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Abstract. Transformations of data objects into the Hamming space are
often exploited to speed-up the similarity search in metric spaces. Tech-
niques applicable in generic metric spaces require expensive learning,
e.g., selection of pivoting objects. However, when searching in common
Euclidean space, the best performance is usually achieved by transforma-
tions specifically designed for this space. We propose a novel transforma-
tion technique that provides a good trade-off between the applicability
and the quality of the space approximation. It uses the n-Simplex projec-
tion to transform metric objects into a low-dimensional Euclidean space,
and then transform this space to the Hamming space. We compare our
approach theoretically and experimentally with several techniques of the
metric embedding into the Hamming space. We focus on the applicabil-
ity, learning cost, and the quality of search space approximation.

Keywords: Sketch · Metric search · Metric embedding ·
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1 Introduction

The metric search problem aims at finding the most similar data objects to a
given query object under the assumption that there exists a metric function
assessing the dissimilarity of any two objects. The broad applicability of the
metric space similarity model makes the metric search a challenging task, since
the distance function is the only operation that can be exploited to compare
two objects. One way to speed-up the metric searching is to transform the space
to use a cheaper similarity function or to reduce data object sizes [4,9,14,19].
Recently, Connor et al. proposed the n-Simplex projection that transforms the
metric space into a finite-dimensional Euclidean space [8,9]. Here, specialised
similarity search techniques can be applied. Moreover, the Euclidean distance is
more efficient to evaluate than many distance functions.

Another class of metric space transformations is formed by sketching tech-
niques that transform data objects into short bit-strings called sketches [4,
17,19]. The similarity of sketches is expressed by the Hamming distance, and
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sketches are exploited to prune the search space during query executions [18,19].
While some sketching techniques are applicable in generic metric spaces, others
are designed for specific spaces [4]. The metric-based sketching techniques are
broadly applicable, but their performance is often worse than that of the vector-
based sketching approaches when dealing with the vector spaces [4,17].

We propose a novel sketching technique NSP 50 that combines advantages of
both approaches: wide applicability and good space approximation. It is appli-
cable to the large class of metric spaces meeting the n-point property [3,7], and
it consists of the projection of the search space into a low-dimensional Euclidean
space (n-Simplex projection) and the binarization of the vectors. The NSP 50
technique is particularly advantageous for expensive metric functions, since the
learning of the projection requires a low number of distance computations. The
main contribution of the NSP 50 is a better trade-off between its applicability,
quality of the space approximation, and the pre-processing cost.

2 Background and Related Work

We focus on the similarity search in domains modelled by the metric space
(D, d), with the domain of objects D and the metric (distance) function d :
D × D → R

+ [21] that expresses the dissimilarity of objects o ∈ D. We consider
the data set S ⊆ D, and the so-called kNN queries that search for the k closest
objects from S to a query object q ∈ D. Similarity queries are often evaluated
in an approximate manner since the slightly imprecise results are sufficient in
many real-life applications and they can be delivered significantly faster than the
precise ones. Many metric space transformations have been proposed to speed-up
the approximate similarity searching, including those producing the Hamming
space [4,5,11,18,19], Euclidean space [9,16] and Permutation space [1,6,20]. We
further restrict our attention to the metric embedding into the Hamming space.

2.1 Bit String Sketches for Speeding-Up Similarity Search

Sketching techniques sk(·) transform the metric space (D, d) to the Hamming
space

({0, 1}λ, h
)

to approximate it with smaller objects and more efficient
distance function. We denote the produced bit strings as sketches of length λ.
Many sketching techniques were proposed – see for instance the survey [4]. Their
main features are: (1) Quality, i.e., the ability to approximate the original metric
space; (2) Applicability to various search spaces; (3) Robustness with respect to
data (intrinsic) dimensionality; (4) Cost of the object-to-sketch transformation;
(5) Cost of the transformation learning. In the following, we summarise concepts
of three techniques that we later compare with the newly proposed NSP 50
technique. They all produce sketches with balanced bits, i.e. each bit i is set to
1 in one half of the sketches sk(o), o ∈ S. This is denoted by the suffix 50 in
their notations.

