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Abstract. Detection and quantification of information leaks through
timing side channels are important to guarantee confidentiality. Although
static analysis remains the prevalent approach for detecting timing side
channels, it is computationally challenging for real-world applications. In
addition, the detection techniques are usually restricted to “yes” or “no”
answers. In practice, real-world applications may need to leak informa-
tion about the secret. Therefore, quantification techniques are necessary
to evaluate the resulting threats of information leaks. Since both prob-
lems are very difficult or impossible for static analysis techniques, we
propose a dynamic analysis method. Our novel approach is to split the
problem into two tasks. First, we learn a timing model of the program as
a neural network. Second, we analyze the neural network to quantify in-
formation leaks. As demonstrated in our experiments, both of these tasks
are feasible in practice — making the approach a significant improvement
over the state-of-the-art side channel detectors and quantifiers. Our key
technical contributions are (a) a neural network architecture that enables
side channel discovery and (b) an MILP-based algorithm to estimate the
side-channel strength. On a set of micro-benchmarks and real-world ap-
plications, we show that neural network models learn timing behaviors
of programs with thousands of methods. We also show that neural net-
works with thousands of neurons can be efficiently analyzed to detect
and quantify information leaks through timing side channels.

1 Introduction

Programs often handle sensitive data such as credit card numbers or medical
histories. Developers are careful that eavesdroppers cannot easily access the se-
crets (for instance, by using encryption algorithms). However, a side channel
might arise even if the transferred data is encrypted. For example, in timing
side channels [12], an eavesdropper who observes the response time of a server
might be able to infer the secret input, or at least significantly reduce the re-
maining entropy of possible secret values. Studies show that side-channel attacks
are practical [30,14,27].

Detecting timing side channels are difficult problems for static analysis, es-
pecially in real-world Java applications. From the theoretical point of view, side-
channel presence cannot be inferred from one execution trace, but rather, an
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analysis of equivalence classes of traces is needed [43]. From a practical perspec-
tive, the problem is hard because timing is not explicitly visible in the code. A
side channel is a property of the code and the platform on which the program is
executed. In addition, most existing static techniques rely on taint analysis that
is computationally difficult for applications with dynamic features [33].

A large body of work addresses the problem of detecting timing side chan-
nels [13,41,5]. However, detection approaches are often restricted to either “yes”
or “no” answers. In practice, real-world applications may need to leak informa-
tion about the secret [44]. Then, it is important to know “how much” information
is being leaked to evaluate the resulting threats. Quantification techniques with
entropy-based measures are the primary tools to calculate the amount of leaks.

We propose a data-driven dynamic analysis for detecting and quantifying
timing leaks. Our approach is to split the problem into two tasks: first, to learn
a timing model of the program as the neural network (NN) and second, to analyze
the NN, which is a simpler object than the original program. The key insight
that we exploit is that timing models of the program are easier to learn than the
full functionality of the program. The advantages of this approach are two-fold.
First, although general verification problems are difficult in theory and practice,
learning the timing models is efficiently feasible, as shown in our experiments.
We conjecture that this is because timing behaviors reflect the computational
complexity of a program, which is usually a simpler function of the input rather
than the program. Second, neural networks, especially with ReLU units, are
easier models to analyze than programs.

Our key technical ideas are enabling a side channel analysis using a spe-
cialized neural network architecture and a mixed integer linear programming
(MILP) algorithm to estimate an entropy-based measure of side-channel strengths.
First, our NN consists of three parts: (a) encoding the secret inputs, (b) encoding
the public inputs, and (c) combining the outputs of the first two parts to produce
the program timing model. This architecture has the advantage that we can eas-
ily change the “strength” (the number of neurons k) of the connection from the
secret inputs. This enables us to determine whether there is a side channel. If
timing can not be accurately predicted based on just public inputs (k=0), then
there is a timing side channel. Second, for k>0, the trained NN can be analyzed
to estimate the strength of side-channel leaks. Each valuation of the k binarized
output of secret part corresponds to one observationally distinguishable class
of secret values. We use an MILP encoding to estimate the size of classes and
calculate the amount of information leaks with entropy-based objectives such as
Shannon entropy.

