning decentralized execution paradigm (in which homogeneous learning
agents sample simultaneously from an environment to train the same shared neu-
ral network that represents their policy) (Section 5.2). As expected, this training
procedure is significantly slower than single-agent learning. Our key insight is
that multi-agent learning can be sped up by first training a single-agent policy,
and then using this single-agent policy as a starting point for a homogeneous set
of agents. We integrate this key insight into our multi-agent learning algorithm,
completing our main contribution. We show experimentally, in Section 5.3, that
homogeneous multi-agent learning via reuse of a policy trained for a single agent
yield better results and is much faster than learning from scratch.

Our contributions for this work can be summarized as follows: i) we success-
fully demonstrate how a single agent policy can be learned in our problem setting
and then demonstrate the need for training a model while several autonomous
agents are present in the environment, as the single agent one is unable to per-
form well in a multi-agent scenario; ii) we demonstrate two methods for sharing
knowledge between agents: either by learning a shared policy using the expe-
riences of all the agents in an open population, or by additionally transferring
knowledge from a single-agent setting to a multi-agent one, in a complex problem
setting.

Deep MARL in a Homogeneous Open Population 3

2 Background

In Reinforcement Learning (RL) [28] an agent learns to solve a task by interacting
with the environment, using a numerical reward signal as guidance. A common
class of RL techniques are value-based algorithms. In value-based algorithms,
the goal typically is to find an estimation of the action-value function Q defined
as the expected sum of rewards discounted at each time step t by a factor γ,
when acting according to a policy π = P (a|s), defining the probability of any
action a in a state s:

Qπ(s, a) = E
[
rt + γrt+1 + γ2rt+2 + · · · | s0 = s, a0 = a, π

]
.

The optimal value function is then: Q∗(s, a) = maxπQ
π(s, a).

Q-learning [31] is a popular value-based RL algorithm, in which the value
function is iteratively updated to optimize this expected long-term reward, by
bootstrapping the estimated value of the next state. Specifically, after a tran-
sition from state s to s′, through action a, Q-learning performs the following
update:

Q(s, a)← Q(s, a) + α[r + γmax
a′

Q(s′, a′)−Q(s, a)] ,

where α is the learning rate, γ is the discount factor and r is the immediate
reward received from the environment.

In this paper, we build upon Deep Q-learning, which relies on a Deep Q-
network (DQN) [18], i.e., a neural network as a function approximator to es-
timate the action-value function, Q(s, a; θ) ≈ Q∗(s, a), rather than a tabular
representation of the value function. A key aspect for having a stable learn-
ing process when introducing this non-linear function approximator is keeping
a secondary target network, Q(s, a; θ−). In the case of DQN, it suffices to up-
date the target network’s parameters every τ steps with the online network [30].
The parameters θ are learned by performing one-step gradient descent updates
according to the following loss function at iteration i:

Li(θi) = E
(
r + γmax

a′
Q(s′, a′; θ−i)−Q(s, a; θi)

)2

DQN is then used together with experience replay memory (ERM) as detailed in
[19] to further stabilize and improve the learning process. While an agent inter-
acts with its environment, it gathers experiences of the form < st, at, st+1, rt >
at each time step t. In the original Q-learning algorithm [31], each experience is
used only once to update the Q-value function. This can be considered wasteful,
as certain events may occur with a low frequency. Reusing experiences is the key
idea behind the experience replay mechanism [14]; the agent keeps all the past
experiences in memory and can then reuse them to update its Q-value function.
Additionally, for Deep Q-learning, experience replay plays an important role in
breaking the bias induced by the sequentiality between learning samples.

For the action selection strategy we use ε-greedy, choosing a random action
with a probability ε and the action with the highest Q-value for the rest of the
time.

4 R. Rădulescu et al.

Fig. 1: Graphical Interface of SimuLane. The human drivers are represented in
blue, while the autonomous agents are in green.

3 Problem Setting

SimuLane [12] is a highway traffic simulator modelling both a single- and multi-
agent reinforcement learning environment. It offers a discrete representation of
a highway section, where each lane has a preferred speed, reflecting the idea
that cars’ speed usually increases from right to left on highway lanes. Figure 1
presents a screen-shot of SimuLane’s graphical user interface, in which both
humans drivers (in blue) and autonomous agents (in green) are interacting in
the environment.

