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Abstract. Bitcoin, being the most successful cryptocurrency, has been
repeatedly attacked with many users losing their funds. The industry’s
response to securing the user’s assets is to offer tamper-resistant hard-
ware wallets. Although such wallets are considered to be the most secure
means for managing an account, no formal attempt has been previously
done to identify, model and formally verify their properties. This paper
provides the first formal model of the Bitcoin hardware wallet operations.
We identify the properties and security parameters of a Bitcoin wallet
and formally define them in the Universal Composition (UC) Frame-
work. We present a modular treatment of a hardware wallet ecosystem,
by realizing the wallet functionality in a hybrid setting defined by a set
of protocols. This approach allows us to capture in detail the wallet’s
components, their interaction and the potential threats. We deduce the
wallet’s security by proving that it is secure under common cryptographic
assumptions, provided that there is no deviation in the protocol execu-
tion. Finally, we define the attacks that are successful under a protocol
deviation, and analyze the security of commercially available wallets.

1 Introduction

Wallets are the only means to access and manage Bitcoin assets and, although
they exist since Bitcoin’s inception [20], little or no attention has been paid on
formally verifying them. Access to the Bitcoin network, key management, cryp-
tographic operations, and transaction processing are only a few cases of wallet
operations. Up until now, there does not exist a specific model of the wallet, nor
a thorough threat model, resulting in implementations based on common crite-
ria and security assumptions (e.g., secure key management, correct transaction
processing etc.) without a complete security treatment. As a result, industry
focuses more on securing the cryptographic primitives, and neglects the secure
operation of the system as a whole.

The current industry state of the art for managing cryptocurrency assets is
hardware wallets. They currently dominate the market as the most secure solu-
tion for account management. Although the demand, together with the number
of commercially available products, keeps growing, their specifications and secu-
rity goals remain unclear and understudied. Incorporating expensive hardware
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as a wallet is bound to bring some security guarantees; however, proprietary
assumptions of the offered functionality and lack of a universal threat model
frequently lead to implementations prone to attacks. In this work we formally
define the characteristics, specifications and security requirements of hardware
wallets in the Universal Composable (UC) Framework [9]; we identify all the po-
tential attack vectors, and the conditions under which a wallet is secure. To that
end, we manually inspect the KeepKey, Ledger and Trezor wallets and extract
the implementations which we then map to our model. As we show, the wal-
lets are prone to a set of attacks and are secure only under specific assumption.
Therefore, our model not only proves the security of existing implementations,
but also acts as a reference guide for future implementations.

As wallets are the only way for a user to access her funds, they are repeat-
edly targeted for attacks that aim to access the account’s keys or redirect the
payments, ranging from clipboard hijacking [21] and malware [17] to implemen-
tation bugs, e.g., the Parity hack in Ethereum [4], and more specific attacks,
e.g., brain wallets [26]. In order to address such threats, different ways to harden
the wallet’s security have been proposed, with the most notable one being the
utilization of cryptographic hardware. The module known as a hardware wal-
let is responsible for the account’s key management and the execution of the
required cryptographic operations. The remaining operations are completed by
a dedicated software, either provided together with the hardware or by a third
party, with which the hardware communicates. Although hardware wallets are
becoming the de facto means of securely managing an account, they have not
been formally studied before. Currently, the security of commercially available
products can only be checked through manual inspection of their implementa-
tion; a process that requires a strong engineering and technical background, and
a significant effort and time commitment. Our work aims at bridging the gap
between formally modeling and verifying the wallet’s properties and claimed
specifications. We present a formal model of hardware wallets, which is built us-
ing cryptographic primitives and is proven secure under common assumptions.
Instead of capturing a hardware wallet as a single module, we conceptualize it
as a system of different modules that communicate with each other in order to
complete the wallet’s operations. This approach allows us to identify a greater
set of potential attacks and the conditions for them to be successful. As we show,
perfect cryptographic components by themselves cannot guarantee security; any
module might be proved vulnerable, thus compromising the entire wallet.

Related Work The importance of formal methods for the Bitcoin protocol is
well understood, with existing literature showcasing different approaches. Garay
et al. [12], after extracting and analyzing the core Bitcoin blockchain protocol,
presented a formal abstraction to prove that Bitcoin satisfies a set of security
and quality properties. Pass et al. [22] analyzed the consistency and liveness
properties of the consensus protocol in an asynchronous setting, proving Bit-
coin secure assuming an upper bound on the network delay. Badertscher et al.
[6] suggested a universally composable treatment of the Bitcoin ledger, defining
Bitcoin’s goals and proving that their model is securely realized in the UC frame-
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work. Transactions, being a core part of Bitcoin, have also attracted attention.
Atzei et al. [5] proposed a formal model of Bitcoin transactions in order to prove
security e.g., against double-spending attacks, and other blockchain properties
e.g., blockchain’s decreasing value.

Until now, Bitcoin wallets have only been empirically studied. Previous re-
search on the topic focused on the integrity of transactions and suggested ways
to enhance the security of the wallets. Gentilal et al. [13] stressed the necessity
of separating the wallet into two environments, the trusted and the non-trusted,
and proposed that a wallet remains secure against attacks by isolating the sensi-
tive operations in the trusted environment. Similarly, Lim et al. [19] and Bamert
et al. [7], argue that security in Bitcoin wallets equals with tamper-resistance
and propose the use of cryptographic hardware. Hardware wallets have not yet
been extensively studied, since no formal attempt to specify the functionalities
and the security properties of such wallets exists so far. As of September 2018,
research has only focused on attacking commercially available implementations.
Gkaniatsou et al. [14] showed that the low-level communication between the
hardware and its client is vulnerable to attacks which escalate to the account
management. Their research concluded to a set of attacks on the Ledger wallets,
which allowed to take control of the account’s funds. Hardware wallets have also
been studied against physical attacks. Volotikin [27] showed that specific parts
of the Ledger’s flash memory are accessible, exposing the private keys used for
the second factor verification mechanism. Datko et al. presented fault injection,
timing and power analysis attacks on KeepKey [1] and Trezor [3], which allowed
them to extract the private key.