Our empirical evaluation shows both that timing models of programs can
be represented as neural networks and that these NNs can be analyzed to dis-
cover side channels and their strengths. We implemented our techniques using
Tensorflow [2] and Gurobi [25] for learning timing models as NN objects and
analyzing the NNs with MILP algorithms, respectively. We ran experiments on
a Linux machine with 24 cores of 2.5 GHz. We could learn timing model of
programs (relevant to the observed traces) with few thousands methods in less
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than 10 minutes with the accuracy of 0.985. Our analysis can handle NN models
with thousands of neurons and retrieve the number of solutions for each class
of observation. The number of solutions enables us to quantify the amount of
information leaks.
In summary, our key contributions are:
– An approach for side channel analysis based on learning execution times of

a program as a NN.
– A tunable specialized NN architecture for timing side-channel analysis.
– An MILP-based algorithm for estimating entropy-based measures of infor-

mation leaks over the NN.
– An empirical evaluation that shows our approach is scalable and quantifies

leaks for real-world Java applications.

2 Overview

We illustrate on examples the key ingredients of our approach: learning timing
models of programs using neural networks and a NN architecture that enables
us to detect and quantify timing leaks.
Learning timing models of programs. Learning the functionality of the
sorting algorithms from programs is difficult, while learning their timing model
is much easier. We picked the domain of sorting algorithms as these algorithms
have well-known different timing behaviors. We implement six different sort-
ing algorithms namely bubble sort, selection sort, insertion sort, bucketing sort,
merging sort, and quick sort in one sorting application. We generate random
arrays of different sizes from 100 to 20,000 elements and run the application for
each input array with different sorting algorithms. This implies that we consider
the average-case computational complexities of different algorithms. Each data
point consists of the input array, the indicator of sorting algorithm, and the ex-
ecution time of sorting application. In addition, the data points are independent
from each other, and the neural network learns end-to-end execution times of
the entire application, not individual sorting algorithms. Figure 1 (a) shows the
learned execution times for the sorting application. The neural network model
has 6 layers with 825 neurons. The accuracy of learning based on coefficient of
determination (R2) over test data is 0.999, and the learning takes 308.7 seconds
(the learning rate is 0.01). As we discussed earlier, the NN model predicts (ap-
proximates) execution times for the whole sorting application. Further analysis
is required to decompose the NN model for individual sorting algorithms that
is not relevant in our setting since we are only interested in learning end-to-end
execution times of applications. Using the neural network model to estimate
execution times has two important advantages over the state-of-the-art tech-
niques [23,50]. First, the neural network can approximate an arbitrary timing
model as a function of input features, while the previous techniques can only
approximate linear or polynomial functions. Second, the neural network does
not require feature engineering, whereas the previous techniques require users to
specify important input features such as work-load (size) features.
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Fig. 1: (a) Timing models of the sorting application as learned by NNs. (b) Pre-
diction error vs. the number of neurons (k) in the interface layer of SnapBuddy.

Neural network architecture for side channel discovery. With the obser-
vations that the neural networks can learn programs’ execution times precisely,
we consider a special architecture to analyze timing side channels of programs.
We propose the neural network architecture shown in Figure 2. The NN archi-
tecture consists of three parts: 1) A reducer function that learns a map from n
secret features (inputs) to k binarized interface neurons (we call them interface
neurons as they connect the secret inputs to the rest of the network); 2) A neural
network function that connects the public features to the overall model; 3) A
joint function that uses the output of the reducer and public-features functions
to predict the execution times. The architecture makes it easy to change the
number of neurons (k) in the connection from the reducer, which enables us to
estimate the side-channel strength. In this architecture, there are timing side
channels if the value for k is greater than or equal to 1. The NN learning is to
find the weights in different layers with the optimal number of neurons in the
interface layer (k) such that the NN approximates execution times accurately.

Estimating the side channel strength. The side-channel strength is esti-
mated by finding the minimal value of k in the learning of accurate NN models.
We use Sum of Squared Error (SSE) measure to compute prediction errors. Fig-
ure 1 (b) shows the SSE versus the number of interface neurons (k) for the
SnapBuddy application (described in Section 6.2). As shown in the plot, the
prediction error decreases as the number of neurons increase from 0 to 6. But,
after 6, the prediction error stays almost the same. We thus choose 6 as the
optimal number of interface neurons. Since each neuron is a binary unit, there
are 26 distinct outputs from the reducer function. Each distinct output forms a
class of observation over the secret inputs. However, some classes of observations
might be empty and are not feasible from any secret value. Furthermore, for fea-
sible classes, the entropy measures require the number of elements in each class.
We encode the reducer function as a mixed integer linear programming (MILP)
problem. Then, we calculate the number of feasible solutions for each class. For
SnapBuddy, it takes 16.6 seconds to analyze the reducer function and find the
number of solutions for non-empty classes. Using Shannon entropy, the analysis
shows 3.0 bits of information about secret inputs are leaking in SnapBuddy.
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Fig. 2: Neural network architecture for side-channel discovery and quantification.
The NN takes secret features (x) and public features (y), and it learns weights
W with the minimal number of neurons in the interface layer (LSα) to precisely
predict execution times. The reducer function maps n-dimensional x to k binary
outputs. The MILP analysis of reducer function is used for the quantification.

