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Abstract. The paper studies the problem of determining the optimal
control when singular arcs are present in the solution. In the general
classical approach, the expressions obtained depend on the state and the
costate variables at the same time, so requiring a forward-backward inte-
gration for the computation of the control. In this paper, firsty sufficient
conditions on the dynamics structure are discussed, in order to have both
the control and the switching function depending on the state only, com-
putable by a simple forward integration. Then, the possibility to extend
this result by means of a preliminary dynamic extension is presented.
The approach has been checked and validated making use of a classical
SIR epidemic model.
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1 Introduction

Optimal control theory provides the natural framework to solve control problems
when contrasting goals are required with resource limitations. The design proce-
dure can make use of the minimum principle, allowing the determination of the
optimal control that, depending on the cost index and on the model, could be a
bang-bang or a bang-singular-bang solution, [1–4]. In particular, if the model as
well as the cost index are linear in the control, the existence conditions of such
kind of solutions can be explicitly established.

In the bang-bang solution the control assumes only the extreme values,
whereas the singular one is obtained if the Hamiltonian does not depend on
the control in an interval of positive measure. The extreme values assumed by
the control depend on the sign of the switching function, whereas the existence
of singular control is related to the possibility that this switching function is
identically zero on an interval of finite length.
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The determination of singular control, while it is easy from a theoretical
point of view, is generally difficult to implement; the optimal control requires
the solution of a non linear differential equations system in the state variables
with initial conditions, and a non linear differential equations system in the
costate variables with final conditions. Moreover, in general it is not easy the
determination of the best control sequence and the number of switching points,
[5, 6].

In this paper, the determination of the optimal control of nonlinear systems
is investigated referring to the case in which the input acts linearly both in the
model and in the cost index, aiming at a constructive computing of the singular
solution.

The effectiveness of the approach is tested making use of the example of a
classical SIR epidemic model, where S stands for the class of susceptible subjects,
I for the class of infected patients and R for the class of the removed ones [7, 8].

Facing epidemic spread control in the framework of optimal control theory
is rather common for its capability of suggesting suitable scheduling of possi-
ble actions such as vaccination or quarantine or treatment, taking into account
resource limitations. Then, it is widely used in literature [9, 10].

In particular, the optimal singular control for a SIR epidemic model has
been already studied in [11, 12], where the structure of singular control has been
deeply investigated in presence of the double control, vaccination and medical
treatment, showing that the latter can’t be singular, whereas a singular regimen
is expected for the optimal vaccination strategy.

In this work, the SIR model is used with two different formulations. In a first
example, it is assumed that a recovered subject cannot be infected again, while
in a second example, the modified case in which the possibility for a recovered
individuals to become susceptible again is used. The two formulations allow to
deal with different dynamical structures so that all the results presented can be
illustrated.

The paper is organized as follows; the classical optimal control problem for-
mulation is given in Section 2; the conditions and the constraints usually con-
sidered are illustrated and the structure of the optimal solution, as well as the
conditions for the existence of both switches and singular arcs, is given. Then,
in Section 3, a particular class of dynamics is introduced, the same considered in
[13], and constructive conditions for the singular solutions are given for different
formulations of the optimal problem. The example of a SIR model is considered,
to put in evidence the procedure and the effectiveness of the results. In Section
4, the extension of the results to generic dynamics is discussed and it is explicitly
formulated for the simpler case of one dimensional dynamic extension. Also in
this case, a SIR model in a modified version of the one considered in the previous
Section, is considered to exemplify the approach and verify its effectiveness.
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2 The optimal control problem formulation

The optimal control problem here addressed is referred to the design of the
control input u, for a given non linear dynamics of the form

ẋ = f(x) + g(x)u = f(x) +

m∑
i=1

uigi(x) (1)

where x ∈ Rn, u ∈ Rm and with x(t0) = x0, such that a cost index

J =

∫ tf

t0

L(x, u, t)dt (2)

L : Rn ×Rm ×R→ R is minimised.
The presence of a bound on the control amplitude can be expressed in the

form af a box constraint as

umin ≤ u(t) ≤ uMAX ∀t ∈ [t0, tf ] (3)

with umin, uMAX ∈ Rm.
In the definition of the problem, additional constraints can be introduced.

The most common are on (some components of) the final state x(tf ) and on the
final time tf . Such constraints are considered introducing the function

χ (x(tf ), tf ) = 0 (4)

with χ ∈ C1 almost everywhere, dim {χ} = σ, 1 ≤ σ ≤ n+ 1.
Clearly, if tf is left free, its value has to be found during the optimal control

problem solution. In the same way, if some or all the final values for the state
components are not prefixed, they are obtained from the problem solution.

The usual design procedure starts with the definition of the Hamiltonian
function

H(x, λ, u, t) = L(x, u, t) + λT (f(x) + g(x)u) (5)

in which the multiplier function λ(t), also called costate, is introduced, with
λ(t) : R→ Rn, λ(t) ∈ C1 almost everywhere.