GHP 50 technique [18] uses λ pairs of reference objects (pivots), that define
λ instances of the Generalized Hyperplane Partitioning (GHP) [21] of the
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dataset S. Therefore, each GHP instance splits the dataset into two parts
according to the closer pivot, and these parts define values of one bit of
all sketches sk(o), o ∈ S. The pivots are selected to produce balanced and
low correlated bits [18]: (1) an initial set of pivots Psup ∈ D is selected in
random, (2) the balance of the GHP is evaluated for all pivot pairs using a
sample set T of S, (3) set Pbal is formed by pivot pairs that divide T into
parts balanced to at least 45 % to 55 %, and corresponding sketches skbal are
created, (4) the correlation matrix M with absolute values of the Pearson
correlation coefficient is evaluated for all pairs of bits of sketches skbal, and
(5) a heuristic is applied to select rows and columns of M which form its
sub-matrix with low values and size λ × λ. (6) Finally, the λ pivot pairs that
produce the corresponding low correlated bits define sketches sk(o), o ∈ S.

BP 50 uses the Ball Partitioning (BP) instead of the GHP [18]. BP uses one
pivot and a radius to split data into two parts, that again define the values in
one bit of sketches sk(o), o ∈ S. Pivots are selected again via a random set of
pivots Psup, for which we evaluate radii dividing the sample set T into halves.
The same heuristic as in case of the technique GHP 50 is than employed to
select λ pivots that produces low correlated bits.

PCA 50 is a simple sketching technique surprisingly well approximating the
Euclidean spaces [4,12,13,15,17]. It uses the Principal Component Analysis
(PCA) to shrink the original vectors, which are then rotated using a random
matrix and binarized by the thresholding. The i-th bit of sketch sk(o) thus
expresses whether the i-th value in the shortened vector is bigger then the
median computed on a sample set T . If sketches longer than the original vec-
tors are desired, we propose to apply the PCA and to rotate transformed vec-
tors using independent random matrices. Then we concatenate corresponding
binarized vectors.

Sketching techniques applicable to generic metric spaces, e.g., GHP 50 and
BP 50, are usually of a worse quality than vector-based sketching techniques
when dealing with the vectors spaces [4,17]. Moreover, they require an expen-
sive learning of the transformation. We propose the sketching technique NSP 50
to provide a better trade-off between the quality of the space approximation,
applicability of the sketching, and the pre-processing cost.

2.2 The n-Simplex Projection

The n-Simplex projection [9] associated with a set of n pivots Pn is a space
transformation φPn

: (D, d) → (Rn, �2) that maps the original metric space to
a n-dimensional Euclidean space. It can be applied to any metric space with
the n-point property, which states that any n points o1, ..on of the space can
be isometrically embedded in the (n − 1)-dimensional Euclidean space. Many
often used metric spaces such as Euclidean spaces of any dimension, spaces with
the Triangular or Jensen-Shannon distances, and, more generally, any Hilbert-
embeddable spaces meet the n-point property [7]. The n-Simplex projection is
properly described in [9]. Here, we sketch just the main concepts.
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First, the n-point property guarantees that there exists an isometric embed-
ding of the n pivots into (Rn−1, �2) space, i.e., it is possible to construct the ver-
tices vpi

∈ R
n−1 such that �2(vpi

, vpj
) = d(pi, pj) for all i, j ∈ {1, . . . , n}. These

vertices form the so-called base simplex. Second, for any other object o ∈ D,
the (n + 1)-point property guarantees that there exists a vertex vo ∈ R

n such
that �2(vo, vpi

) = d(o, pi) for all i = 1, . . . , n. The n-Simplex projection assigns
such vo to o, and Connor et al. [9] provide an iterative algorithm to compute the
coordinates of the vertices vpi

of the simplex base as well as the coordinates of
the vector vo associated to o ∈ D. The base simplex is computed once and reused
to project all data objects o ∈ S. Moreover, the Euclidean distance between any
two projected vectors vo1 , vo2 ∈ R

n is a lower-bound of their actual distance,
and this bound becomes tighter with increasing number of pivots n [9].

