Skip to main content

Automated Nonlinear Control Structure Design by Domain of Attraction Maximization with Eigenvalue and Frequency Domain Specifications

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 613))

Abstract

This work proposes a new method for nonlinear control structure design for nonlinear dynamical systems by grammatical evolution. The optimization is based on a novel fitness function which implements three different design objectives. First, the closed loop eigenvalues of the linearized system dynamics are restricted to be located in a predefined region of the complex plane. Second, design specifications on the frequency magnitude of the sensitivity transfer functions of the linearized system dynamics are imposed. Third, the estimated domain of attraction of the nonlinear closed loop system dynamics is maximized by evaluating a quadratic Lyapunov function, obtained by the solution of the Lyapunov equation, with a Monte-Carlo sampling algorithm. Additionally, a general formula for the centroid of a design region for pole placement is derived analytically and embedded in the optimization framework. The generated controllers are evaluated on a common, nonlinear benchmark system. It is shown that the proposed method can efficiently generate control laws which meet the imposed design specifications on the closed loop system while maximizing the domain of attraction.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ackermann J (1980) Parameter space design of robust control systems. IEEE Trans Autom Control 25(6):1058–1072

    Article  MATH  Google Scholar 

  2. Ackermann J, Blue P, Bünte T, Güvenc L, Kaesbauer D, Kordt M, Muhler M, Odenthal D (2002) Robust control: the parameter space approach. Springer Science & Business Media, Heidelberg

    Book  Google Scholar 

  3. Artstein Z (1983) Stabilization with relaxed controls. Nonlinear Anal TMA 7(11):1163–1173

    Article  MathSciNet  MATH  Google Scholar 

  4. Backus JW (1959) The syntax and semantics of the proposed international algebraic language of the Zurich ACM-GAMM conference. Proceedings of the international conference on information processing (1959)

    Google Scholar 

  5. Banks C (2002) Searching for Lyapunov functions using genetic programming. Virginia Polytech Institute and State University, Blacksburg, Virginia. http://www.aerojockey.com/files/lyapunovgp.pdf. Accessed 24 May 2018

  6. Bartels RH, Stewart G (1972) Solution of the matrix equation \(AX+ XB= C\): algorithm 432. Commun ACM 15(9):820–826

    Article  MATH  Google Scholar 

  7. Blackwell C (1984) On obtaining the coefficients of the output transfer function from a state-space model and an output model of a linear constant coefficient system. IEEE Trans Autom Control 29(12):1122–1125

    Article  MathSciNet  MATH  Google Scholar 

  8. Bobiti R, Lazar M (2018) Automated sampling-based stability verification and DOA estimation for nonlinear systems. IEEE Trans Autom Control 63(11):3659–3674

    Article  MathSciNet  MATH  Google Scholar 

  9. Brayton R, Tong C (1979) Stability of dynamical systems: a constructive approach. IEEE Trans Circuits Syst 26(4):224–234

    Article  MathSciNet  MATH  Google Scholar 

  10. Bünte T (2000) Mapping of Nyquist/Popov theta-stability margins into parameter space. IFAC Proc Vol 33(14):519–524

    Article  Google Scholar 

  11. Castro LN, De Castro LN, Timmis J (2002) Artificial immune systems: a new computational intelligence approach. Springer Science & Business Media, London

    MATH  Google Scholar 

  12. Chen P, Lu YZ (2011) Automatic design of robust optimal controller for interval plants using genetic programming and Kharitonov theorem. Int J Comput Intell Syst 4(5):826–836

    Article  Google Scholar 

  13. Chen Z, Yuan X, Ji B, Wang P, Tian H (2014) Design of a fractional order PID controller for hydraulic turbine regulating system using chaotic non-dominated sorting genetic algorithm II. Energy Convers Manag 84:390–404

    Article  Google Scholar 

  14. Chesi G (2005) Domain of attraction: estimates for non-polynomial systems via LMIs. In: Proceedings of 16th IFAC world congress, Prague, Czech Republic

    Google Scholar 

  15. Chilali M, Gahinet P (1996) \(H_{\infty }\) design with pole placement constraints: an LMI approach. IEEE Trans Autom Control 41(3):358–367