3 Problem Statement

We develop a framework for detecting and quantifying information leaks due to
the execution time of programs. Our framework is suitable for known-message
and chosen-message threat [32] settings where the variations in the execution
times depend on both public and secret inputs.

The timing model [[P]] of a program P is a tuple (X,Y,S, δ) where X={x1, . . .
, xn} is the set of secret input variables, Y = {y1, y2, . . . , ym} is the set of public
input variables, and S ⊆ Rn is a finite set of secret inputs, and δ : Rn×Rm → R≥0
is the execution-time of the program as a function of secret and public inputs.
A timing function of the program P for a secret input s ∈ S is the function δ(s)
defined as y ∈ Rm 7→ δ(s,y). Let F be the set of all timing functions in P.

Given a timing model [[P]] and a tolerance ε>0, a k-bit ε-approximate secret
reducer is a pair

(α, β) ∈ [Rn → Bk]× [Bk → Rn]

such that ‖δ(x) − δ(β(α(x)))‖ ≤ ε for every x ∈ S where ‖ · ‖ is some fixed
norm over the space of timing function. In this paper, we work with ∞-norm.
We write R(ε,k) for the set of all k-bit ε-approximate reducers for [[P]]. We say
that (α, β) ∈ R(ε,k) is an optimal ε-approximate reducer if for all k′ < k the set
R(ε,k′) is empty. Given a tolerance ε > 0, we say that there are information leaks
in execution times, if there is no 0-bit ε-approximate optimal secret reducer.

A reducer (α, β) characterizes an equivalence relation ≡α over the set of se-
crets S, defined as the following: s ≡α s′ if α(s) = α(s′). Let S[α] = 〈S1,S2, . . . ,SK〉
be the quotient space of S characterized by the reducers (α, β); note that 2k−1 <
K ≤ 2k. Let B = 〈B1, B2, . . . , BK〉 be the size of observational equivalence class

in Sα, i.e. Bi = |Si| and let B = |S| =
∑K
i=1Bi. The expected information

leaks due to observations on the execution times of a program can be quantified
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by using the difference between the uncertainty about the secret values before
and after the timing observations. Assuming that secret values S are uniformly
distributed, we quantify information leaks [31] as

SE(S|α)
def
= log2(B)− 1

B

K∑
i=1

Bi log2(Bi). (1)

Given a program with inputs partitioned into secret and public inputs, our goal
is to quantify the information leaks through timing side channels. However, such
programs often have complex functionality with black-box components. More-
over, the shape of timing functions may be non-linear and unknown. We propose
a neural-network architecture to approximate the timing model as well as to
quantify information leakage due to the timing side channels in the program.
We then analyze this network to precisely quantify the information leaks based
on the equation (1).

4 Neural Network Architecture to Detect and Quantify
Information Leaks

A rectified linear unit (ReLU) is a function σ : R→ R defined as x 7→ max {x, 0}.
We can generalize this function from scalars to vectors as σ : Rn → Rn in a
straightforward fashion by applying ReLU component-wise. In this paper, we pri-
marily work with feedforward neural network (NN) with ReLU activation units.
A Rw0 → RwN+1 feedforward neural network N is characterized by its number
of hidden layers (or depth) N , the input and output dimensions w0, wN+1 ∈ N,
and width of its hidden layers w1, w2, . . . , wN . Each hidden layer i implements
an affine mapping Ti : Rwi−1 → Rwi corresponding to the weights in each layer.
The function fN : Rw0 → RwN+1 implemented by neural network N is:

fN = Tk+1 ◦ σ ◦ Tk ◦ σ ◦ · · ·T2 ◦ σ ◦ T1.

It is well known that NNs with ReLU units implement a piecewise-linear func-
tion [8] and due to this property, it can readily be encoded [21] as a mixed integer
linear programming (MILP).

Given a target (black-box) function f : Rw0 → RwN+1 to be approximated
and a neural network architecture (w0, w1, . . . , wN+1) ∈ RN+2, the process of
training the network is to search for weights of various layers so as to closely
approximate the function f based on noisy approximate examples from the func-
tion f . The celebrated universal approximation theorems about neural networks
state that deep feedforward neural networks [16,26]—equipped with simple ac-
tivation units such as rectified linear unit (ReLU)—can approximate arbitrary
continuous functions on a compact domain to an arbitrary precision. Assum-
ing that the timing functions of a program have bounded discontinuities, it can
be approximated with a continuous function to an arbitrary precision. It then
follows that one can approximate the execution-time function to an arbitrary
precision using feedforward neural networks.
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y ∈ Rm

x ∈ Rn Nα Bk Nβ Rn Nδ t ∈ R≥0

Fig. 3: Neural Network Nδ approximating the execution-time function δ along
with a reducer (Nα,Nβ).