Our Contributions and Roadmap This work provides a holistic treatment of
hardware wallets: from identifying their core specifications and security proper-
ties to defining a formal model, which allows reasoning about the offered security
of existing wallets and acts as the foundation for designing and implementing
new ones. To the best of our knowledge our work is the first to i) define the
properties and requirements of hardware wallets, ii) provide a formal model and
security guarantees of such wallets, and iii) evaluate the security of commercial
products under a formal model.

In Section 2 we define the hardware wallet properties and their security speci-
fications. Section 3.3 presents a formal model for the wallet in the UC framework.
We define the ideal functionality of the wallet, which models the wallet’s oper-
ations and the adversary’s capabilities. Instead of conceptualizing the wallet as
a single entity, in Section 3.4 we adopt a modular treatment in which the wallet
becomes an ecosystem of different components, namely the human, the client
and the hardware. Each component runs a protocol, which defines the opera-
tions that it carries out, so the wallet functionality is realized as a composition
of these protocols. Section 4 addresses the wallet’s security. We present the set of
attacks that our ideal functionality identifies, including a novel family of attacks
that has not been previously discussed. We then prove that the hybrid setting
securely realizes the wallet ideal functionality, and showcase examples when per-
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fect cryptography is inadequate for securing an account. Finally, we evaluate the
security of three commercially available wallets: KeepKey, Ledger, and Trezor.

2 Hardware Wallets

Bitcoin relies on the Elliptic Curve Signature Scheme (ECDSA) for signing the
transactions and proving ownership of the assets. An account is defined by a key
pair (sk, vk): the public portion vk is hashed to create an address α for receiving
assets, and the private portion sk is used to sign transactions that spend the
assets that α received. Unauthorized access to sk results in loss of funds, thus
raising the issue of securing the account’s private keys. A wallet offers access
to the Bitcoin network and management of an account, and is either based on
software, i.e., is hosted online by a third party or run locally, or hardware.

Threat Model The usage of a broken cryptographic primitive may lead to loss
of funds: a broken hash function means potential loss of the receiving funds,
whereas a broken signature scheme may result in loss of the spending funds.
Protecting against unauthorized access to the wallet’s operations has been pre-
viously proven to be equally important as using secure cryptographic primitives
[8,14]. Hardware wallets are tamper-resistant and offer an isolated environment
for the cryptographic primitives. However, if they connect to a compromised
client, then any inputs/outputs of the hardware can potentially be malicious.
For example, consider Bob, whose account is defined by the key pair (sk, vk),
and an adversary A, who is able to forge Bob’s signature. In this case any signa-
ture sA of a message mA chosen by A can be verified by vk; hence the adversary
can spend all assets that Bob has previously received, i.e., the assets sent to
the hash of vk. Let us now assume that Bob’s signature is unforgeable but A
controls the signing algorithm inputs, such that for any message m that Bob
wishes to sign, A substitutes it with mA. Even though the signature is unforge-
able, the adversary can still spend Bob’s assets by tampering with the message.
Our model captures the family of such attacks, which result in loss of funds
by tampering the inputs/outputs of the wallet operations. Thus, the security
of a Bitcoin wallet is reduced to the security of the underlying cryptographic
primitives and the honesty of the communicating parties.

The Wallet Setting Software, not being tamper-resistant, cannot guarantee a
secure environment for the wallet’s operations. Instead, hardware wallets are
designed to offer such an environment by separating the wallet’s cryptographic
primitives from the other operations e.g., connection to the Bitcoin network.
These devices do not offer network connectivity; instead they operate in an offline
mode. Due to their limited memory capabilities and the absence of network
access, they cannot keep track of the account’s activities, e.g., past transactions.
Thus, they require connection with a dedicated software, the client, which keeps
records of the account’s actions and provides a usable interface with which the
user can interact. Hardware wallets operate under the assumption of a malicious
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host, and they provide a trusted path with the user. Both the client and the
hardware display transaction related data, which the user compares to decide on
their validity. As such, the user becomes part of the system and is responsible
for identifying potentially malicious actions of the client.

Fig. 1. Transaction issuing in the hardware wallet setting.

The wallet operations are initiated by the user, they are executed by the
client, the hardware, or both, and are: i) Setup: the hardware generates the
master key pair (msk,mvk) and returns the private key msk, i.e., the wallet’s
seed, to the user; currently all wallets are Hierarchical Deterministic, as defined
by the BIP32 standard [28], so the keys are derived from a master key pair by
the simplified functions ski = msk + hash(i,mvk)(mod n) and vki = mvk +
hash(i,mvk)×N , where i is the index of the key and n,N are public parameters
of the used Elliptic Curve; ii) Session Initialization: the hardware connects to
the client and sends it the master public key mvk; iii) Generate Address: both
the client and the hardware generate a new address and return it to the user. The
hardware derives from (msk,mvk) a new pair (ski, vki), generates a new address
αi and returns it to the user. The client may either generate vki using mvk
or receive vki from the hardware, then generates and stores the corresponding
address, and finally returns it to the user; iv) Calculate Balance: given a list of the
account’s addresses, the client iterates over the ledger’s transactions, calculates
the account’s available assets and returns this amount to the user; v) Transaction
Issuing: the user provides the payment data to the client, which then forwards
them to the hardware together with the available inputs, i.e., the account’s
addresses and balances, and requests its signature. The hardware checks whether
the input addresses belong to the managed account and generates a change
address upon demand, i.e., if the balance is larger than the payable amount
plus transaction fees. Then, it requests the user’s approval of the payment data.
If the user confirms the payment, then the hardware signs it and returns the
signature together with the corresponding public key to the client in order to
publish it. Figure 1 presents an abstraction of the transaction issuing process in
the hardware-enhanced wallet setting.
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In our model a wallet is not a single module, but rather an “ecosystem”, which
consists of different modules that communicate during an operation: the user,
the client and the hardware. In order to treat it under the UC framework, we
will describe an ideal functionality for it as well as its real world implementation.
In the ideal world the wallet is a single component (functionality) responsible for
all the aforementioned operations while in reality the wallet is split into multiple
modules which communicate during the execution of each operation. In the real
world, the wallet emerges through the interaction of the human operator, the
client (which is a device like a desktop computer or tablet/smartphone) and a
tamper resistant hardware component.