    Article  MathSciNet  MATH  Google Scholar 

  16. Dorigo M, Maniezzo V, Colorni A (1996) Ant system: optimization by a colony of cooperating agents. IEEE Trans Syst Man Cybern Part B (Cybernetics) 26(1):29–41

    Article  Google Scholar 

  17. Doyle J, Stein G (1981) Multivariable feedback design: concepts for a classical/modern synthesis. IEEE Trans Autom Control 26(1):4–16

    Article  MATH  Google Scholar 

  18. Doyle JC, Francis BA, Tannenbaum AR (2013) Feedback control theory. Courier Corporation

    Google Scholar 

  19. Duriez T, Brunton SL, Noack BR (2017) Machine learning control-taming nonlinear dynamics and turbulence. Springer, Heidelberg

    Book  MATH  Google Scholar 

  20. Freeman R, Kokotovic PV (2008) Robust nonlinear control design: state-space and Lyapunov techniques. Springer Science & Business Media, Basel

    MATH  Google Scholar 

  21. Gholaminezhad I, Jamali A, Assimi H (2014) Automated synthesis of optimal controller using multi-objective genetic programming for two-mass-spring system. In: 2014 second RSI/ISM international conference on robotics and mechatronics (ICRoM). IEEE, pp 041–046

    Google Scholar 

  22. Giesl P (2007) Construction of global Lyapunov functions using radial basisfunctions, vol 1904. Springer, Heidelberg

    Book  MATH  Google Scholar 

  23. Giesl P, Hafstein S (2015) Review on computational methods for Lyapunov functions. Discrete Continuous Dyn Syst Ser B 20(8):2291–2337

    Article  MathSciNet  MATH  Google Scholar 

  24. Glassman E, Desbiens AL, Tobenkin M, Cutkosky M, Tedrake R (2012) Region of attraction estimation for a perching aircraft: a Lyapunov method exploiting barrier certificates. In: 2012 IEEE international conference on robotics and automation (ICRA). IEEE, pp 2235–2242

    Google Scholar 

  25. Glover F (1986) Future paths for integer programming and links to artificial intelligence. Comput Oper Res 13(5):533–549

    Article  MathSciNet  MATH  Google Scholar 

  26. Glover FW, Kochenberger GA (2006) Handbook of metaheuristics, vol 57. Springer Science & Business Media, Heidelberg

    MATH  Google Scholar 

  27. Graichen K, Kugi A, Petit N, Chaplais F (2010) Handling constraints in optimal control with saturation functions and system extension. Syst Control Lett 59(11):671–679

    Article  MathSciNet  MATH  Google Scholar 

  28. Grosman B, Lewin DR (2005) Automatic generation of Lyapunov functions using genetic programming. IFAC Proc Vol 38(1):75–80

    Article  Google Scholar 

  29. Hafstein SF (2007) An algorithm for constructing Lyapunov functions. Electron J Differ Eq 2007:101

    MATH  Google Scholar 

  30. Haupt RL, Haupt SE (1998) Practical genetic algorithms, vol 2. Wiley, New York

    MATH  Google Scholar 

  31. Holland JH (1975) Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. University of Michigan Press, Oxford

    MATH  Google Scholar 

  32. Hosen MA, Khosravi A, Nahavandi S, Creighton D (2015) Improving the quality of prediction intervals through optimal aggregation. IEEE Trans Industr Electron 62(7):4420–4429

    Article  Google Scholar 

  33. Isidori A (1989) Nonlinear control systems, 2nd edn. Springer, Heidelberg

    Book  MATH  Google Scholar 

  34. Johansson M, Rantzer A (1997) Computation of piecewise quadratic Lyapunov functions for hybrid systems. In: 1997 european control conference (ECC). IEEE, pp 2005–2010

    Google Scholar 

  35. Jones M, Mohammadi H, Peet MM (2017) Estimating the region of attraction using polynomial optimization: a converse Lyapunov result. In: 2017 IEEE 56th annual conference on decision and control (CDC). IEEE, pp 1796–1802