Another important component of the simulator are the human drivers. They
act according to a behavioural model that can be summarized by three rules: i)
“drivers must not crash”, ii) “drivers must reach their desired speed” and iii)
“drivers must respect the lanes’ speeds”.

3.1 State and Action Space

Each agent perceives at each time step a state containing only local information,
i.e., in accordance to its field of view. The agent is able to observe the presence
of other cars, their speed, its own speed and location (i.e., current lane), to-
gether with its goal. Our agents’ goal is to safely traverse the simulated highway
segment. The speed of the cars can take integer values in the interval [0, 3]. A
visual representation of this car-centric input space can be seen in Figure 2.

An action is a tuple of the form <acceleration, direction<, where the acceler-
ation value is an integer in the range [−2, 2], while the direction can take values
from the set {forward, left, right}. Our action space is formed by all the possible
<acceleration, direction> combinations and thus has a size of 15.

3.2 Parameters

Traffic density defines a per lane probability for a car to enter the highway at
each time step. The first cell of each lane is thus updated according to the traffic

Deep MARL in a Homogeneous Open Population 5

0.5 0 0 0 1 0 1 0

0

0.75

0 0.25 0 0 0 0 0

0 0 0 0 0.5 0 0

0

1

0

Cars (presence + speed, normalized)

Lane

1

0

0

Goal

No exit

Exit 1

Exit n

...

1

Speed

............

0

SightBacksight

GoalCarsLaneSpeed

Input neurons

Fig. 2: State space and network inputs for each learning agent in the SimuLane
environment. Everything is normalized between [0, 1].

density at every step. For the multi-agent scenario, the ratio of autonomous cars
is the probability that a new driver entering the highway is an autonomous car.

The size of the highway section can also be configured by setting the number
of lanes and cells. Additionally, the irrationality defines the probability for a
human driver to choose a random action, allowing one to simulate the fact that
a driver can make mistakes.

For the single-agent case we define the maximum number of steps the agent
can spend on the highway in order to avoid an infinite episode. If the agent is
still present on the highway beyond this number of time-steps his outcome will
be set to overtime and the episode is terminated. For the multi-agent scenario
we fix each episode to a certain number of steps. The reward function is also
fully configurable for each possible outcome (i.e., crash, overtime and achieved
goal).

4 Methods

We are considering here three learning settings: single-agent, where only one
autonomous car is present on the highway at all times; multi-agent learning
from scratch, where multiple autonomous cars sharing the same learning model
are trained from scratch; and multi-agent initialized with a single-agent network
as a starting point for the training. We note that for each of the three settings,
the human drivers are also present in the environment at all times.

6 R. Rădulescu et al.

4.1 From Single to Multi-Agent Learning

In a single-agent setting an agent has to learn to respond well to the environ-
ment. While this environment may contain other agents, these can generally be
assumed to behave according to stationary rules. In our problem setting, we
generate such non-learning agents on-the-fly, following a stationary distribution
over policies such agents may have.

Our goal for the multi-agent setting is to learn one agent-centric policy, uni-
form over the entire population. As our environment consists in a fixed highway
segment through which different agents pass at various rates, we are dealing
with an open population. We are learning a policy, by having all agents that
pass through the environment contribute, with the experiences they gather, to
a central experience replay memory. To this end we employ Deep Q-learning
coupled with a centralized training with decentralized execution framework, i.e.,
during training the agents add their experiences to the same experience replay
buffer and only one network is trained for the entire population. At execution
time, each agent receives its own network copy and acts according to its own
local input. This approach has two main potential advantages: i) speeding up the
training process due to the information sharing between all the agents, ii) the
policy learned will be uniform across the entire population outputting a more
predictable behaviour for all the agents. This second point is highly important,
as we aim to be able to learn in non-stationary environments.