3 The n-Simplex Sketching: Proposal and Comparison

We propose the sketching technique NSP 50 that transforms metric spaces with
the n-point property to the Hamming space. It uses the n-Simplex projection
with λ pivots to project objects into λ-dimensional Euclidean space; the obtained
vectors are then randomly rotated and binarized using the median values in each
coordinate. These medians are evaluated on the data sample set. The random
rotation is applied to distribute information equally over the vectors, as the n-
Simplex projection returns vectors with decreasing values along the dimensions.

For each data set S, there exists a finite number of pivots ñ such that φPñ

is an isometric space embedding1. The identification of the minimum ñ with
this property is still an open problem. The convergence is achieved when all
the projected data points have a zero value in their last component, so the
NSP 50 technique as described above cannot produce meaningful sketches of
length λ > ñ. We overcome this issue by a concatenation of smaller sketches
obtained using different rotation matrices.

The proposed NSP 50 technique is inspired by the PCA 50 approach, but
provides significantly broader applicability, as it can transform all the met-
ric spaces with the n-point property. This includes spaces with very expensive
distance functions, as mentioned in Sect. 2.2. Sketching techniques also require
transformation learning of a significantly different complexity. We compare the
novel NSP 50 technique with the GHP 50, BP 50 and PCA 50 approaches and
we provide the table summarising the main features of these sketching tech-
niques, including the costs of the learning and object to sketch transformations
in terms of floating point operations and distance computations. This table is
provided online2, due to the paper length limitation.

The GHP 50 and BP 50 techniques require an expensive pivot learning.
Specifically, the GHP 50 requires (1) to examine the balance of the GHPs defined
by various pivot pairs to create long sketches with the balanced bits, (2) an anal-
ysis of the pairwise bit correlations made for these sketches, and (3) a selection
1 The proof is made trivially by a selection of all objects from the data set S as pivots.
2 http://www.nmis.isti.cnr.it/falchi/SISAP19SM.pdf.

http://www.nmis.isti.cnr.it/falchi/SISAP19SM.pdf
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(a) DeCAF (b) SIFT (c) SQFD

Fig. 1. Distance densities for DeCAF, SIFT and SQFD data sets

of low correlated bits. The learning of the BP 50 is cheaper, since the proper
radii are selected for a set of pivots directly. The rest of the learning is the same
as in case of the GHP 50. The cost of the PCA 50 learning is given by the PCA
learning cost and evaluation of the medians over the transformed vectors. We
compute the PCA matrix using the Singular Value Decomposition (SVD) over
the centred data. The learning of the NSP 50 is the cheapest one; it consists of
the n-Simplex projection that has the quadratic cost with respect to the number
of pivots n, and the binarization, which consists of the medians evaluations over
coordinates of vectors in the sample set T .

4 Experiments

We evaluate the search quality of the NSP 50 technique on three data sets and
we compare it with the sketching techniques PCA 50, GHP 50 and BP 50. We
use three real-life data sets of visual features extracted from images:

SQFD: 1 million adaptive-binning feature histograms [2] extracted from the
Profiset collection3. Each signature consists of, on average, 60 cluster cen-
troids in a 7-dimensional space. A weight is associate to each cluster, and
the signatures are compared by the Signature Quadratic Form Distance [2].
Note that this metric is a cheaper alternative to Earth Movers Distance, nev-
ertheless, the cost of the Signature Quadratic Form Distance evaluation is
quadratic with respect to the number of cluster centroids.

DeCAF: 1 million deep features extracted from the Profiset collection using
the Deep Convolutional Neural Network described in [10]. Each feature is
a 4,096-dimensional vector of values from the last hidden layer (fc7 ) of the
neural network. The deep features use the ReLU activation function and are
not �2-normalised. These features are compared with the Euclidean distance.

SIFT: 1 million SIFT descriptors from the ANN data set4. Each descriptor is
a 128-dimensional vector. The Euclidean distance is used for the comparison.