    Google Scholar 

  36. Kapinski J, Deshmukh JV, Sankaranarayanan S, Arechiga N (2014) Simulation-guided Lyapunov analysis for hybrid dynamical systems. In: Proceedings of the 17th international conference on Hybrid systems: computation and control. ACM, pp 133–142

    Google Scholar 

  37. Khalil HK (1996) Nonlinear systems, 3rd edn. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  38. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680

    Article  MathSciNet  MATH  Google Scholar 

  39. Koza JR (1992) Genetic programming: on the programming of computers by means of natural selection, vol 1. MIT Press, Cambridge

    MATH  Google Scholar 

  40. Koza JR, Keane MA, Yu J, Bennett FH, Mydlowec W, Stiffelman O (1999) Automatic synthesis of both the topology and parameters for a robust controller for a nonminimal phase plant and a three-lag plant by means of genetic programming. In: Proceedings of the 38th IEEE Conference on Decision and Control, vol 5, IEEE, pp 5292–5300

    Google Scholar 

  41. Li C, Ryoo CS, Li N, Cao L (2009) Estimating the domain of attraction via moment matrices. Bull Korean Math Soc 46(6):1237–1248

    Article  MathSciNet  MATH  Google Scholar 

  42. Lyapunov AM (1992) The general problem of the stability of motion. Taylor & Francis, London. English translation by A.T. Fuller, original work published in Russian in 1892

    Google Scholar 

  43. Maciejowski JM (1989) Multivariable feedback design. Electronic systems engineering series, vol 6. Addison-Wesley, Wokingham, pp 85–90

    Google Scholar 

  44. Materassi D, Salapaka MV (2009) Attraction domain estimates combining Lyapunov functions. In: American control conference, ACC 2009. IEEE, pp 4007–4012

    Google Scholar 

  45. Matthews ML, Williams C (2012) Region of attraction estimation of biological continuous boolean models. In: 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE, pp 1700–1705

    Google Scholar 

  46. McGough JS, Christianson AW, Hoover RC (2010) Symbolic computation of Lyapunov functions using evolutionary algorithms. In: Proceedings of the 12th IASTED international conference, vol 15, pp 508–515

    Google Scholar 

  47. Mitchell M (1998) An introduction to genetic algorithms. MIT Press, Cambridge

    MATH  Google Scholar 

  48. Najafi E, Babuška R, Lopes GA (2016) A fast sampling method for estimating the domain of attraction. Nonlinear Dyn 86(2):823–834

    Article  MathSciNet  Google Scholar 

  49. Naur P, Backus JW, Bauer FL, Green J, Katz, C., McCarthy J, Perlis AJ (1969) Revised report on the algorithmic language. In: ALGOL 60. Springer

    Google Scholar 

  50. Neath MJ, Swain AK, Madawala UK, Thrimawithana DJ (2014) An optimal PID controller for a bidirectional inductive power transfer system using multiobjective genetic algorithm. IEEE Trans Power Electron 29(3):1523–1531

    Article  Google Scholar 

  51. Odenthal D, Blue P (2000) Mapping of frequency response performance specifications into parameter space. IFAC Proc Vol 33(14):531–536

    Article  Google Scholar 

  52. O’Neill M, Ryan C (1999) Under the hood of grammatical evolution. In: Proceedings of the 1st annual conference on genetic and evolutionary computation, vol 2. Morgan Kaufmann Publishers Inc., pp 1143–1148

    Google Scholar 

  53. Poli R, Langdon WB, McPhee NF (2018) A field guide to genetic programming. Published via http://lulu.com, http://www.gp-field-guide.org.uk. (Accessed 24 May 2018), (With contributions by J. R. Koza)

  54. Prajna S, Papachristodoulou A, Parrilo PA (2002) Introducing SOSTOOLS: a general purpose sum of squares programming solver. In: Proceedings of the 41st IEEE conference on decision and control, vol 1. IEEE, pp 741–746

    Google Scholar 

  55. Precup RE, Sabau MC, Petriu EM (2015) Nature-inspired optimal tuning of input membership functions of Takagi-Sugeno-Kang fuzzy models for anti-lock braking systems. Appl Soft Comput 27:575–589