The multi-agent setting is thus considerably harder, i.e., an agent not only has
to respond well to the environment, but also to other learning agents – which
in our case are running the same, but evolving, policy. This means that the
environment is non-stationary, due to these concurrently learning agents. This
induces two important challenges: 1) the experience tuples in the experience
replay buffer may not resemble the current situation well enough any more, as
the learning agent’s policies have changed and 2) as a result of this the agents
may learn a policy that responds to overly erratic agents, as in the beginning,
the learning agents do behave erratically. As an initial approach to mitigate this
situation we shrink the experience replay memory [8] until we obtained a stable
learning process. As an additional helping factor for learning in a multi-agent
environment we employ a dropout mask [26] before the output layer. While we
expect this approach to mitigate part of the above-stated problems, we still
expect the performance of the agents trained in this manner to be significantly
worse than in the single-agent case.

4.2 Single to Multi-Agent Knowledge Transfer

In our highway traffic problem setting there are two main aspects that have to
be learned: i) driving in a highway environment populated with human drivers,
ii) dealing with the behaviour of other autonomous driving agents. Transfer
from the single-agent case to the multi-agent case leverages knowledge about
the former from a model trained in a single agent setting, which takes less time
to train, and then further tunes this network in order to include in the policy a

Deep MARL in a Homogeneous Open Population 7

behaviour adapted for the latter. As we show empirically in Section 5, this both
reduces the overall training time until convergence with respect to multi-agent
network trained from scratch, while the performance is significantly higher.

The fine-tuning procedure we adopt for this work consists in freezing all
the weights of the single-agent network model we are transferring to the multi-
agent scenario, with the exception of the ones between the last hidden layer
and the output. This procedure ensures sufficient exploration in the beginning
to escape the risk of running into a local optimum early, while keeping the
useful information about the environment encoded in the earlier layers [21].
Additionally, we decrease the learning rate by a factor of 10 in order to stabilize
the learning process and avoid unlearning the transferred knowledge.

5 Experiments

In order to test the performance of our algorithms for multi-agent reinforcement
learning in open homogeneous populations, we run them on a highway traffic
setting, using the settings for our algorithms and our SimuLane simulator stated
below. We measure performance of our algorithms as the fraction of times the
agents have successfully traversed the highway segment, and thus reached their
goal, until each respective episode. We additionally report the fraction of crashes
and overtimes.

DQN settings – We use a DQN function approximator by means of a feed for-
ward network composed of two fully connected layers of size 100 (with a relu
activation function) and 50 (followed by a tanh activation). There are 42 in-
puts and 15 outputs. This network architecture is kept the same throughout all
our experiments in order to ensure a proper comparison between all the cases
(we argue that we look from a policy maker’s perspective and aim to learn a
car-centred policy in all the settings). The optimizer used is adagrad [5] with a
learning rate of 0.01. We set two different update intervals for the online and tar-
get networks, 10 and 50 respectively, while the batch size for the online network
update is set to 16. The experience replay memory has a size of 10 000.

SimuLane settings – Throughout all our experiments we keep the traffic density
at a constant 0.25 value, while the highway segment we consider has 3 lanes,
each consisting of 40 cells. For the single agent scenario, the learner has 70 time
steps to traverse the highway, otherwise the output is set to overtime. For the
multi-agent experiments we keep the length of an episode at 160 steps.

Q-learning settings – The Q-learning parameters are set as follows: ε is 0.1, γ 0.9,
while the reward function is set to: goal 1, crash −1, no-speed −0.01, overtime
−0.4. The small negative reward for each time step in which the car speed is
zero was introduced to encourage agents to avoid the overtime outcome.

8 R. Rădulescu et al.

Single-agent Training Single-agent Testing

Fig. 3: Single-agent model performance in training (left) and testing (right). The
agent keeps a constant ε exploration rate of 0.1 for the entire training process.
The ε is set to 0 during testing. In the testing scenarios, we notice that the
further we go away from the value the model was trained under (i.e., 0.25), the
bigger the drop in performance gets.

5.1 Single-Agent

As a baseline, we first train a policy using only a single agent in the environment,
and subsequently test how well that policy performs if it is employed by multiple
agents in a multi-agent scenario.