Ideal World The wallet functionality, Fw, is responsible for the wallet’s oper-
ations. Fw interacts with the global Bitcoin ledger functionality GLEDGER, as
defined in [6], in order to execute operations requiring access to the decentral-
ized system. GLEDGER is the ideal functionality that models the Bitcoin ledger
and allows a wallet to register itself, publish transactions and retrieve the state
of the ledger, i.e., all published transactions. Fw generates a unique address per
public key and also incorporates a signature functionality, FSIG as defined in [10]
(for convenience we will treat FSIG as a separate component in the ideal world).
The wallet registers itself with FSIG which creates fresh keys for the account upon
request, e.g., during address generation, and signs messages, e.g., transactions.
FSIG is also accessed by the validation predicate of GLEDGER in order to verify a
transaction’s signature during the validation stage.

Real World The operations are executed by a set of communicating parties:
the hardware, the client and the user. Thus the protocols of the hardware
πhw, the client πclient, and the human πhuman define the actions of the cor-
responding parties. The hardware protocol πhw, uses a signature scheme Σ ≡
〈KeyGen,Verify,Sign〉, a cryptographic hash function H and a pseudorandom key
generation function HierarchicalKeyGen(msk, i), in order to derive children keys
from the master key. A basic assumption of this setting is that πclient runs in an
untrusted environment, i.e., we do not consider the software to be secure. Thus,
connection to a malicious client, in our model, is equivalent to corruption of the
client by the adversary. The human communicates with the hardware and the
client via a secure channel, i.e., the user interacts directly with the device.

Figure 2 presents the ideal and the real world settings. In both worlds the
environment Z interacts with the adversary, i.e., in the ideal world it inter-
acts with the simulator S, and in the real world with the adversary A. In the
ideal world the wallet consists of the ideal wallet functionality Fw and the sig-
nature functionality FSIG; in the real world it consists of the combination of
the user, client and hardware wallet parties who execute the respective proto-
cols (πhuman, πclient, πhw). The communication between the human, the client
and the hardware is achieved over a UC-secure channel protocol as presented by
Canetti [11]: the adversary is able to observe the encrypted communication be-
tween the honest parties and only retrieve the length of the exchanged messages.
In practice, this can be achieved by establishing a secure channel between the



A Formal Treatment of Hardware Wallets 7

client and the hardware module using standard key exchange techniques, while
the human-hardware channel is assumed to be secure by default. In the absence
of a secure channel, the adversary may tamper with the communication thus, in
our model, an insecure channel is equivalent to the client being corrupted.

Fig. 2. A high-level comparison of the ideal and the real world.

3 Formal Model

This section defines a formal model of the hardware wallet ecosystem in the
UC Framework, in which we compare the execution of a security definition, i.e.,
the ideal setting, with a concrete protocol setting, i.e., the real world. We first
define a wrapper for the validation predicate which is used by the Bitcoin ledger
functionality GLEDGER and is accessed in both the ideal and the real worlds upon
publishing a transaction. In the ideal world, a functionality defines the wallet
operations. In the real world, the hardware wallet is defined as a hybrid setting
which we prove to securely realize the ideal definition.

3.1 Notations

An address α is a unique string chosen from {0, 1}`, where ` is the length of α in
bits, and is associated with a payment key pair (vk, sk), where vk is the public
and sk the private key. The wallet’s key pairs and, consequently, the addresses
are generated using the master key pair (msk,mvk), which is randomly selected
from the key domain K upon the wallet’s setup. A transaction is defined as
a tuple tx := (αs, αr, θpay, αc, θchange), where αs denotes the sender’s address,
αr the receiver’s address and αc the change address; θpay, θchange θfee are the
payment, change and fee funds respectively, where θchange equals to the account’s
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balance minus the payment and the fee amounts, i.e., θchange := balanceOf(αs)−
θpay−θfee. A signed transaction is the tuple (tx, vk, σ), where σ is the signature of
tx under the public key vk. We note that, for ease of notation, this is a simplified
transaction model - adapting it for multiple inputs and outputs, e.g., to properly
model Bitcoin, should be straightforward though. The parties that execute an
operation are the user U i.e., the owner of the wallet, the client to which the
hardware connects C, and the hardware H. Each message is associated with a
session id sid′ = UCH, which defines the parties that the message is related with.

3.2 Validation Predicate

The Bitcoin Ledger functionality GLEDGER, as defined in [6], is parameterized
with the validation predicate Validate. This predicate identifies whether a trans-
action can be added to the buffer, i.e., whether it is valid for publishing to the
ledger. Although a concrete instantiation is not provided, it is stated that it
takes as input the candidate transaction, the buffer and the current state. The
candidate transaction consists of the signed transaction stx = (tx, vk, σ) and
the ledger parameters, e.g., the transaction id, which is a unique identifier of
the transaction, and the timestamp, i.e., the time which is defined by a global
clock. Intuitively, in Bitcoin the state is the blockchain and the buffer is the
mempool which contains the transactions that have not yet been included in a
block. The validation predicate is used for the signature verification of a can-
didate transaction. This is formalized with a wrapper ValidateWrapper, which
wraps all instantiations of the validation predicate. In the ideal world the wrap-
per accesses the signature functionality FSIG to verify the transaction’s signature:
if the signature is not valid, then it directly outputs 0, otherwise it performs all
additional checks, such as verifying the funds which are consumed and checking
whether the amounts are valid. We refrain from constraining our setting to a
specific Validate predicate, but rather describe it for all generic ledger settings.
The ideal wrapper IdealValidateWrapper is described in Algorithm 1. The real
world wrapper RealValidateWrapper uses a signature scheme instead of FSIG and
behaves similarly to Algorithm 1, i.e., it first parses BTX and then performs the
same branch checks on Verify(tx, vk, σ) and returns the proper boolean value.