The Hamiltonian (5) verifies the condition

H(x, λ, u, t) = K ∀t ∈ [t0, tf ] (6)

with K ∈ R. Since (6) must satisfy

H(x, λ, u, tf ) =
∂χ(x(tf ), tf )

∂tf
η (7)

for an unknown η ∈ R, K is a variable to be found during the optimization
procedure if the final time tf is fixed, with K = η, while it is equal to zero when
the final time is left free and the function χ does not depends on tf .
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From (5), and taking into account the dynamics (1), the costate λ must
satisfy the differential equation

λ̇T = −∂H
∂x

= −∂L
∂x
− λT

(
∂f

∂x
+

m∑
i=1

ui
∂gi
∂x

)
(8)

under the boundary conditions

λ(tf ) = − ∂χ (x(tf ), tf )

∂x(tf )

∣∣∣∣T ζ (9)

with ζ ∈ Rσ to be found and χ in (4). Clearly, if the final state is unconstrained,
(4) does not depends on x(tf ) and (9) becomes

λ(tf ) = 0 (10)

The structure of (5) suggests that if in L(x, u, t) the control u appears linearly,
the whole Hamiltonian results to be affine with respect to the control. This
property can be very useful when the minimum principle is applied, and it will
be used in this paper. Then,

L(x, u, t) = L̃(x, t) + cTu (11)

can be assumed and, consequently, the expression for (5) becomes

H(x, λ, u, t) = L̃(x, t) + cTu+ λT f(x) + λT g(x)u =

L̃(x, t) + λT f(x) +
(
cT + λT g(x)

)
u = F (x, λ, t) +G(x, λ)u (12)

with

F (x, λ, t) = L̃(x, t) + λT f(x) (13)

G(x, λ) = cT + λT g(x) (14)

Clearly, the presence in the cost function of the input u in a linear form is
always possible if umin ≥ 0 in (3).

The minimum principle

H(x, λ, u, t) ≤ H(x, λ, ω, t) ∀ω ∈ [umin, uMAX ] (15)

can be used, yielding, for (12), the condition

G(x, λ)u ≤ G(x, λ)ω ∀ω ∈ [umin, uMAX ] (16)

As a consequence, the optimal control

u =

{
uMAX if G(x, λ) < 0
umin if G(x, λ) > 0

(17)
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can be obtained. The time instant ts such that

G(x(ts), λ(ts)) = 0 (18)

with

G(x(t−s ), λ(t−s )) · G(x(t+s ), λ(t+s )) < 0

is the instant of switching in which the control changes from one extreme to the
other, so getting a classical bang-bang solution.

If condition (18) holds over a finite time interval [t1, t2] ⊆ [ti, tf ]

G(x(t), λ(t)) = 0 t ∈ [t1, t2] (19)

then the optimal control presents a singular arc in the solution and it assumes
the expression

u =

uMAX if G(x, λ) < 0
us(x, λ) if G(x, λ) = 0
umin if G(x, λ) > 0

(20)

In this case, (19) means that G(x(t), λ(t)) is constant over a finite time
interval and, then, all its time derivatives in the same interval must be equal to
zero; so, the identities

∂kG(x(t), λ(t))

∂tk
.
= G(k)(x(t), λ(t)) = 0 ∀t ∈ [t1, t2] (21)

must hold for any k ≥ 0. By definition, G(0)(x(t), λ(t)) does not depend on the
control u. Computing (21), for k = 0, 1, 2, . . . , there exists an index r, necessarily
even [11, 12], such that G(k)(x(t), λ(t)) is independent from u if k < r, while,
for k = r, the control u appears explicitly [4]. Then, the first r conditions (21),
for k = 0, . . . , r − 1, give r relations between state x and costate λ, and from
G(r)(x(t), λ(t)) = 0 the expression for the singular control us in (20) can be
obtained.

Making reference to the expression (14), one has

G(0)(x, λ) = cT + λT g(x) = 0 (22)

G(1)(x, λ) = λ̇T g(x) + λT ġ(x) =

−αT g(x)− λTLgf(x)−
m∑
i=1

uiλ
TLggi(x) + λTLfg(x) +

m∑
i=1

uiλ
TLgig(x) =

−αT g(x) + λTadfg(x) +

m∑
i=1

uiλ
Tadgig(x) = 0 (23)
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where the compact expressions

Lfg(x) = (Lfg1(x) . . . Lfgm(x))

Lgf(x) = (Lg1f(x) . . . Lgmf(x))

Lggi(x) = (Lg1gi(x) . . . Lgmgi(x))

Lgig(x) = (Lgig1(x) . . . Lgigm(x))

adfg(x) = Lfg(x)− Lgf(x)

adgig(x) = Lgig(x)− Lggi(x)

are used. Note that the structures of the Lie Bracket introduced are

adfg(x) =
(
adfg1(x) adfg2(x) · · · adfgm(x)

)
adgig(x) =

(
adgig1(x) adgig2(x) · · · adgigm(x)

)
recalling that adgigi(x) = 0 ∀i ∈ [1,m].