Figure 3 (left) presents the training for the single agent case over 250 000
episodes. The results are averages over 30 runs and we plot the mean and stan-
dard deviation for each outcome. We note that for the entire training period the
agent keeps a constant ε exploration factor. We notice that in training, the agent
manages to converge to a performance of over 80%. Additionally, the training
curves do not exhibit a high variance, outputting a stable expected performance.

Now that we have a trained network model for the single agent setting,
we can test this policy in various scenarios. We begin by looking at how the
model behaves in different traffic densities. We illustrate the outcomes of our
simulations in Figure 3 (right), under two different traffic density values: 0.25
(the value used during training) and 0.751. We average the results over the 30
trained models. One can notice that the further we go away from the value the
model was trained under, the bigger the drop in performance will get. This result
indicates that, in order to have a better performing model, one should also look
at training in a multi-task fashion [6, 23], to allow the model to adapt to a bigger
variety of environments (at least in terms of traffic density).

A first step towards our goal of having a policy that is able to handle a multi-
agent highway scenario is to see how our single agent model performs when
multiple learners are present in the environment. We run simulations varying

1 We note that we run simulations for other intermediate values, but only show here
the two extremes, for the sake of graph legibility.

Deep MARL in a Homogeneous Open Population 9

Testing a Single-agent Model in a Multi-agent Setting

Fig. 4: Performance of the single agent model in a multi-agent setting with vari-
ous ratios of autonomous cars present on the highway. The drop in performance
is a clear indication for the need of a model trained in a multi-agent setting,
that allows the policy to also incorporate a response to the behaviour of other
autonomous agents.

the ratio of autonomous drivers on the highway between 0 and 1, with steps of
0.01. Every agent entering the highway is using the model from the single agent
setting in order to act in the environment. The simulations for each ratio last for
500 steps and are repeated 100 times. We plot the mean and standard deviation
for each result.

Figure 4 presents the results of these simulations. Notice the downwards trend
along the ratio axis in the left subplot, which clearly indicates that a simple
transfer of the single agent policy to a multi-agent setting is not sufficient. The
more autonomous agents are on the highway, the more difficult it is to cope and
behave in the environment. On the right side we also take a look at the number
of cars entering the highway segment versus the number of cars exiting. We
notice also a steep decrease in these values, signalling an increased presence of
crashes and stopped cars on the highway, bringing the traffic close to a standstill
towards the higher values of the ratio.

5.2 Multi-Agent From Scratch

In addition to our single-agent-trained policy as a baseline for multi-agent set-
tings, we also try to train a multi-agent policy from scratch. Please note that
for the multi-agent setting there are two important changes in the parameters
mentioned above. The ERM has now a size of 20, and we introduce a dropout
mask before the output layer, as explained before, with a value of 0.5. Figure 5
presents the training outcome. The results are averaged over 18 runs and we
again run the training process for 250 000 episodes. Notice that in comparison
to the single agent case, the expected performance is lower (ending up at a bit
over 60% in training), while the variance is higher, showing uncertainty in the
final training outcome.

10 R. Rădulescu et al.

Multi-agent Training from Scratch

Fig. 5: Performance of the multi-agent from scratch model in training. The agents
keeps a constant ε exploration rate of 0.1 for the entire process.

Testing the Multi-agent Model Trained from Scratch

Fig. 6: Performance of the multi-agent model in a setting with various ratios of
autonomous cars present on the highway. The drop in performance is not as
steep as the single agent case, however there is still much variance in the second
half of the graphs.

Another important aspect we should note regarding the multi-agent from
scratch training procedure is about the training duration. The time for training
a multi-agent model from scratch is about 4 times higher than the one for the
single agent case (i.e., it took about 4 days, compared to around 20 hours).