Algorithm 1 The validation predicate wrapper, parameterized by Validate and
FSIG. The input is a transaction BTX, the buffer buffer and the state state.

function IdealValidateWrapper(BTX, buffer, state)
(tx, vk, σ, txid, τL, pi) := parse(BTX)
Send (Verify, sid, tx, σ, vk) to FSIG and receive (Verified, sid, tx, f)
if f = 0 then

return 0
else

return Validate(BTX, buffer, state)
end if

end function
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3.3 The Wallet Ideal Model

Fw incorporates FSIG and runs in the GLEDGER-setting, interacting with the ad-
versary A, a set of parties P and the environment Z, and keeps the initially
empty items: i) A[]: a list of lists of addresses and the corresponding public keys,
(α, vk), ii) B[]: a list of lists of the account’s addresses and their corresponding
balance, (α, θ), and iii) K[]: a list of master key pairs (mvk,msk). Fw realizes the
following operations: i) Wallet setup: Upon a setup request, it initializes the list
of addresses, generates the account’s master key pair, registers to GLEDGER and
returns the master private key. ii) Client Corruption: When A corrupts a client
C, Fw leaks the past public keys and addresses that C has obtained. iii) Client
session initialization: In order to start a new session, it identifies the C defined
in sid′ and and returns a new assigned pass phrase “pass”; in the real world, the
pass phrase acts as the authentication mechanism between the parties. iv) Ad-
dress generation: It requests a new public key from FSIG and picks an associated
address at random. It then stores the new address in the corresponding list and
also returns it to Z. If the connected client is corrupted, then the functionality
leaks the address and the public key to A. v) Balance calculation: If C is honest
then it queries the ledger to retrieve the blockchain; if the connected client is
corrupted, then it requests from A to provide the chain. Then, it calculates the
amount of available assets and returns it to Z. vi) Transaction issuing: Upon
receiving a transaction request, if C is corrupted, then it leaks the transaction
information to the adversary and retrieves a new transaction object from it. If U
is also corrupted, then it discards the original request and keeps the adversarial
transaction, otherwise it ignores the adversary’s response. Finally, it requests a
signature from FSIG for the transaction which it then publishes to GLEDGER.

Functionality Fw
All messages below contain a session id of the form sid = (P, sid′).

– Setup: Upon receiving (Setup, sid) from some party U ∈ P, forward it
to A. Then add the empty list AU to A[], register with GLEDGER, pick
the master key pair (mskU ,mvkU ) $←− K and add it to K[] and return
(SetupOK, sid) to U .

– Client Corruption:When A corrupts a party C, for every U such that
a Setup session with C has been completed send (AddressList, sid, AU )
and (MasterPubKey, sid,mvkU ) to A.

– Initialize Client Session: Upon receiving (InitSession, sid) from
party U , pick passclient

$←− {0, 1}λ and send (InitSession, sid, passclient)
to C. If C is corrupted, then send (InitSession, sid, passclient) to A
and wait for a response (InitSessionOK, sid, passclient). Finally, send
(Session, sid, passclient) to U .

– Generate Address: Upon receiving (GenAddr, sid) from U , send
(KeyGen, sid) to FSIG. Upon receiving (Verification Key, sid, vk)
from FSIG, pick an address α $←− {0, 1}` and add (α, vk) to AU . If C
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is corrupted then send (Address, sid, (α, vk)) to A and wait for a re-
sponse (AddressOK, sid, α′). If U is corrupted then set a := α′, else
set a := α. Finally, return (Address, sid, a) to U .

– Calculate Balance: Upon receiving (GetBalance, sid) from U , send
(Read, sid) to GLEDGER and wait for the response (Read, sid, chain). If
C is corrupted, then send (Read, sid) to A and, upon receiving the
response (Read, sid, chain′), set chain := chain′. Then set balance := 0,
initialize the list BU ∈ B[] which contains (a, 0) for every address (a, ·)
in AU , and ∀tx ∈ chain, i.e., the ordered transactions in the ledger such
that tx = (αs, αr, θpay, αc, θchange), do:
• If ∃(αs, ·) ∈ AU , then update the entry (αs, θpast) ∈ BU to (αs, 0);
• If ∃(αr, ·) ∈ AU , then update the entry (αr, θpast) ∈BU to (αr, θpast+
θpay);

• If ∃(αc, ·) ∈ AU , then update the entry (αc, θpast) ∈BU to (αc, θpast+
θchange);

Finally, for every (·, θ) ∈ BU do balance := balance + θ and send
(Balance, sid, balance) to U .

– Issue Transaction:Upon receiving (IssueTX, sid, (αr, θpay, θfee)) from
U , if C is corrupted then forward the message to A and wait for a re-
sponse (IssueTx, sid, passclient, (α′

r, θ
′
pay, θ

′
fee)). If U is corrupted then

set (αr, θpay, θfee) := (α′
r, θ

′
pay, θ

′
fee). Then find (αin, θin) ∈ BU : θin ≥

θpay + θfee. If such entry exists then compute an address αc and its
public key vkc as per the Generate Address interface, set θchange :=
θin−θpay−θfee and tx := (αin, αout, θpay, αc, θchange), send (Sign, sid, tx)
to FSIG and wait for (Signature, sid, tx, σ). Then find (αin, vk) ∈ AU
and set stx := (tx, vk, σ). If C is corrupted, send (Address, sid, αc, vkc)
and (Submit, sid, stx) to A and wait for the response (SubmitOK, sid).
Finally, send (Submit, sid, stx) to GLEDGER.