Figure 3 shows different components of our neural network model. We train
a neural network Nδ : Rn+m → R (where the input variables are partitioned into
secret and public and the output variable is the execution time) to approximate
the execution times of a given program to a given precision ε > 0. In order to
quantify the number of secret bits leaked in the timing functions, we train a pair
of k-bit reducer neural networks Nα : Rn → Bk and Nβ : Bk → Rn with the
output of Nβ connected to the neural network Nδ. In this training, we only learn
the weights of Nα and Nβ while keeping the weights of Nδ unchanged. We call
the composition of these networks Nk = Nα ◦Nβ ◦Nδ. It is easy to see that the
network pair (Nα,Nβ) implements a k-bit secret reducer (fNα , fNβ ). Let k be
the smallest number such that the fitness of Nk is comparable to the fitness of
Nδ. We find the smallest k ∈ N such that Nk approximate the execution time as
closely as N . The value k characterizes the number of observational classes over
the secret inputs in the program and corresponding network Nα characterizes
the secret elements in each class of observation.

We use an MILP encoding, similar to [21,40,18] but in backward analysis
fashions, to count the number of secret elements in each observational class as
characterized by the network Nα. These counts can then be used to provide a
quantitative measure of information leaks in the program due to the execution
times. Since the function β is not directly useful in quantification process, we use
a simpler network model, in our experiments, to compute the reducer function
α as shown in Figure 2.

5 Experiments

5.1 Implementations

Environment Setup. All timing measurements from programs are conducted
on an NUC5i5RYH machine. We run each experiment multiple times and use
the mean of running time for the rest of analysis. We use a super-computing
machine for the training and analysis of the neural network. The machine has a
Linux Red Hat 7 OS with 24 cores of 2.5 GHz CPU each with 4.8 GB RAM.
Neural Network Learning. The neural network model is implemented using
TensorFlow [2]. We randomly choose 10% of the data for testing, and the rest for



8 Tizpaz-Niari, et al.

the training. We use ReLU units as activation functions and apply mini-batch
SGD with the Adam optimizer [29] where the learning rate varies from 0.01 to
0.001 for different benchmarks. For the reducer function of our NN model, we
binarize the output of every layer using the “straight-through” technique [15] to
estimate the activation function in the backward propagation of errors known
as backpropagation [35].
Quantification of Information Leaks. After training, we analyze the reducer
function using mixed integer linear programming (MILP) [21,40]. We encode the
MILP model in Gurobi [25] and use the PoolSolutions option to retrieve feasible
solutions (up to 2 Billions). For each class of observation (each distinct output of
interface layer), the Gurobi calculates possible solutions from the secret inputs
such that the output value of interface layer is feasible from those inputs. We use
the number of solutions for each class and apply Shannon entropy to quantify
the amount of information leaks.

5.2 Micro-benchmarks

First, we show our approach for finding the (optimal) number of interface neurons
(k) from the reducer function. Then, we show the scalability and usefulness of
our approach. scalability: We use the size of neural network, computation time
for learning, and the computation time for analyzing. usefulness: We consider
the number of classes of observations, the fitness of predictions, and entropy
measures. We also compare the entropy values to ground truth.
Programs. We use two sets of micro-benchmark programs for our studies. The
first one, taken from [50], uses the names R n where n is the number of secret
bits in the program. The benchmarks were constructed to exhibit complex rela-
tionships between secret bits that influence the running time. Each relationship
is a boolean formula over the secret input where the true evaluation triggers a
(linear) loop statement over the public inputs.

For Branch Loop (B L) applications [51], the program does different compu-
tations with different complexities depending on the values of the secret input.
There are four loop complexities: O(log(N)), O(N), O(N. log(N)), and O(N2)
where N is the public input. Each micro-benchmark B L i has all four loop com-
plexities, and there are i types of each complexity with different constant factors
such as O(log(N)) and O(2. log(N)) for B L 2.
Optimal number of reducer outputs. Since the number of observational
classes of the secret inputs depends on the number of interface neurons (k) from
the reducer function, we choose the optimal value for k. We consider the sum
of squared error (SSE) versus the number of interface neurons (k). We choose a
value k such that the SSE error decreases from 0 to k (k ≥ 0) and stays almost
same for larger values of k. Figure 4 (a) and Figure 4 (b) show the plot of the
SSE error vs number of interface neurons for R n and B L n, respectively. For
example, in B L 5, the optimal number of interface neurons is 7.
Scalability Results. Table 1 shows that our approach is scalable for learning
timing models of programs. For example, we could learn the time model of B L 5
program with the NN model of 7 internal layers and 717 neurons in 25 mins.