If the vector fields gi in (1) commute, then
∑m
i=1 uiλ

Tadgig(x) = 0, as in [11,
12]; the same term is equal to zero also if single input systems are considered.
In both cases, the identity (23) reduces to

G(1)(x, λ) = −αT g + λTadfg(x) = 0 (24)

and G(2)(x, λ) can be computed using this simplified expression, iterating the
procedure.

3 The case of block sub triangular single input systems

In this Section, the class of dynamics (1) considered is particularised setting x
non negative and m = 1, as in [13]. This simplification allows to better clarify
the relationships between the structure of the system and the possibility to
compute the optimal control law avoiding the backward integration of the costate
dynamics (8).

Under these hypothesis, the initial dynamics (1) is simplified and (24) holds:
moreover, thanks to the non negativeness of the state,

L̃(x, t) = αTx (25)

can be used, so obtaining a fully linear term in the cost function

L(x, u, t) = L(x, u) = αTx+ cu (26)

Then, λ̇T in (8) becomes

λ̇T = −αT − λT ∂f
∂x
− uλT ∂g

∂x
(27)
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and the expressions of (22) and (23) become

G(0)(x, λ) = c+ λT g(x) = 0 (28)

G(1)(x, λ) = −αT g(x) + λTadfg(x) = 0 (29)

with (29) always independent from u. Then, the computation of G(2)(x, λ, u) = 0
must always be performed:

G(2)(x, λ, u) = −αT (Lfg(x) + uLgg(x))

−
(
αT + λT

∂f

∂x
+ uλT

∂g

∂x

)
adfg(x) + λT (Lfadfg(x) + uLgadfg(x)) =(

λTad2fg(x)− αT (Lfg(x) + adfg(x))
)
−
(
αTLgg(x)− λTadgadfg(x)

)
u

(30)

If αTLgg(x)− λTadgadfg(x) 6= 0, the singular control us can be obtained as

us(x, λ) =
λTad2fg(x)− αT (Lfg(x) + adfg(x))

αTLgg(x)− λTadgadfg(x)
(31)

otherwise G(2)(x, λ, u) = G(2)(x, λ), the condition

λTad2fg(x)− αT (Lfg(x) + adfg(x)) = 0 (32)

involving x and λ only, is obtained, and a further derivative G(3)(x, λ, u) must
be computed. Set r as the first index such that G(r)(x, λ, u) is dependent from
the input. It is easily verified that:

Proposition 1. The expression of the i–th derivative G(i)(x, λ), for i = 0, 1, . . . , r−
1, is of the form

G(i)(x, λ) = λTadifg(x) + hi(x)

for suitable functions hi(x) (h0(x) = c, h1(x) = −αT g(x)).

Proof. It comes iteratively at the i–th step from the structure of G(i−1)(x, λ)
and the computations evidenced in (30).

3.1 The class of dynamics considered

The class of nonlinear dynamics considered in this Section presents the structure(
ẋ1
ẋ2

)
=

(
f1(x1)
f2(x1)

)
+

(
g1(x1)
g2(x1)

)
u (33)

where x1 ∈ Rr, x2 ∈ Rn−r, and the functions fi and gi defined consequently.
The controllability condition

dim
(
span

{
g1, adf1g1, . . . , ad

r−1
f1

g
}

(x1)
)

= r (34)
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for the first subsystem is assumed verified, with x1 in a suitable domain contain-
ing x1(t0).

In order to avoid long computations, the simplest case of r = 2 is here
addressed, for which all the expressions can be written in a compact form. This
is also the case of the example discussed in Subsection 3.3 to illustrate the
proposed approach.

Consequently, setting

λ =

(
λ1
λ2

)
λ1 ∈ Rr, λ2 ∈ Rn−r (35)

one has

∂L

∂x
=
(
∂L
∂x1

∂L
∂x2

)
∂f

∂x
=

(
∂f1(x1)
∂x1

0
∂f2(x1)
∂x1

0

)
∂g

∂x
=

(
∂g1(x1)
∂x1

0
∂g2(x1)
∂x1

0

)

so that (8) becomes

(
λ̇1
λ̇2

)
= −

( ∂L
∂x1
∂L
∂x2

)
+

(
∂fT

1 (x1)
∂x1

∂fT
2 (x1)
∂x1

0 0

)
λ+

+u

(
∂g1(x1)
∂x1

∂g2(x1)
∂x1

0 0

)
λ (36)

The above equation can be explicitly decomposed into

λ̇1 = − ∂L

∂x1
−
(
∂fT1 (x1)

∂x1
+ u

∂g1(x1)

∂x1

)
λ1 +

−
(
∂fT2 (x1)

∂x1
+ u

∂g2(x1)

∂x1

)
λ2 (37)

λ̇2 = − ∂L

∂x2
(38)

3.2 Results for the class of dynamics considered

The particular structure of the system (33), which induces the simplification on
the λ dynamics (37)–(38), has been used in [13] to prove the following results, for
which a short justification is here recalled, mainly focusing on the computation
of the costate. The differences among the following three Proposition are in the
boundary conditions, studying the differences for fixed or free final time and/or
state.