3.4 The Hardware Wallet Hybrid Setting

The hybrid setting consists of the human πhuman, client πclient, and hardware
πhw protocols, which define the set of operations run by the parties.

Human Protocol πhuman interacts with C, H, and the environment Z,
and defines the following, initially empty, items: i) T : a list of transactions
tx = (αr, θpay, θfee), and ii) S: a list of client sessions sid. The model assumes
that a session is initialized when U connects the hardware module to the client
device and assigns a pass phrase passclient ∈ {0, 1}λ to each client with which
she interacts, which is chosen at random upon session initialization. Although it
is assumed that the user samples an unguessable pass phrase, future work will
explore functionalities that allow a malicious client to perform (dictionary) pass-
word attacks against it. Also U keeps track of the initiated sessions and pending
transactions. The user does not perform complex computations, e.g., verifying a
signature, or maintain a large state, like the entire list of generated addresses. It
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is only assumed to have a memory T , only as large as the pending transactions
it is processing, and also that it is capable of performing equality checks between
strings.

Protocol πhuman

– Setup: Upon receiving (Setup, sid) from Z, forward it toH, and initial-
ize T to empty. Then upon receiving (SetupOK, sid) from H forward
it to Z.

– Initialize Client Session: Upon receiving (InitSession, sid) from Z,
pick passclient

$←− {0, 1}λ and send (InitSession, sid, passclient) to C.
Upon receiving (InitSession, sid, pass′

client) from H, if pass′
client =

passclient then add passclient to S and send (Session, sid, pass′
client)

to H and to Z.
– Generate Address: Upon receiving (GenAddr, sid) from Z, forward

it to C and wait for two messages, (Address, sid, αclient) from C and
(Address, sid, αhw) fromH. Upon receiving them, if αclient = αhw then
send (Address, sid, αhw) to Z.

– Calculate Balance: Upon receiving (GetBalance, sid) from Z, for-
ward it to C. Then upon receiving (Balance, sid, balance) from C, for-
ward it to Z.

– Issue Transaction: Upon receiving (IssueTX, sid, tx) from Z, such
that tx = (αr, θpay, θfee), add tx to T and forward the message to
C. Upon receiving (CheckTx, sid, passclient, tx′, balance′) from H, if
passclient ∈ S, tx′ ∈ T and balance′ = balance−θpay−θfee then remove
tx′ from T and send (IssueTx, sid, passclient, tx) to H.

Client Protocol The client C interacts with the user U , the hardware wallet H
and the environment Z. The protocol πclient defines the following items: i) mvk:
the master public key of the wallet, ii) i: the key derivation index, iii) pass: the
pass phrase that the user assigns to the client, iv) Aclient: a list of the account’s
addresses, and v) Tutxo: a list of unspent balances like tx = (αin, θin), where
αin ∈ Aclient and θin > 0. C acts a proxy between U andH, provides connectivity
to the ledger and executes blockchain-related operations, e.g., computing the
account’s balance. Although during the address generation, C retrieves the public
key from H, in practice this is optional and the client can generate the address
independently via the derivation process of the hierarchical deterministic wallets.

Protocol πclient

– Initialize Client Session:Upon receiving (InitSession, sid, passclient)
from U , forward it to H. Upon receiving (MasterPubKey, sid,mvk)
from H, set pass := passclient, mvk := mvk and i := 1.

– Generate Address: Upon receiving (GenAddr, sid) from U , forward
it to H. Then upon receiving (PubKey, sid, vki) from H, compute αi :=
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H(vki), set i := i+1 and add αi toAclient. Finally, send (Address, sid, αi)
to U .

– Calculate Balance: Upon receiving (GetBalance, sid) from U , send
(Read, sid) to GLEDGER. Upon receiving (Read, sid, chain) from GLEDGER,
set balance := 0 and Tutxo to the empty list and ∀tx ∈ chain, i.e., the or-
dered transactions in the ledger such that tx = (αs, αr, θpay, αc, θchange),
do:
• If αs ∈ Aclient then update the entry (αs, θpast) ∈ Tutxo to (αs, 0);
• If αr ∈ Aclient then update the entry (αr, θpast) ∈ Tutxo to (αr, θpast+
θpay);

• If αc ∈ Aclient then update the entry (αc, θpast) ∈ Tutxo to (αc, θpast+
θchange);

Finally, for every (·, θ) ∈ Tutxo do balance := balance + θ and send
(Balance, sid, balance) to U .

– Issue Transaction: Upon receiving (IssueTX, sid, tx) from U , such
that tx = (αr, θpay, θfee), send (SignTx, sid, pass, tx, Tutxo) toH. Upon
receiving (ChangeIndex, sid, idx), set i := idx and compute and store
the public key and the address for the change as in the Generate Ad-
dress interface. Then upon receiving (SignTx, sid, stx) from H, send
(Submit, sid, stx) to GLEDGER.

Hardware Wallet Protocol The hardware H interacts with C and U and
runs the protocol πhw, which defines the following items: i) i: the key derivation
index, ii) S: a list of the active client sessions, iii) (msk,mvk): the master key
pair of the wallet, and iv) A: a list that contains tuples like (i, αi, ski, vki) where
i is an index, αi a generated address and (ski, vki) the corresponding key pair.

Protocol πhw

– Setup: Upon receiving (Setup, sid) from U , initialize S and A to empty
lists. Then compute (msk,mvk)← KeyGen(1λ) and set i := 1. Finally,
return (Setup, sid,msk) to U .