Quantification of Leaks with NNs 9

Fig. 4: (a) The SSE versus the number of interface neurons for R n. (b) The SSE
versus the number of interface neurons for B L n.

In addition, the growth in computation times of learning is proportional to the
growth in the size of networks. The results show that our approach is scalable
for analyzing the reducer function of NN. For this analysis, we only consider
the secret parts of NN (shown with LS in Table 1). The computation time
for the analysis depends on the size of secret inputs and the size of reducer
function. In B L 5 program with 7 interface neurons of the reducer, we calculate
feasible solutions over secret inputs for each 27 possible classes. It takes about
8 minutes to analyze the reducer function of B L 5 program. The growth in the
computation times of network analysis is also proportional to the growth in the
size of secret inputs and the size of reducer. For example, the computation time
for the analysis of B L 4 example is increased by almost 12 times in comparison
to B L 3, but the size of input, the interface, and the internal neurons have
increased by two times (from 211 to 212), two times (from 26 to 27), and 6 times
(2.5× 2.5), respectively.

Usefulness results. We use the statistical metric, coefficient of determination
(R2) [39], as the fitness indicator of our predictions. In all benchmarks, R2 is 0.99.
The analysis of the reducer function provides us: 1) whether a class of observation
(a specific value of the reducer output) is reachable from at least one secret value;
2) how many secret elements exist in each class of observation. In B L 5, there
are 128 possible values for the 7 interface neurons. The analysis of network shows
that only 50 values out of 128 are valid and reachable from secret inputs. To
count the number of solutions for each class, we bound the number of possible
solutions to be at most 100. We use Shanon entropy to measure the amount of
information leaks in bits. For example, in R 7, the initial Shannon entropy is
SEI = 7(bits). We obtain 5 feasible classes: {68,16,27,1,16}. Therefore, after the
timing observations, the conditional Shannon entropy is SEO = 5.2(bits). The
amount of information leaks is SHL = 1.8(bits). We note that the initial Shannon
entropy may depend on the number of feasible classes of observations and the
bounds on the possible solutions (see B L 5 as an example). The ground truth of
conditional Shannon entropy is the following: R 2=1.19, R 3=1.44, R 4=2.42,
R 5=3.42, R 6=4.0, R 7=5.0, and B L 1, B L 2, B L 3, B L 4, B L 5 are all
equal to 6.64.
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Table 1: #R: number of data records, #S: number of secret bits, #P: number
of public bits, LS: the size of secret part (reducer function) of NN, LP : the size
of public part of NN, LJ : the size of joint part of NN, α: learning rate, R2 :
coefficient of determination, TL : the computation time (s) for learning NNs,
TA : the computation time (s) for analyzing reducer functions, #k: number
of interface neurons in the reducer function, #K: number of (feasible) classes
of observations, SEI : initial Shannon entropy (before any observations), SEO:
remaining Shannon entropy after timing observations.

App(s) #R #S #P LS LP LJ α R2 TL TA #k #K SEI SEO
R 2 400 2 7 [5× 1] [5] [10] 1e-2 0.99 91.7 0.1 1 2 2.0 1.19

R 3 800 3 7 [10× 2] [10] [20] 1e-2 0.99 91.7 0.1 2 3 3.0 1.44

R 4 1,600 4 7 [10× 2] [10] [20] 1e-2 0.99 90.3 0.1 2 4 4.0 2.32

R 5 3,200 5 7 [10× 10× 2] [10] [20] 1e-2 0.99 127.3 0.2 2 3 5.0 3.4

R 6 6,400 6 7 [10× 10× 3] [10× 10] [20] 1e-2 0.99 168.4 0.5 3 5 6.0 4.0

R 7 12,800 7 7 [20× 20× 3] [10× 10] [20] 1e-2 0.99 185.4 1.8 3 5 7.0 5.0

B L 1 756 9 7 [20× 20× 4] [10] [20× 20] 1e-2 0.99 124.3 0.3 4 5 8.97 6.43

B L 2 1,512 10 7 [40× 5] [10] [40× 40] 1e-2 0.99 129.4 2.5 5 10 9.97 6.40

B L 3 3,024 11 7 [20× 20× 6] [10] [100× 100] 5e-3 0.99 346.0 18.6 6 16 10.64 6.39