Moving on to the testing phase, Figure 6 illustrates the performance of our
multi-agent models when various ratios of autonomous cars are present on the
highway. Keeping in mind that the ratio under which we trained the policy was
0.5, we can then extract from the left graph the average performance of the
models during execution for this scenario, i.e., around 75%. In comparison to
Figure 4, we can definitely notice that the multi-agent models handle better the
increase in the autonomous agent ratios, however there is still a higher variance
observed towards the second half of the axis. Regarding the number of cars

Deep MARL in a Homogeneous Open Population 11

Multi-agent Training with Initialization

Fig. 7: Performance of the multi-agent with single agent initialization models in
training. The agents keeps a constant ε exploration rate of 0.1 for the entire
process.

entering the highway, we notice a linear drop, signalling a general decrease in
the speed of the cars. Looking also at the number of cars exiting, we notice a
slight diverging tendency towards the end, a sign for cars coming to a stand still
or getting involved in more crashes.

5.3 Multi-Agent with Single-Agent Initialization

Finally, we test our main contribution: using a single-agent policy as an ini-
tialization to train a multi-agent policy in a homogeneous open population of
learners. For this experiment we initialize the network with a model learned in
the single agent scenario. We keep the same parameters as in the multi-agent
from scratch case, with the exception of the learning rate, which is lowered to
0.001 and the dropout before the output layer, lowered to 0.25. The results are
averaged over 8 independent runs.

The results of the fine-tuning process are shown in Figure 7. We can notice
how the goal curve starts now much higher (i.e., at approximately 50%), due to
the model initialization, while the final performance level is significantly better
compared to the multi-agent learning from zero. The variance is lower and notice
how 50 000 additional episodes were already enough to match the single-agent
performance. We should also note that the total training time for the single
agent model plus the multi-agent initialized from single agent one is still only
half of the time required to train the multi-agent network from scratch, while
the performance is significantly better.

Our final simulation results (Figure 8) illustrate how the multi-agent with
single agent initialization models perform under various ratios of autonomous
cars on the highway. The average performance level for the 0.5 ratio is a bit over
90%. We also notice that the performance has no longer such a steep downwards
trend, but always remains above 80%. For the number of cars exiting and entering

12 R. Rădulescu et al.

Testing the Multi-agent Model with Initialization

Fig. 8: Performance of multi-agent with single agent initialization models in a
setting with various ratios of autonomous cars present on the highway. The
drop in performance is only showing a slight decrease, demonstrating that these
models are better adapted to a multi-agent scenario.

the highway, even though the variance is fairly high, we can notice the two curves
do not diverge from each other, signalling that there is only a decrease in the
cars’ speed. We can conclude from these results that models trained in a multi-
agent setting, having an initial knowledge transfer from the single agent case
exhibit the best performance in our problem setting.

6 Related Work

Our work takes inspiration from the A3C algorithm [17], in which multiple single-
agent environments are run in parallel, and share their experience through push-
ing gradient updates to a centrally maintained actor and critic. The environment
studied in this work however, is vitally different on two important points: in this
paper multiple agents act in the same environment, and as the population is
open the number of agents varies over time.

Our multi-agent training setting is additionally related to the parameter shar-
ing training procedure described by [9]. The idea is to leverage the homogeneity
of the population of agents and allow them to share the parameters of a common
policy. Our open population characteristic, however, prevents us from adding an
index for each agent within the model, as the number of agents, as well as the
agents themselves, do not remain constant in the population.

In the work of [4] we can also find the idea of an interplay between single
and multi-agent scenarios. Although not directly related to our setting, we do
find there an interesting procedure for allowing agents to learn as independent
learners until there is an explicit requirement for interacting and cooperating
with other learners.

The knowledge transfer approach from a single to a multi-agent task pre-
sented in this work resembles one of the study cases of [2], where they perform

Deep MARL in a Homogeneous Open Population 13

transfer learning from a single-agent predator-prey setting to a multi-agent one
(with two or three agents). However, due to our goal of learning a uniform
behaviour for each agent in the population, we do not need to establish any
mapping between agents for the transfer procedure. We are additionally dealing
with a more complex problem setting and a larger number of agents that can
enter and exit the system at varying time rates and that are not necessarily
performing a cooperative task.

7 Conclusions

In this paper, we looked at the problem of learning in a homogeneous open
population of agents, applied in the SimuLane highway traffic simulator. We
started by successfully training a single agent in the environment, however that
proved to be insufficient in order to cope with a multi-agent setting.