– Initialize Client Session:Upon receiving (InitSession, sid, passclient)
from C, forward it to U . Upon receiving (Session, sid, pass′

client) from
U add pass′

client to S and send (MasterPubKey, sid,mvk) to C.
– Generate Address: Upon receiving (GenAddr, sid) from C, compute

(ski, vki) := HierarchicalKeyGen(msk, i) and αi := H(vki). Then store
(i, αi, ski, vki) to A, set i := i + 1, and return (Address, sid, αi) to U
and (PubKey, sid, vki) to C.

– Issue Transaction: Upon receiving (SignTx, sid, passclient, tx, Tutxo)
from C, where tx = (αr, θpay, θfee), find an entry (αin, θin) ∈ Tutxo :
θin ≥ θpay+θfee. If such entry exists, then: i) find (·, αin, skin, vkin) ∈ A,
ii) compute the remaining change θchange := θin − θpay − θfee, iii) cre-
ate a change address αc as in the Generate Address interface, and
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iv) compute balance as the sum of θ for every (·, θ) ∈ Tutxo and set
balance′ := balance − θpay − θfee. Then send (ChangeIndex, sid, i)
to C and (CheckTx, sid, passclient, tx′, balance′) to U , where tx′ =
(αr, θpay, θ′

fee). Upon receiving (IssueTx, sid, passclient, tx) from U , set
tx := (αin, αr, θpay, αc, θchange), compute stx := (tx, vkin,Sign(tx, skin))
and send (SignTx, sid, stx) to C.

4 Security in the Hybrid Setting

We now assess the security of our proposed model in order to prove the security
of the hybrid setting with respect to the wallet ideal functionality. The attacks
that our model considers are the following:

1) Privacy loss: when the adversary corrupts a client, he accesses the account’s
public keys, addresses and their balance;

2) Payment attack: during the transaction issuing operation, the adversary may
tamper with the inputs to alter the payment amount, the receiving address,
and/or the fee amount. This attack is successful if and only if the client is
corrupted and the user deviates from her expected behavior, i.e., does not
reject the malicious transaction data;

3) Address generation attack: the adversary may tamper with address generation
on the client’s side, so that the user acquires an address which is adversarially
controlled. This attack will be successful if and only if the client is corrupted
and the user deviates from her expected behavior, i.e., does not cross-check
the address that the client provides with the hardware one;

4) Chain attack: the adversary may tamper with the balance calculation by
providing to the wallet a malicious chain. This family of attacks is successful
only if the client is corrupted, regardless if the user follows the protocol.

Chain Attacks The attacks 1, 2 and 3 have been previously identified by empirical
studies showcasing their applicability [14,2]. However, the chain attack has not
been previously discussed, and is more nuanced compared to the others. Under
our model, the client is the only party that connects to the network. Therefore,
a corrupted client can mount any type of eclipse attack [15], including the chain
attacks that we describe here. We showcase an example of these attacks.

Assume the honest chain chainw, and a transaction tx, which transfers θin
funds to an address α and is published in the j-th block of chainw. Prior to block
j, i.e., blocks with indices in [0, j − 1], a number of transactions were published
that sent an aggregated amount of θpast funds to α. The adversary A substitutes
chainw with a chain chainA, which is the prefix chain up to, but not including,
the j-th block, i.e., it consists of the blocks with indices 0 . . . j−1. Hence, during
the balance calculation, the wallet assumes that α owns θpast funds. When the
user requests a transaction tx = (αr, θpay, θfee), where θpast = θpay + θfee (same
as θpast > θpay + θfee), the wallet computes the amount of change according
to θpast, and spends the rest as fees. The attack results in forcing the wallet to
spend more funds than it would in an honest setting.
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The Hybrid Setting Security Theorem In order to prove the security of our model,
we denote the hybrid setting described in Section 3.4 by πhybrid. We show that
πhybrid securely realizes the wallet ideal functionality Fw defined in Section 3.3.
In the ideal execution, GLEDGER uses the ideal wrapper IdealValidateWrapper de-
fined in Section 3.2, whereas in the real world it utilizes RealValidateWrapper.
Theorem 1 restricts to environments that do not corrupt the hardware party H,
therefore it cannot cover attacks mounted by the hardware wallet’s manufacturer
or cases when the hardware wallet gets corrupted due to insecure hardware.

Theorem 1 (Hybrid Wallet). Let the hybrid setting πhybrid, which is parame-
terized by a signature scheme Σ and a hash function H and interacts with GLEDGER
parameterized by RealValidateWrapper. πhybrid securely realizes the ideal func-
tionality Fw, which interacts with GLEDGER parameterized by IdealValidateWrapper,
if and only if Σ is EUF-CMA and H is an instantiation of the random oracle.

Proof. We refer to Appendix A for the proof. ut

Theorem 1 can be used to prove the security of any wallet scheme that real-
izes the hybrid setting. To evaluate a wallet implementation, first it is identified
whether it realizes the human, client and hardware protocols. Under the premise
of a faithful realization of these protocols, i.e., in terms of exchanged messages
and internal operations, the security assumptions of its building components are
evaluated. More precisely, the signature algorithm that the wallet uses must be
EUF-CMA, the hash function must act as a random oracle, and the communi-
cation channels between the parties must be secure. Typical examples of such
components are the ECDSA [18] signature algorithm and a SHA-2 [23] hash
function. If these assumptions hold, then the wallet is secure under our model.