    Article  Google Scholar 

  56. Rall LB (1981) Automatic differentiation: techniques and applications. Springer, Heidelberg

    Book  MATH  Google Scholar 

  57. Reichensdörfer E, Odenthal D, Wollherr D (2017) Grammatical evolution of robust controller structures using Wilson scoring and criticality ranking. In: European conference on genetic programming. Springer, pp 194–209

    Google Scholar 

  58. Reichensdörfer E, Odenthal D, Wollherr D (2018) Nonlinear control structure design using grammatical evolution and Lyapunov equation based optimization. In: Proceedings of the 15th international conference on informatics in control, automation and robotics - Volume 1: ICINCO. INSTICC, SciTePress, pp 55–65

    Google Scholar 

  59. Ryan C, Collins J, Neill MO (1988) Grammatical evolution: evolving programs for an arbitrary language. In: European conference on genetic programming. Springer, pp 83–96

    Google Scholar 

  60. Saadat J, Moallem P, Koofigar H (2017) Training echo state neural network using harmony search algorithm. Int J Artif Intell TM 15(1):163–179

    Google Scholar 

  61. Saleme A, Tibken B, Warthenpfuhl SA, Selbach C (2011) Estimation of the domain of attraction for non-polynomial systems: a novel method. IFAC Proc Vol 44(1):10976–10981

    Article  Google Scholar 

  62. Shimooka H, Fujimoto Y (2000) Generating robust control equations with genetic programming for control of a rolling inverted pendulum. In: Proceedings of the 2nd annual conference on genetic and evolutionary computation. Morgan Kaufmann Publishers Inc., pp 491–495

    Google Scholar 

  63. Singh R, Kuchhal P, Choudhury S, Gehlot A (2015) Implementation and evaluation of heating system using PID with genetic algorithm. Indian J Sci Technol 8(5):413

    Article  Google Scholar 

  64. Sontag ED (1983) A Lyapunov-like characterization of asymptotic controllability. SIAM J Control Optim 21(3):462–471

    Article  MathSciNet  MATH  Google Scholar 

  65. Szczepanski R, Tarczewski T, Erwinski K, Grzesiak LM (2018) Comparison of constraint-handling techniques used in artificial bee colony algorithm for auto-tuning of state feedback speed controller for PMSM. In: Proceedings of the 15th international conference on informatics in control, automation and robotics - Volume 1: ICINCO. INSTICC, SciTePress, pp 269–276

    Google Scholar 

  66. Tibken B (2000) Estimation of the domain of attraction for polynomial systems via LMIs. In: Proceedings of the 39th IEEE conference on decision and control, vol 4. IEEE, pp 3860–3864

    Google Scholar 

  67. Verdier C, Mazo Jr. M (2017) Formal controller synthesis via genetic programming. IFAC-PapersOnLine 50(1):7205–7210

    Google Scholar 

  68. Vrkalovic S, Teban TA, Borlea ID (2017) Stable Takagi-Sugeno fuzzy control designed by optimization. Int J Artif Intell 15:17–29

    Google Scholar 

  69. Warthenpfuhl S, Tibken B, Mayer S (2010) An interval arithmetic approach for the estimation of the domain of attraction. In: 2010 IEEE international symposium on computer-aided control system design (CACSD). IEEE, pp 1999–2004

    Google Scholar 

  70. Zhou K, Doyle JC, Glover K et al (1996) Robust and optimal control, vol 40. Prentice Hall, New Jersey

    MATH  Google Scholar 

  71. Zubov VI (1964) Methods of A.M. Lyapunov and their Application. P. Noordhoff

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elias Reichensdörfer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Reichensdörfer, E., Odenthal, D., Wollherr, D. (2020). Automated Nonlinear Control Structure Design by Domain of Attraction Maximization with Eigenvalue and Frequency Domain Specifications. In: Gusikhin, O., Madani, K. (eds) Informatics in Control, Automation and Robotics. ICINCO 2018. Lecture Notes in Electrical Engineering, vol 613. Springer, Cham. https://doi.org/10.1007/978-3-030-31993-9_6

Download citation

Publish with us

Policies and ethics