Proposition 2. Consider the optimal control problem, with fixed final time tf
and free final conditions on the state, for a non linear dynamics of the form
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(33) and the cost function (2) with L as in (26). There exists a procedure for
the computation of the optimal singular solution where the control law is as a
pure state feedback, bringing to a bang–singular–bang optimal control, for which
the singular manifold can be explicitly given as a state function only. Moreover,
after the last switch, the optimal control u is equal to umin.

Proof. [13]: under the conditions stated in the Proposition, the constraint (4)
does not depend on the final state x(tf ), so that (10) holds; the expression of

L(x, u, t) gives λ̇2 = 0 in (38) and, thanks to (10) and the continuity hypothesis
on λ(t), one has

λ2(t) = 0 ∀t ∈ [t0, tf ] (39)

As far as λ1 is concerned, equations G(i)(x, λ), i = 0, 1, . . . , r − 1, can be
written, for Proposition 2, as

G(0)(x, λ) = λT1 g1(x1) + c = 0 (40)

G(1)(x, λ) = λT1 adf1g1(x1)− αT1 g1(x1) = 0

(41)

. . . = . . .

G(r−1)(x, λ) = λT1 ad
r−1
f1

g1(x1) + hr−1(x1) = 0

(42)

Rewritten in the compact form

λT1
(
g1(x1), adf1g1(x1), . . . adi−1

f1
g1(x1)

)
=

=
(
−c, αT1 g1(x1), . . . hi−1(x1)

)
the expression of λ1

λT1 = (−c, . . . hi−1(x1))
(
g1(x1), . . . adi−1

f1
g1(x1)

)−1

(43)

can be easily computed once (34) holds. Then, the expression of the costate
λ is fully known, λ2(t) as in (39) and λ1 as in (43). It is a function of the
state, without the necessity of using (36), so avoiding the backward integration
procedure.

Then, it is possible to express the singular control us(x, λ) as a state function
only, in particular a function of x1, us = us(x1).

The equation of the singular manifold can be obtained from

F (x, λ, t) = αT1 x1 + λT1 f1(x1) = K (44)

thanks to (6), in which the structure (12) is used, and the fact that condition
(19) holds. Expression (44) can be explicitly written as a function of the state
once (43) is used:

K = αT1 x1 + (−c . . . hi−1(x1))
(
g1(x1) . . . adi−1

f1
g1(x1)

)−1

f1(x1) (45)
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which fully describes the singular surface in the x1 subspace. The subspace x2 can
be computed from x1, thanks to the structure of (33). The value of the unknown
parameter K can be obtained noting that, from (12) evaluated af t = tf , one
has

H(x, λ, u, tf ) = αT1 x1(tf ) = K (46)

being u(tf ) = 0 as well as λ(tf ) = 0. This procedure allows to fully compute the
singular part of the optimal solution. The full solution (20) is obtained including
the conditions in (17).

Other two Propositions, shortly recalled below, are proved in [13], where the
same problem as in Proposition 2 is defined but with different conditions on the
final state and time.

More explicitly, while Proposition 2 refers to the case of fixed final time tf and
free final state x(tf ), Proposition 3 considers both x(tf ) and the time tf fixed,
and Proposition 4 refers to fixed final state and free final time. All these choices
bring to different definitions of the constraint function (4) which determines the
boundary conditions on λ(t) and on (5). The core of the results, the possibility
to have the expression for λ(t) directly as a function of the state without its
differential system integration, is the same for all the three cases.

Proposition 3. Given the optimal control problem, with fixed time tf and fixed
final condition on the state x(tf ) = xf , for a non linear dynamics of the form
(33) and the cost function (2) with L of the form (26), there exists a procedure
for the computation of the optimal singular solution which gives the expression of
the control law as a pure state feedback, bringing to a bang–singular–bang optimal
control, for which the singular surface can be explicitly written as a state function
only.

In this case, the presence of constraint (4) does not allow to know λ(tf ) due

to expression (9). However, λ̇2 = 0 is still true and then one has λ2(t) = λ2(tf ) =
const. In this case equations (40), (41), (42) assume the form

G(0)(x, λ) = λT1 g1(x1) + λT2 (tf )g2(x1) = 0 (47)

G(1)(x, λ) = λT1 adf1g1(x1)− αT1 g1(x1) + λT2 (tf ) [f2, g2] (x1) = 0 (48)

. . . = . . .

G(r−1)(x, λ) = λT1 ad
r−1
f1

g1(x1) + hr−1(λ2(tf ), x1) (49)

Following the same considerations as in the previous Proposition 2, it is
possible to compute λ1 as in (43), whose expression in this case is λ1(λ2(tf ), x1).
Also the singular control us as weel as the singular surface (45) can be computed
as function of x1, but they results to be parametrised by λ2(tf ). The same follows
for x2(t). However, thanks to condition (4), it is possible to determine the actual
values for λ2(tf ), so getting again the full computation of the singular solution
us = us(x1) and of the singular state space manifold. The remaining part of the
procedure follows what stated in Proposition 2.