The Negligent User In Section 3.4 we presented a well-defined protocol that the
user should follow. As shown in Section 4, as long as the parties follow the defined
protocols faithfully - and the cryptographic primitives used are strong enough
- then the hardware wallet setting is secure. The integrity of the transaction
issuing and the address generation operations are entirely based on the premise
that the user will identify any malicious data, by comparing correctly the data
shown by the client with the data shown by the hardware. However, even though
this might be trivial for software, e.g., for the client and the hardware wallet,
people are prone to errors. Comparison of long hexadecimal strings has long
been proved a challenging procedure, with many research outcomes suggesting
that it is unrealistic to expect a perfect comparison of cryptographic hashes e.g.,
[25,16,24], as humans find this process difficult and are prone to errors. In real
world scenarios, the user aims at performing any operation quickly and being
into a hurry often causes deviations from the expected behavior. Additionally,
expecting the user to manually copy a Bitcoin address shown on the hardware’s
screen, defeats the usability purposes of the wallets. Thus, it is more than possible
that the user will choose to simply copy the address directly from the client.
However, such usability difficulties of the compare-and-confirm process open an
attack vector for the payment and address generation attacks.
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Wemodel the probability of a user diverging from the human protocol πhuman
as a random variable Rh ∈ [0, 1], which equally denotes the probability of suc-
cessful payment and address attacks. The distribution of Rh varies, depending
both on the vigilance of the user and usability parameters. For example, a user
allowing all requests to be completed without checking, i.e., because the process
takes too long and the data is difficult to read, would be identified by Rh close to
1. A user who carefully checks the data, i.e., because there are no time restric-
tions or because the hardware presents it is such way that captures the user’s
attention, would be identified by Rh closer to 0. Another factor that may affect
Rh is the length of the addresses: the longer the address, the more difficult to
read and compare. However, the experimental evaluation of Rh through usabil-
ity studies of Bitcoin addresses and the user’s capability to compare-and-confirm
them correctly is out of the scope of this work and is left as future research.

5 Product evaluation

As of September 2018, the hardware wallets suggested by bitcoin.org are Dig-
ital Bitbox, KeepKey, Ledger, and Trezor. All, except Digital Bitbox, have an
embedded screen to present information to the user, thus we focus on Keep-
Key, Trezor and Ledger. We manually inspected these wallets, extracted their
protocols, and mapped them to our model. Our results show that the imple-
mentations bare significant similarities. Although the wallets do have different
low-level implementations, the protocols that they execute are captured by the
hybrid setting presented in Section 3.4. Instantiating our model to the actual
implementations indicates the correctness of previous empirical studies, which
suggest that the Ledger wallets are prone to the payment [14] and address gen-
eration [2] attacks. The wallets are subject to these attacks when the client is
dishonest and are secure only if the cryptographic primitives are secure and the
user does not deviate from the defined protocol, i.e., successfully identifies any
tampered data. Moreover, the instantiation of our model to the three implemen-
tations suggests that the wallets are prone to the chain attack, which has not
been previously discussed. In this case, the attack cannot be blocked by the user,
thus the wallets are secure against these attacks if and only if the underlying
cryptographic mechanisms are secure and the client is honest.

In this section we use the model of Section 3.4 to evaluate these products.
We identify whether such implementations are faithful to our protocols and, if
not, identify the possible attacks that can be mounted against them. We expect
this type of evaluation to become an industry standard for hardware wallets,
so that vendors can improve the security and performance of their products by
employing formal verification methods, instead of empirical techniques.

For each implementation we focus on the two core wallet operations: address
generation and transaction issuing. Since all implementations are susceptible to
chain attacks, we focus on the viability of payment and address attacks in each
case. We show that Trezor and KeepKey are secure against payment and address

https://bitcoin.org/
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attacks, as long as the user follows the protocol and verifies the data, whereas
Ledger wallets are prone to address attacks, due to divergence from our model.

Trezor and KeepKey We investigate the implementation of the Trezor Model T
and KeepKey hardware wallets. Both products are implemented similarly, so we
will focus Trezor, since our findings also apply to KeepKey. Trezor provides a
touch screen for both displaying information and receiving input from the user.
Based on the developer’s guide3, which is publicly accessible, we describe an
abstraction of Trezor’s behavior under our model.

During address generation, Trezor requires that the user connects the token
to the client and unlocks it, i.e., the user initiates a session similar to our model
definition. The client then retrieves the address from the hardware token and
displays it to the user. The hardware also displays the address, as long as the
“Show on Trezor” option is enabled4. If this option is disabled, then the user
cannot verify the client’s address and is prone to an address attack, i.e., the
client might display a malicious address which the user cannot cross-check with
the hardware wallet. However, the user manual does urge the user to always
check the two addresses5, in order to avoid such attack scenarios.

During transaction issuing, the user again connects the device to the client
and unlocks it. Then she initiates a transaction by giving to the client the recip-
ient’s address, and the payment and fee amounts, similarly to our hybrid model
setting. The client initiates the transaction signing process with the hardware by
providing this data, which the token then displays to the user for verification6.
After the user has verified the transaction, the hardware communicates with the
client and signs the needed data7. Again, given our high level investigation, this
process matches the communication steps that our model describes.

Ledger We investigate the implementation of Ledger Nano S according to the
user manual8 and our own analysis. Similarly to Trezor, before performing any
operation the user is required to initiate a session by connecting the hardware to
the client and unlocking it. The hardware provides a small screen for displaying
information and a pair of two buttons for receiving commands from the user.

During the address generation, the client displays the newly generated ad-
dress to the user. However, there is no option for the hardware wallet to also
display the address9, so that the user can cross-check and verify the two. This
is a clear divergence from our model and allows for address attacks, e.g., by a
corrupted client that displays a malicious address to the user.
3 Trezor developer’s guide: https://wiki.trezor.io/Developers_guide
4 See: https://wiki.trezor.io/Developers_guide:Trezor_Connect_API_Methods
5 See: https://wiki.trezor.io/User_manual:Receiving_payments
6 See: https://wiki.trezor.io/User_manual:Making_payments
7 See: https://wiki.trezor.io/Developers_guide:API_Workflows
8 See: https://support.ledgerwallet.com/hc/en-us/articles/360009676633
9 Ledger has issued firmware update to address this issue and allow both the client
and the hardware to generate and display the address. However, the firmware needs
to be updated manually, a process that is commonly neglected by common users.

https://wiki.trezor.io/Developers_guide
https://wiki.trezor.io/Developers_guide:Trezor_Connect_API_Methods
https://wiki.trezor.io/User_manual:Receiving_payments
https://wiki.trezor.io/User_manual:Making_payments
https://wiki.trezor.io/Developers_guide:API_Workflows
https://support.ledgerwallet.com/hc/en-us/articles/360009676633
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The transaction issuing process is also similar to Trezor and captured by our
model: the user inputs to the client the transaction data, i.e., the recipient’s
address, and the payment and the fee amounts. The client forwards this data to
the hardware, which displays it to the user for verification. After receiving the
user’s confirmation, the hardware interacts with the client in order to sign and
publish the transaction.