B L 4 6,048 12 7 [50× 50× 7] [10] [200× 200] 5e-3 0.99 889.8 216.7 7 39 11.93 6.0

B L 5 12,096 13 7 [50× 50× 7] [10] [200× 400] 2e-3 0.99 1,411.0 496.6 7 50 12.29 6.1

6 Case Studies

Table 2 summarizes 5 real-world Java applications used as case studies in this
paper. Table 2 has similar structure to Table 1 in Section 5.2 and also lists the
number of methods in the applications. Figure 5 shows the SSE (error) vs the
number of interface neurons of the reducer function for case-study applications.
The main research questions are “Does our approach of using neural networks
for side-channel analysis of real-world applications 1) scale well, 2) learn timing
models accurately, and 3) give useful information about the strength of leaks?”

6.1 GabFeed

Gabfeed [6] is a Java web application with 573 methods implementing a chat
server [13]. The application and its users can mutually authenticate each other
using public-key infrastructure. The server takes users’ public key and its own
private key and calculate a common key.
Inputs. We consider the secret and public keys with 1,024 bits. We generate
65,908 keys (combination of secret and public keys) that are uniformly taken
from the space of secret and public inputs.
Neural Network Learning. We learn the timing model of GabFeed for generating
common keys with R2 = 0.952 where we set the learning rate to 0.01. The NN
model consists of 1,024 binary secret and 1,024 binary public inputs. The network
has more than 600 neurons. The optimal number of neurons for interface layer
is 6. It takes 40 minutes to learn the timing model of GabFeed application.
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Table 2: Case Studies. Legends similar to Table 1 in Sec. 5.2 except that #M
shows the number of methods in the application and SEL is the difference be-
tween SEO and SEI and shows the amount of information leaked in bits.

App(s) #M #R #S #P LS LP LJ α R2 TL TA #k #K SEL
GabF. 573 65,908 1,024 1,024 [50× 50× 6] [100] [200× 200] 1e-2 0.95 2,410 18,010 6 26 4.7

Snap. 3,071 6,678 30 4 [30× 30× 6] [10] [100] 1e-2 0.98 579 17 6 8 3.0

Phon. 101 3,043 82 11 [50× 50× 10] [5] [100] 8e-3 0.99 566 10,151 10 60 5.9

Ther. 53 10,000 11 4 [100× 100× 9] [100] [200× 200] 1e-3 0.8 4,236 5,148 9 9 7.0

PassM. 6 211,238 14 30 [50× 50× 3] [50] [100] 1e-2 0.98 202 16 3 4 1.6

Security Analysis. Since the output of the reducer is 6 bits, there are at most 64
classes of observations. Our analysis shows that there are only 26 feasible classes.
With the assumption that each class can have at most 10,000 solutions, the initial
Shannon entropy is 18.0 bits. By observing the 26 classes through timing side
channels, the remaining Shannon entropy becomes 13.29 bits. Therefore, the
amount of leaks is 4.71 bits. The security analysis of NN takes 300 minutes.
Research Questions. To answer our research questions: Scalability: The neural
network model has 606 neurons. It takes 40 minutes to learn the time model of
GabFeed applications. It takes 300 minutes to analyze the reducer function and
obtain the number of elements in each class. Usefulness: We learn the time model
of GabFeed as the function of public and secret inputs with R2 = 0.952. Our
analysis shows that there are 26 classes of observations over the secret inputs,
and 4.71 bits of information about the secret key is leaking.

6.2 SnapBuddy

SnapBuddy is a mock social network application where each user has their own
profiles with a photograph [49]. The profile page is publicly accessible.
Inputs. The secret is the identity of a user (among 477 available users in the
network) who is currently interacting with the server. The public is the size of
each profile (from 13 KB to 350KB). Note that the size of profiles are observable
from generated network traffics.
Neural Network Learning. We consider the response time of the SnapBuddy
application to download public profiles of 477 users in the system [6]. We learn
the response time using a neural network with 176 neurons and 6 neurons in
the interface layer. The accuracy of neural network model in predicting response
times based on the coefficient of determination is 0.985 where we set the learning
rate to be 0.01. The learning takes less than 10 minutes.
Security Analysis. Our analysis finds only 8 classes of observations reachable out
of 64. Since the number of users (secrets) in the current database is fixed to
477, we assume there can be at most 60 users in each class. The initial Shannon
entropy is 8.91 bits. The remaining Shannon entropy after observing the execu-
tion times and obtaining the classes of observations with their characteristics is
5.91 bits. The amount of information leaks is 3.0 bits. The analysis of reducer
function takes less than 17 seconds.
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Fig. 5: The SSE versus the number of interface neurons k for case-study appli-
cation.