The last case here addressed refers to a free time fixed final conditions on
the state variables. It is possible to state the following
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Proposition 4. Given the optimal control problem, with free final time tf and
the constraint (4) for the final conditions on the state, for a non linear dynamics
of the form (33) and the cost function (2) with L(x, u, t) = αT1 x1 + cu, α1 ∈ Rr,
there exists an algorithm for the computation of the optimal singular solution
which gives the expression of the control law as a pure state feedback, bringing
to a bang–singular–bang optimal control, for which the singular surface can be
explicitly written as a state function only.

Proof: The proof comes straightforwardly from the one of Proposition 3,
since the only difference is in the fact that being the final time tf free, K in (6)
and in all the derived expressions, as far as (45), are equal to zero. All the other
considerations still hold.

These results are applied, in next Subsection, to a simple dynamical system
in order to put in evidence the main steps and the results.

3.3 The example of a SIR model

The effectiveness of the procedures introduced is here verified making use of a
classical problem, the optimal control of an epidemic spread. The mathematical
model here considered is a SIR dynamics.

With reference to the general formulation introduced in Section 2, the clas-
sical model of a SIR epidemic spread is

Ṡ = −βSI − Su+ µ (50)

İ = βSI − γI (51)

Ṙ = γI (52)

with given initial conditions S0, I0, R0, and box constraints u(t) ∈ [0, UMAX ],
for which the control law u(t) minimising the cost function

J(S(t), I(t), R(t), u(t)) =

∫ tf

t0

(aI(t) + cu(t)) dt (53)

has to be found. Only the final time tf is assumed fixed and equal to tdf . Then,

the constraint (4) has the expression χ(tf ) = tf − tdf and its derivative with
respect to tf is equal to one. The aim of the control action is to minimize the
number of infected subjects I in the fixed time interval [0, tf ] by using as less
resources as possible; the positive parameters a and c represent the weights of
these two contrasting requirements.

Setting

x =

(
x1
x2

)
with x1 =

(
S
I

)
and x2 = R (54)

the formulation corresponds to the case considered in Proposition 2, with r = 2,
αT1 =

(
0 a
)
, αT =

(
αT1 0

)
and
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f1(x1) =

(
−βSI + µ
βSI − γI

)
g1(x1) =

(
−S
0

)
f2(x1) = γI g2(x1) = 0

(55)

Correspondingly, the costate λ is defined as

λ =

(
λ1
λ2

)
with λ1 ∈ R2 and λ2 ∈ R (56)

and the Hamiltonian (12) is

H(x, λ, u) = αT1 x1 + cu+ λT1 f1(x1) + λ2f2(x1) + λT1 g1(x1)u =

F (x, λ) +G(x, λ)u (57)

with

F (x, λ) = αT1 x1 + λT1 f1(x1) + λ2f2(x1) (58)

G(x, λ) = c+ λT1 g1(x1) (59)

and for which
H(x, λ, u) = K ∀t ∈ [t0, tf ], K ∈ R (60)

The costate dynamics (37) and (38) for λ can be computed, getting

λ̇1 = −
(

0
a

)
−
(
−βI βI
−βS βS − γ

)
λ1 − u

(
−1 0
0 0

)
λ1 −

(
0
γ

)
λ2 (61)

λ̇2 = 0 (62)

with λ(tf ) = 0 due to the free final state condition. Then, as expected, from
(62) one has λ2(t) = 0.

Performing the computations, expressions (47) and (48) assume the form

G(0)(x, λ) = c+ λT1

(
−S
0

)
= 0 (63)

G(1)(x, λ) = λT1

(
−µ
βSI

)
= 0 (64)

from which the variable λ1 can be computed, as a function of x1 =

(
S
I

)
, ob-

taining

λ1 =

(
−S 0
−µ βSI

)−1(−c
0

)
=

( c
S
µc
βS2I

)
(65)

Moreover, for G(2)(x, λ) one has

G(2)(x, λ) = λT1 ad
2
f1g1(x1)− αT1 adf1g1(x1) + uλT1 adg1adf1g1(x1) (66)
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from which the singular control

us(x, λ) =
λT1 ad

2
f1
g1(x1)− αT1 adf1g1(x1)

λT1 adg1adf1g1(x1)
(67)

is obtained. After all the computations, and making use of (65), the state feed-
back singular control

us(x) =
aβSI − β2cSI + 2βcµI

S − 2cµ2

S2

−2 cµS
= βI

(
βc− a

2cµ
S2 − 1

)
+
µ

S
(68)

is computed. The singular manifold can be obtained as a state function according
to (44) and (45):

(
0 a
)(S

I

)
+
( c
S

µc
βS2I

)(−βSI + µ
βSI − γI

)
= aI − βcI + 2

cµ

S
− cγµ

βS2
= K (69)

Finally, from (46),
K = aI(tf ) (70)

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Time  t

u(
t)

Fig. 1. The Bang–Singular–Bang optimal control u(t) ([13]).