We then examined two basic ways of sharing knowledge between agents:
sharing experience from multiple agents in an open population by learning a
shared policy, and additionally transferring knowledge from a single-agent setting
to a multi-agent setting.

We have shown that in our setting homogeneous multi-agent learning via
policy reuse from a single agent yields better results and is much faster than
learning from scratch. We thus conclude that transferring from a single-agent
policy to a multi-agent policy in homogeneous open-population multi-agent re-
inforcement learning is both key to keeping learning tractable, and significantly
increases performance.

We note that the direct parameter sharing we used for both types of knowl-
edge transfer is only possible due to the homogeneous population. When the set
of agents would be heterogeneous, other transfer methods [29] would be required.

In future work, we aim to examine how the learning can be decentralised and
still share experience via social learning [10] or by developing a grounded com-
munication system [20]. Additionally, it holds great interest for us to evaluate
different (multi-agent) reinforcement learning approaches such as [13, 16, 24] in
this problem setting. Furthermore, another possible study aspect is to remove
the homogeneity constraint from the agents and learn in a heterogeneous pop-
ulation. One can then start identifying clusters of similar agents [33] and apply
the principle of learn-from-whom-to-learn in either a centralized or decentral-
ized manner. Finally, the complexity of the environment can also be increased
by considering dynamic traffic densities (simulating daily traffic patters).

Acknowledgements

This work is supported by Flanders Innovation & Entrepreneurship (VLAIO),
SBO project 140047: Stable MultI-agent LEarnIng for neTworks (SMILE-IT),
and the European Union FET Proactive Initiative project 64089: Deferred Re-
structuring of Experience in Autonomous Machines (DREAM) and the Security-
Driven Engineering of Cloud-Based Applications (SeCLOUD).

14 R. Rădulescu et al.

References

1. Amato, C., Oliehoek, F.A.: Scalable planning and learning for multiagent
POMDPs. In: AAAI. pp. 1995–2002 (2015)

2. Boutsioukis, G., Partalas, I., Vlahavas, I.: Transfer learning in multi-agent rein-
forcement learning domains. In: European Workshop on Reinforcement Learning.
pp. 249–260. Springer (2011)

3. Busoniu, L., Babuska, R., Schutter, B.D.: A comprehensive survey of multiagent
reinforcement learning. IEEE Trans. Systems, Man, and Cybernetics, Part C 38(2),
156–172 (2008)

4. De Hauwere, Y.M.: Sparse interactions in multi-agent reinforcement learning.
Ph.D. thesis, Vrije Universiteit Brussel (2011)

5. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine Learning Research 12(Jul), 2121–
2159 (2011)

6. Espeholt, L., Soyer, H., Munos, R., Simonyan, K., Mnih, V., Ward, T., Doron, Y.,
Firoiu, V., Harley, T., et al.: Impala: Scalable distributed deep-rl with importance
weighted actor-learner architectures. arXiv preprint arXiv:1802.01561 (2018)

7. Foerster, J., Assael, Y.M., de Freitas, N., Whiteson, S.: Learning to communicate
with deep multi-agent reinforcement learning. In: Advances in Neural Information
Processing Systems. pp. 2137–2145 (2016)

8. Foerster, J., Nardelli, N., Farquhar, G., Torr, P., Kohli, P., Whiteson, S., et al.:
Stabilising experience replay for deep multi-agent reinforcement learning. arXiv
preprint arXiv:1702.08887 (2017)

9. Gupta, J.K., Egorov, M., Kochenderfer, M.: Cooperative multi-agent control using
deep reinforcement learning. In: International Conference on Autonomous Agents
and Multiagent Systems. pp. 66–83. Springer (2017)

10. Heinerman, J., Rango, M., Eiben, A.E.: Evolution, individual learning, and social
learning in a swarm of real robots. In: Computational Intelligence, 2015 IEEE
Symposium Series on. pp. 1055–1062. IEEE (2015)

11. Legrand, M.: Deep Reinforcement Learning for Autonomous Vehicle Control
among Human Drivers. Master dissertation, Vrije Universiteit Brussel (2017),
http://ai.vub.ac.be/sites/default/files/thesis_legrand.pdf