Figure 1 shows particular distance densities. We express the quality of the
sketching techniques by the recall of the k-NN queries evaluated using a simple
3 http://disa.fi.muni.cz/profiset/.
4 http://corpus-texmex.irisa.fr/.

http://disa.fi.muni.cz/profiset/
http://corpus-texmex.irisa.fr/
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(a) Sketching techniques and lengths (b) Various candidate set sizes

Fig. 2. SQFD data set: Quality of 3 sketching techniques varying sketch lengths (2a),
comparison of 128bit sketches using various candidate set sizes (2b).

sketch-based filtering. More specifically, sketches are applied to select the candi-
date set CandSet(q) for each query object q ∈ D that consists of a fixed number
of the most similar sketches to the query sketch sk(q); then, the candidate set
is refined by the distance d(q, o), o ∈ CandSet(q) to return the k most similar
objects o to q with the sketches in the candidate set CandSet(q). This approx-
imate answer is compared with the precise one that consists of the k closest
objects o ∈ S to q. The candidate sets consist of 2,000 sketches in the case of
DeCAF and SIFT data sets, and 1,000 sketches in the case of the SQFD data
set.

We evaluate experiments using 1,000 randomly selected query objects q ∈ D,
and we depict results by Tukey box plots to show distributions of the recall values
for particular query objects: the lower- and upper-bounds of the box show the
quartiles, and the lines inside the boxes depict the medians of the recall values.
The ends of the whiskers represent the minimum and the maximum non-outliers,
and dots show the outlying recall values. In all cases, we examine 100 nearest
neighbours queries to investigate properly the variance of the recall values over
particular query objects. We use sketches of lengths λ ∈ {64, 128, 196, 256}.

Results. Figure 2a shows results for the SQFD data set. The colours of the box
plots distinguish particular sketching techniques, the suffix of the column names
denotes the length of sketches. The proposed NSP 50 technique significantly
outperforms both, GHP 50 and BP 50 techniques, fixing the sketch length. The
PCA 50 approach is not applicable for this data set, as we search different than
the Euclidean space. The BP 50 technique performs worst and provides the
median recall just 0.67 in case of 256bit sketches. The NSP 50 and GHP 50
approaches achieve a solid median recall of 0.88 and 0.81, respectively, even in
case of 192bit sketches. We show also a coherence of the results when varying
the candidate set size. Figure 2b reports the recalls for the candidate set sizes
c ∈ {100, 500, 1000, 2000, 3000, 4000} and sketches of length 128 bits made by
the sketching techniques NSP 50 and GHP 50. This figure shows that a given
recall value can be achieved by the NSP 50 technique using a smaller candidate
set than in case of the GHP 50.
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(a) DeCAF data set (b) SIFT data set

Fig. 3. Quality of sketching techniques varying sketch lengths

The recall values for the DeCAF and SIFT data sets are depicted in Fig. 3.
The BP 50 technique is less robust concerning the dimensionality of the data,
so it achieves poor recalls in case of DeCAF descriptors, but it is still reasonable
for the SIFT data set. The quality of the newly proposed NSP 50 technique is
slightly better then that of the GHP 50 technique in case of the DeCAF data set.
Both are, however, outperformed by the PCA 50 technique, which is specialised
for the Euclidean space. This interpretation is valid for all the sketch lengths λ
we have tested. The differences between the NSP 50 and PCA 50 techniques
practically dismiss in case of the SIFT data set. Both these techniques achieve
significantly better recall than the BP 50 and the GHP 50 techniques.

5 Conclusions

We contribute to the area of the metric space embeddings into the Hamming
space. We propose the NSP 50 technique that leverages the n-Simplex projec-
tion to transform metric objects into bit-string sketches. We compare the NSP 50
technique with three other state-of-the-art sketching techniques designed either
for the general metric space or the Euclidean vector space. The experiments are
conducted on three real life data sets of visual features using four different sketch
lengths. We show that our technique provides advantages of both metric-based
and specialised vector-based techniques, as it provides a good trade-off between
the quality of the space approximation, applicability, and transformation learn-
ing cost.
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