The simulation has been performed setting tf = 20, fixing the model param-
eters to β = 0.01, γ = 0.4 and µ = 10 and choosing the weights α = 1 and c = 1
in the cost function (53). The time history of the bang-singular-bang control
is depicted in Figure 1, where the finite time interval of the singular solution
t ∈ [t1, t2], with t1 = 5.32 and t2 = 15.3, is evidenced by the two vertical dotted
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Fig. 2. State trajectory in the x1–x2 plane, compared with the singular curve ([13]).

lines. The corresponding state evolution is represented in Figure 2 for the x1–x2
plane projection: the initial part of the trajectory from the starting conditions
x1,0 = 50 and x2,0 = 10, the squared point, to the intersection with the singular
curve (dotted line), denoted by a dashed curve, represents the evolution under
the upper bound value for the control. Then, under the singular control (68), the
trajectory follows the singular curve along the solid arc, until the second switch
from u = us to u = umin = 0 occurs, yielding to the free evolution from the
singular arc to the final point (diamond marker).

4 An extended case

The results presented in Section 3 are based on the particular form for dynamics
(33) and its relationship with condition (34).

The use of these results on a generic system can be extended once it is ob-
served that if in the dynamics (33) one has r = n, the expression of a generic
n dimensional system is obtained which has to satisfy the full controllability
condition (34). For such a system, the procedure described above can be easily
applied. In fact, in this case, the full costate can be obtained as a function of the
state making use of (43) with r = n. Then, the procedures described in Proposi-
tion 2, Proposition 3 and Proposition 4 can be applied and the optimal control
problem can be solved without requiring the solution, by backward integration,
of the differential system (27) and yielding to an optimal control law that can
be expressed as a state function, that is in the form of a state feedback.

The fulfilment of condition r = n is not common, being impossible if n is
odd. So, also the direct use of the results in Section 3 is strongly limited.
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In this Section, the possibility to extend the results to the case of generic
dynamics for which the condition r < n holds is here addressed.

The enriched control scheme is described for the case r = n − 1, since the
other cases can be obtained recursively.

In this case the optimal control problem is referred to a dynamics (1) with
x ∈ Rn, xi ≥ 0, and u ∈ R, u ≥ 0, to a cost function (2) with position (25), and
control constraints (3) with umin = 0.

The introduction of the Hamiltonian function (12) and the use of the mini-
mum principle (15), which becomes (16), allow to obtain the expression (17) for
the optimal control.

If a singular arc is present in the optimal solution, then the expressions of the
G(i)(x, λ) can be computed and, for the hypothesis assumed on r, and for the
Proposition 1, one has that for the first n− 1 terms G(i)(x, λ), i = 0, . . . , n− 2,
the following conditions

G(0)(x, λ) = λT g(x) + c = 0

G(1)(x, λ) = λTadfg(x)− αT g(x) = 0 (71)

. . . . . . . . .

G(n−2)(x, λ) = λTadn−2
f g(x) + hn−2(x) = 0

hold independently from the control u, while, at the n− 1–th step, one gets the
form, as the one in (30)

G(n−1)(x, λ, u) = M(x, λ) +N(x, λ)u = 0 (72)

with N(x, λ, u) 6= 0 so that the singular control

us = −M(x, λ)

N(x, λ)
(73)

can be computed. In this case, without particular hypothesis on the dynamics,
from (43) with r = n − 2, it is not possible to obtain the n components of the
costate λ from the n− 1 dimensional system (71).

The approach here followed to overcome this problem makes use of a dynamic
extension of the input, adding an integrator on u. Then, u becomes one compo-
nent of the state and v = u̇ is the new input. This position has the consequence
of making (72) the (n−1)–th equation of system (71) from which a solution like
(43) can be obtained for the costate λ.

The drawback of this idea is that the dimension of the state becomes n+1 and
the same is, consequently, the dimension of the costate. Then, since from (43)
only n components of the costate can be computed, it seems that the problem
is not actually solved.

In order to clarify the effects of the dynamic extension on the whole optimal
control problem, the reformulation for the extended dynamics is performed and
the steps for the computation of the new solutions are analysed.
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Then, consider now the extended dynamics

ẋ = f(x) + g(x)u

u̇ = v (74)

with x ∈ Rn, u ∈ R, v ∈ R, which can be described by

ż = Φ(z) + Γv (75)

once the extended state z =
(
xT u

)T
is introduced, as long as the extended

vector fields

Φ(z) =

(
f(x) + g(x)u

0

)
, Γ =

(
0
1

)
(76)

Clearly, the same cost function (2) with (26) is considered, being it the orig-
inal cost of the problem. Its expression, for the extended case, becomes

J =

∫ tf

t0

(
αTx+ cu

)
dt =

∫ tf

t0

α̃T z dt (77)

The external input v is not present in the cost function and is not explicitly
constrained, since the previous bound on u,

u(t) ∈ [0, uMAX ] ∀t ∈ [t0, tf ] (78)

here becomes a constraint on one of the state components.
As far as the boundary conditions on the state, x(t0) = x0 is the same as in

the original problem; for u, the initial and/or the final values can be assumed
known, once the existence of the control (20) is assumed for the initial problem.