Research Questions. To answer our research questions: Scalability: It takes less
than 10 minutes to learn the time model of SnapBuddy. It takes only 16.6 seconds
to calculate feasible solutions for all of feasible classes of observations. Usefulness:
We learn the time model of SnapBuddy as a function of public and secret inputs
with R2 = 0.985. Our analysis shows that there are 8 classes of observations over
the secret inputs, and 3.0 bits of information about users’ identities are leaking.

6.3 PhoneMaster

Phonemaster [6] is a record keeping service for tracking phone calls and bills.
The identity of a user who submits a request is secret, while the generated traffic
from the interaction is public.
Inputs. There are at most 150 users. For each user, we send a random command
from the set of possible commands.
Neural Network Learning. We use a neural network with 215 neurons. We find
out that the optimal number of neurons in the interface layer is 10. We learn the
time model of phoneMaster in less than 10 minutes with R2 = 0.993.
Security Analysis. We analyze the reducer function of NN and find out that 60
classes of observations are feasible. We assume that there can be at most 3 users
in each class. The initial Shannon entropy is 7.49 bits. The remaining Shannon
entropy after observing the execution times is 1.58. The amount of information
leakage is 5.91 bits. This shows that almost everything about the identity of
users is leaking. The computation time of analysis is about 169 minutes.

6.4 Thermomaster

Thermomaster [6] is a temperature control and prediction system. The program
takes the goal temperature (secret inputs) and the current temperature (public
inputs) to simulate the controller for matching with the goal temperature.
Inputs. The goal temperature is between -10,000 and +10,000 and the current
temperature is between -250 and +250. We generate 10,000 inputs uniformly
from the space of goal and current temperatures.
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Neural Network Learning. We use a NN model with 709 neurons. The optimal
number of neurons for the interface layer is 9. We learn the timing models of
thermomaster in 70 minutes with R2 = 0.80.
Security Analysis. We analyze the reducer function of NN and find out that
only 9 classes of observations are feasible. The initial Shannon entropy is 11.0
bits. The remaining Shannon entropy after observations is 4.0. Therefore, 7.0
bits of information about the goal temperature are leaking through timing side
channels. The computation time of analysis is less than 86 minutes.

6.5 Password Matching (Keyczar)

We consider a vulnerability in a password matching algorithm similar to the
side-channel vulnerability in Keyczar library [34]. This vulnerability allows one
to recover the secret password through sequences of oracles where the attacker
learns one letter of the secret password in each step.
Inputs. The secret input is target password stored in a server, and the public
input is a guess oracle. We use libFuzzer [47] to generate 21,123 guesses for
randomly selected passwords. We assume a password is at most 6 (lower-case)
letters.
Neural Network Learning. We use a neural network with 253 neurons. The opti-
mal number of neurons for the interface layer is 3. We learn the time model of
the password matching algorithm in 202.3 seconds with R2=0.976.
Security Analysis. There can be at most 8 classes of observations. Our analysis
shows only 4 classes of observations are feasible. The initial Shannon entropy is 14
bits. The 4 classes (obtained from timing observation) have the following number
of elements: {48, 6760, 4309, 5269}. So, the remaining entropy (after observing
the classes through the time model) is 12.4 bits. It takes about 16 seconds to
analyze the secret parts of NN and quantify the information leaks.

7 Related Work

Modeling Program Execution Times. Various techniques have been applied
to model and predict computational complexity of software systems [23,50,7].
Both [23] and [50] consider cost measures such as execution time and predict
the cost as a function of input features such as the number of bytes in an input
file. The works [23,50] are restricted to certain classes of functions such as linear
functions, while the neural network techniques can model arbitrary functions.
Additionally, both techniques require feature engineering: the user needs to spec-
ify some features such as size or work-load features. However, neural network
models do not require this and can automatically discover important features.
Neural Networks for Security Analysis. Neural network models have been
used for software security analysis. For example, the approach in [46] uses the
deep neural network for anomaly detection in software defined networking (SDN).
The framework [36] uses a deep neural network model for detecting vulnerabil-
ities such as buffer and resource management errors. We use neural network
models to detect and quantify information leaks through timing side channels.
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Dynamic Analysis for Side-Channel Detections. Dynamic analysis has
been used for side-channel detections [38,41,42]. Diffuzz [41] is a fuzzing tech-
niques for finding side channels. The approach extends AFL [1] and KELINCI [28]
fuzzers to detect side channels. The goal of Diffuzz is to maximize the following
objective: δ = |c(p, s1)− c(p, s2)|, that is, to find two distinct secret values s1, s2
and a public value p that give the maximum cost (c) difference. The work [41]
uses the noninterference notion of side channel leaks. Therefore, they do not
quantify the amounts of information leaks. The cost function in [41] is the num-
ber of byte-code executed, whereas we consider the actual execution time in a
fixed environment. Note that our approach can be used with the abstract cost
model such as the byte-code executed in a straight-forward fashion. Diffuzz [41]
can be combined with our technique to generate inputs and quantify leaks.