12. Legrand, M., Rădulescu, R., Roijers, D.M., Nowé, A.: The SimuLane highway
traffic simulator for multi-agent reinforcement learning. In: BNAIC 2017. pp. 394–
395 (2017)

13. Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D.,
Wierstra, D.: Continuous control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971 (2015)

14. Lin, L.J.: Self-improving reactive agents based on reinforcement learning, planning
and teaching. Machine learning 8(3-4), 293–321 (1992)

15. Littman, M.L.: Value-function reinforcement learning in markov games. Cognitive
Systems Research 2(1), 55–66 (2001)

16. Lowe, R., Wu, Y., Tamar, A., Harb, J., Abbeel, O.P., Mordatch, I.: Multi-agent
actor-critic for mixed cooperative-competitive environments. In: Advances in Neu-
ral Information Processing Systems. pp. 6382–6393 (2017)

17. Mnih, V., Badia, A.P., Mirza, M., Graves, A., Lillicrap, T.P., Harley, T., Silver, D.,
Kavukcuoglu, K.: Asynchronous methods for deep reinforcement learning. CoRR
abs/1602.01783 (2016)

Deep MARL in a Homogeneous Open Population 15

18. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra,
D., Riedmiller, M.A.: Playing Atari with deep reinforcement learning. CoRR
abs/1312.5602 (2013)

19. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G.,
Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., Petersen, S., Beattie, C.,
Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., Hassabis,
D.: Human-level control through deep reinforcement learning. Nature 518(7540),
529–533 (feb 2015)

20. Mordatch, I., Abbeel, P.: Emergence of grounded compositional language in multi-
agent populations. arXiv preprint arXiv:1703.04908 (2017)

21. Mossalam, H., Assael, Y., Roijers, D., Whiteson, S.: Multi-objective deep reinforce-
ment learning. In: NIPS workshop on Deep RL (2016)

22. Nowé, A., Vrancx, P., De Hauwere, Y.M.: Game theory and multi-agent reinforce-
ment learning. In: Reinforcement Learning: State of the Art, pp. 441–470. Springer
(2012)

23. Rusu, A.A., Rabinowitz, N.C., Desjardins, G., Soyer, H., Kirkpatrick, J.,
Kavukcuoglu, K., Pascanu, R., Hadsell, R.: Progressive neural networks. arXiv
preprint arXiv:1606.04671 (2016)

24. Schulman, J., Levine, S., Abbeel, P., Jordan, M., Moritz, P.: Trust region policy
optimization. In: International Conference on Machine Learning. pp. 1889–1897
(2015)

25. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G.,
Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Master-
ing the game of go with deep neural networks and tree search. Nature 529(7587),
484–489 (2016)

26. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: A simple way to prevent neural networks from overfitting. Journal of
Machine Learning Research 15, 1929–1958 (2014)

27. Steckelmacher, D., Roijers, D.M., Harutyunyan, A., Vrancx, P., Plisnier, H., Nowé,
A.: Reinforcement learning in POMDPs with memoryless options and option-
observation initiation sets. In: AAAI 2018. pp. 4099–4106 (2018)

28. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge, MA (1998)

29. Taylor, M.E., Stone, P.: Transfer learning for reinforcement learning domains: A
survey. Journal of Machine Learning Research 10(Jul), 1633–1685 (2009)

30. Van Hasselt, H., Guez, A., Silver, D.: Deep reinforcement learning with double
Q-learning. In: AAAI. vol. 16, pp. 2094–2100 (2016)

31. Watkins, C.J.C.H.: Learning from delayed rewards. Ph.D. thesis, University of
Cambridge England (1989)

32. Wiggers, A.J., Oliehoek, F.A., Roijers, D.M.: Structure in the value function of
two-player zero-sum games of incomplete information. In: ECAI16. pp. 1628–1629
(2016)

33. Zhang, C., Lesser, V.: Coordinating multi-agent reinforcement learning with lim-
ited communication. In: Proceedings of the 2013 international conference on Au-
tonomous agents and multi-agent systems. pp. 1101–1108 (2013)