Also the constraint (4) must be rewritten with respect to the extended state,
getting the expression

χ̃ (z(tf ), tf ) = 0 (79)

verifying
∂χ̃ (z(tf ), tf )

∂z(tf )
=
(
∂χ̃(x(tf ),u(tf ),tf )

∂x(tf )
∂χ̃(x(tf ),u(tf ),tf )

∂u(tf )

)
(80)

where
∂χ̃ (x(tf ), u(tf ), tf )

∂u(tf )
= 0 (81)

if no hypothesis can be initially formulated for the final condition on u.
According to the extension, the costate function

λ̃ =

(
λ
λu

)
(82)

is introduced, with λ ∈ Rn the same as the original case, and λu ∈ R. The
Hamiltonian function becomes

H̃(z, λ̃, v, t) = α̃T z + λ̃T (Φ(z) + Γv) = F̃ (z, λ̃) + G̃(λ̃)v (83)
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with

F̃ (z, λ̃) = α̃T z + λ̃TΦ(z) (84)

G̃(λ̃) = λ̃TΓ (85)

Expressions of the original formulation can be put in evidence in (84) and
(85), observing that

F̃ (z, λ̃) = αTx+ cu+ λT (f(x) + g(x)u) =

= H(x, λ, u) (86)

G̃(z, λ̃) = λu (87)

The necessary condition for the extended costate becomes

˙̃
λT = −∂H̃

∂z
= α̃T + λ̃T

∂Φ

∂z
+ λ̃T

∂Γ

∂z
=

= −α̃T − λ̃T
(
∂Φ
∂x

∂Φ
∂u

)
− λ̃T

(
∂Γ
∂x

∂Γ
∂u

)
=

= −α̃T − λ̃T
(
∂f
∂x + ∂g

∂xu g
0 0

)
− λ̃T

(
0 0
0 0

)
=

= −
(
αT + λT

(
∂f
∂x + ∂g

∂xu
)
c+ λT g

)
(88)

in which the two blocks

λ̇ = −α−
(
∂f

∂x
+
∂g

∂x
u

)T
λ (89)

λ̇u = c+ λT g (90)

can be evidenced, where (89) is the same as (27) and (90) corresponds to (14).
Since the new extended problem does not have any constraint on the new input
v, the necessary condition

∂H̃(z, λ̃, v, t)

∂v
= 0 (91)

can be considered, yielding to

G̃(λ̃)) = λu(t) = 0 (92)

Having assumed verified all the conditions of the original problem, on the
singular arc one has, for (22), (90) and (92),

λ̇u = G̃(1)(x, λ) = G(0)(x, λ) = 0 (93)

and then

dkλu
d tk

= G̃(k)(x, λ) = G(k−1)(x, λ) = 0 ∀k = 1, 2, . . . (94)

holds in the time interval t ∈ [t1, t2], while for t ∈ [t0, t1]∪[t2, tf ] λu(t) is constant
with all the time derivatives equal to zero. On these basis it is possible to state
the following
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Proposition 5. For the extended dynamics, the presence of a singular solution
is guaranteed in the same time interval as in the solution of the initial problem.

Thanks to Proposition 5, from the expressions in (93) and (94), and under
the hypothesis (71) on the solution of the original problem, for the conditions
on the existence of the singular solution for the extended dynamics, one has

G̃(k)(z, λ̃) = 0, for k ∈ [0, n− 1] (95)

independent from u.
For the n–th derivative, one has

G̃(n)(z, λ̃) = G(n−1)(x, λ, u) = 0 (96)

with G(n−1)(x, λ, u) in (72). For the extension, the control v does not appear yet
and then the subsequent derivative must be performed to compute the singular
control.

G̃(n+1)(z, λ̃) = G(n)(x, λ, u) =

=
∂G(n−1)(x, λ, u)

∂x
(f + gu) +

−∂G
(n−1)(x, λ, u)

∂λ

∂H(x, λ, u)

∂x

∣∣∣∣T +

+
∂G(n−1)(x, λ, u)

∂u
v (97)

Performing the computation, thanks to the form of the compact expression
(72), one obtains

∂G(n−1)(x, λ, u)

∂u
= N(x, λ) (98)

This result proves the following

Proposition 6. If the singular control us can be computed, as in (73), for the
non singularity of the coefficient N(x, λ), the same holds for the control v of the
extended problem.

Moreover

Proposition 7. The set of equations

G̃(0)(z, λ̃) = λu = 0

G̃(1)(z, λ̃) = G(0)(x, λ) = λT g(x) + c = 0

G̃(2)(z, λ̃) = G(1)(x, λ) = λTadfg(x)− αT g(x) = 0

. . . . . . . . .

G̃(n−1)(z, λ̃) = G(n−2)(x, λ) = λTadn−2
f g(x) + hn−2(x) = 0

G̃(n)(z, λ̃) = G(n−1)(x, λ, u) = M(x, λ) +N(x, λ)u = 0 (99)

can be used to compute λ = λ(x, u) without integrating the system (27).
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Proof. For the proof, the explicit expression of M(x, λ) and N(x, λ) should be
put in evidence to show their relationship with λ. Making also use of (30) for
reference, it can be observed that the coefficients of λ in the terms G(i)(x, λ),
for i = 0, . . . , n − 2 are adifg(x) (Proposition 1). For G(n−1)(x, λ, u), the terms

in the coefficient of λ contain adn−1
f g(x) along with other Lie Brackets of order

lower of n contained in the non singular distribution

D = span
{
g, adfg, . . . , ad

n−1
f g

}
(x) (100)

so that (99) can be always inverted with respect to λ, getting

λ = λ(x, u) (101)

which can be used in the remaining part of the procedure to solve the optimal
control problem, while for λu (92) holds.