Static Analysis for Side-Channel Detections. Noninterference was first in-
troduced by Goguen and Meseguer [22] and has been widely used to enforce
confidentiality properties in various systems [43,48,4]. Various works [13,5] use
static analysis for side-channel detections based on noninterference notion. The
work [13] defines ε bounded noninterference that requires the resource usage
behavior of the program executed from the same public inputs differ at most ε.
Chen et al. [13] use Hoare Logic [11] equipped with taint analysis [37] to detect
side channels. These static techniques including [13] rely on the taint analysis
that is computationally difficult for real-world Java applications. The work [33]
reported that 78% of 461 open-source Java projects use dynamic features such as
reflections that are problematic for static analysis. In contrast, we use dynamic
analysis that handles the reflections and scales well for the real-world applica-
tions. In addition, Chen et al. [13] answer either ‘yes’ or ‘no’ to the existence
of side channels, which is restricted for many real-world applications that may
need to disclose a small amounts of information about the secret. However, our
approach quantifies the leaks using entropy measures.

Quantification of Information Leaks. Quantitative information flow [10,44,31]
has been used for measuring the strength of side channels. The work [10] presents
an approach based on finding the equivalence relation over secret inputs. The
authors cast the problem of finding the equivalence relation as a reachability
problem and use model counting to quantify information leaks. Their approach
works only for a small program, limited to a few lines of code, while our approach
can work for large applications. In addition, they consider the leaks through di-
rect observations such as program outputs or public input values. In contrast,
we consider the leaks through timing side channels, which are non-functional
aspects of programs. Sidebuster [56] combines static and dynamic analyses for
detection and quantification of information leaks. Sidebuster [56] also relies on
taint analysis to identify the source of vulnerability. Once the source identi-
fied, Sidebuster uses dynamic analysis and measures the amounts of information
leaks. The information leaks in Sidebuster [56] is because of generated network
packets, while our information leaks are through timing side channels.

Hardening Against Side Channels. Hardening against side channels can be
broadly divided to mitigation and elimination approaches. The mitigation ap-
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proaches [32,9,52] aim to minimize the amounts of information leaks, while con-
sidering the performance of systems. The goal of elimination approaches [3,55,19]
is to completely transform out information leaks without considering the perfor-
mance burdens. Our techniques can be combined with the hardening methods
to mitigate or eliminate information leaks.
Other Types of Side Channels. Sensitive information can be leaked through
other side channels such as power consumptions [20,53], network traffics [14],
and cache behaviors [24,45,17,54]. We believe our approach could be useful for
these types of side channels, however, we left further analysis for future work.

8 Conclusion and Discussion

We presented a data-driven dynamic analysis for detection and quantifying in-
formation leaks due to execution times of programs. The analysis performed
over a specialized NN architecture in two steps: first, we utilized neural network
objects to learn timing models of programs and second, we analyzed the parts
of NNs related to secret inputs to detect and quantify information leaks. Our
experiences showed that NNs learn timing models of real-world applications pre-
cisely. In addition, they enabled us to quantify information leaks, thanks to the
simplicity of NN models in comparison to program models.

Throughout this work, we assume that the analyzer would be able to con-
struct interesting inputs either with fuzzing tools, previously reported bugs, or
domain knowledges. Nevertheless, we demonstrate practical solutions to gener-
ate inputs in each example with emphasis on the recent development in fuzzing
for side-channel analysis [41].

Furthermore, our dynamic analysis approach can not prove the absent of
side channels. Our NN model learns and generalizes the timing models for the
observed program behaviors and is limited to observed paths in the program.
We emphasize that the proof is also difficult for static analysis. Although static
analysis can prove the absent of bugs or vulnerabilities in principle, the presence
of dynamic features such as reflections in Java applications is problematic and
can cause false negative in static analysis (see Limitations Section in [13]).

For future work, there are few interesting directions. One idea is to develop a
SAT-based algorithm, similar to DPLL, on top of MILP algorithms to calculate
the number of solutions more efficiently. Another idea is to define threat models
based on the attackers capabilities to utilize neural networks for guessing secrets.
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31. Köpf, B., Basin, D.: An information-theoretic model for adaptive side-channel at-
tacks. In: CCS’07. pp. 286–296 (2007)
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