The correspondence between the original optimal solution in (20), whose
expression is (73), and the optimal solution v for the extended control problem
can be easily stated. In fact, v = 0 outside the singular part of the solution
corresponds to u constant, whose value is 0 or uMAX , defined by means of
the boundary conditions on the state component u in z. For the singular arc,
comparing the expressions of G(n−1)(x, λ, u) in (72), from which us is computed,
with

G(n)(x, λ, u, v) = Ṁ(x, λ) + Ṅ(x, λ)u+N(x, λ)v (102)

from which

vs = −Ṁ(x, λ) + Ṅ(x, λ)us
N(x, λ)

(103)

is obtained, it is possible to verify, since u̇s = vs, that the optimal solution for the
state component u of the extended problem coincides with the optimal control
us, solution of the original problem. In fact

u̇s =
d

dt

(
−M(x, λ)

N(x, λ)

)
=

= −Ṁ(x, λ)N(x, λ)− Ṅ(x, λ)M(x, λ)

N2(x, λ)
=

= −
Ṁ(x, λ)− Ṅ(x, λ)M(x,λ)

N(x,λ)

N(x, λ)
=

= −Ṁ(x, λ)− Ṅ(x, λ)us
N(x, λ)

= vs (104)

once compared with (103).
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4.1 The example of a SIR model with no immunization

An example is here adopted to show explicitly the procedure which allows to
compute the costate λ as a function of the state x and the control u, so that
the extended input v over the singular manifold, can be expressed without the
necessity of the integration of the differential system for λ.

The dynamics considered is the same as in Subsection 3.3, slightly modified
in order to make it loose the particular structure (33).

The modified dynamics is of the form (1) with x =
(
S I R

)T
,

f(x) =

−βSI + ρR+ µ
βSI − γI
γI − ρR

 , g(x) =

−S0
0

 (105)

where the change w.r.t. Subsection 3.3 is the addition of the term ρR representing
the rate of recovered which can re-contract the virus, moving from R to S.

In the cost function, the term L is as in (53), of the form (25). The Hamilto-
nian function is as in (12), with α = (α1 α2 α3)T so that the functions G(0)(x, λ),
G(1)(x, λ) and G(2)(x, λ, u) have the expressions (28), (29) and (30) respectively.
The differential system for λ arising from the necessary conditions is

λ̇1 = − (α1 − βIλ1 + βIλ2 − γλ2 − λ1u)

λ̇2 = − (α2 − βSλ1 + βSλ2 + γλ3)

λ̇3 = − (α3 + ρλ1 − ρλ3) (106)

which should be solved, along with (1), under mixed boundary conditions.
In this case, if the extension (74) is introduced, the costate λ can be computed

as a function of x and u directly solving the system (28)-(29)-(30).
For the present case, one gets

adfg(x) =

ρR+ µ
−βSI

0

 , adgadfg(x) =

ρR+ µ
−βSI

0

 (107)

Lgg(x) =

S0
0

 , Lfg(x) =

βSI − ρR− µ0
0

 (108)

ad2fg(x) =

ργI − ρ2R+ ρβIR+ µβI − β2S2I
β2SI2 − 2ρβIR− 2βI

−βγSI

 (109)

and the system to be solved becomes

λTC(x, u) = D(x, u) (110)

with
C(x, u) =

(
g adfg ad

2
fg + adgadfgu

)
= (111)
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=

−S ρR+ µ ργI − ρ2R+ ρβIR+ µβI − β2S2I + ρRu+ µu
0 −βSI β2SI2 − 2ρβIR− 2βI − βSIu
0 0 −βγSI

 (112)

D(x, u) =
(
−c αT g αTLggu+ αT (Lfg + adfg)

)
(113)

It can be verified that the controllability condition is satisfied once S 6= 0 and
I 6= 0. Under the same conditions,

λT (x, u) = D(x, u)C−1(x, u) (114)

can be computed, since, as it is easy to verify by visual inspection, the deter-
minant ∆ of the matrix C(x, u) is ∆ = −β2γS3I2 6= 0 and then C(x, u) is
invertible.

5 Conclusions

Sufficient conditions under which the solution of a singular optimal control prob-
lem can be directly expressed as a state feedback law are provided, allowing its
computation by means of a simple forward integration of the system dynamics
only.

The necessity of a particular structure for the systems for satisfying the
conditions required for the implementation of the proposed procedure has been
overcome, introducing a dynamic extension on the input. The effectiveness of
the approach is shown for the case in which an order one integrator is sufficient,
but the proof of the success of the proposed approach for a generic order can
be obtained, for example, by iterative application of the one dimensional single
step.
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