6 Conclusion

The presented work is the first effort to formally describe Bitcoin wallets. We
focus on hardware wallets, as they are considered the most secure means of ac-
count management, while also being the least studied part of cryptocurrency
ecosystems, and devise a model to formally prove their security specifications.
We prove that their security is not one-dimensional and entirely based on secure
primitives as expected; external factors such as the client to which the hardware
connects and the user who operates the wallet play a major role in the overall
wallet’s security. Our model provides a guide for implementing and verifying
existing or future wallets. Indeed, by evaluating the Keepkey, Ledger and Trezor
wallets we show that security can only be guaranteed if the cryptographic prim-
itives are secure and if each party executes their protocol correctly. However,
since a user’s deviation from the protocol is to be expected, due to human errors
and usability problems of hash comparison techniques, future work will focus on
evaluating this error probability and proposing techniques to reduce such risk.
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A Security in the Hybrid Setting

Theorem 1 (Hybrid Wallet). Let the hybrid setting πhybrid, which is parame-
terized by a signature scheme Σ and a hash function H and interacts with GLEDGER
parameterized by RealValidateWrapper. πhybrid securely realizes the ideal func-
tionality Fw, which interacts with GLEDGER parameterized by IdealValidateWrapper,
if and only if Σ is EUF-CMA and H is an instantiation of the random oracle.

Proof. The “if” part For this part of the theorem we assume that the en-
vironment Z can distinguish between the ideal and the real execution with
non-negligible probability. We then describe a “generic” simulator S for each
adversary A, which emulates the interfaces defined by the functionality. S also
runs an internal copy of A and forwards the outputs of its computations to A. We
then construct a forger G that runs an internal simulation of the environment Z.
Thus, for each property assumption, we show that there exists a “bad” event E
such that, as long as E does not occur, the two executions are statistically close.
However, when E occurs, the environment Z distinguishes between the execu-
tions. At this point, G uses Z and outputs the values that break the property
under question. Therefore since, by assumption, E occurs with non-negligible
probability, we show that G is also succesful with non-negligible probability.

The simulator Let us now construct the generic simulator S. For every
interface defined by the ideal functionality, S completes the operations in the
manner defined by the protocols in the hybrid setting. It internally runs a copy
of the adversary A and forwards the necessary messages to it as defined in the
hybrid setting. So, the view of the A when it interacts with S is the same as in
the case it operates in the real world setting. S performs as follows:

– Any inputs received from the environment Z, forward them to the internal
copy of A. Moreover, forward any output from A to Z;

– Party Setup: For every party P for which Fw sends messages, spawn an
internal simulation of the parties for human U , client C and hardware wallet
H, which also interact with A as needed and run the protocols πhuman,
πclient and πhw respectively;

– Party Corruption:Whenever the adversary A corrupts a party, S corrupts
it in the ideal process and hands to A its internal state;

– (Setup, Initialize Session, Generate Address, Issue Transaction):
For any message for these interfaces, follow the protocols πhuman, πclient
and πhw for the human, client and hardware parties.

In order to prove the theorem regarding the properties of the signature
scheme we follow the reasoning of Canetti [10]. We will show the proof for the
unforgeability property of the signature scheme, as the proofs for the other prop-
erties are similar to it.

Unforgeability: Assume that consistency and completeness hold for Σ and
H instantiates the random oracle. In this case, the Setup, Initialize Session and
Generate Address interfaces are the same in the both settings from the adver-
sary’s point of view. Since, by assumption, Z distinguishes between the two, this
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occurs during the Issue Transaction phase, i.e., by observing a valid signature
of a transaction which has not been issued by the hardware wallet.

We now construct a forger G that runs a simulated copy of Z. G follows the
generic simulator as above, except for the transaction issuing interface. Upon re-
ceiving (Submit, sid, stx), where stx = (tx, vk, σ), it checks if Verify(tx, vk, σ) =
True. If so, it accesses the internal state of the hardware H and checks whether
it has issued stx. If so, then it continues the simulation. Else G outputs stx as a
forgery. Since, as long as this does not occur, the two executions are statistically
close and, by assumption, Z is succesful with non-negligible probability, then
the probability that G is also succesful is non-negligible.

The “only if” direction We show that if one property does not hold, then
the probability that the “bad” event E (as above) occurs is non-negligible, so
that the environment Z can distinguish between the real and ideal executions.

Again we prove the theorem for the unforgeability property - the proofs for
the other properties of Σ are constructed similarly.

Unforgeability: Assume that unforgeability does not hold for Σ, so there
exists a forgerG for Σ. When G wishes to obtain a signature for some messagem,
the environment sends the message (IssueTx, sid,m) and forwards the response
to G. When G outputs a forgery stx = (tx, vk, σ), if tx has been previously
signed then the environment halts. Else it sends stx to GLEDGER and observes
the ledger’s updates. In the ideal setting the transaction will be rejected by
the validation predicate and it will never be included in the ledger, whereas in
the real world the probability that the transaction is accepted and eventually
published in the ledger is non-negligible.

Finally, we show the proof for the address randomness property which ac-
companies the assumption that H instantiates a random oracle.

Address randomness: Assume that all properties for Σ hold. Now the
Setup, Initialize Session and Issue Transaction interfaces are similar in both
settings. So if Z distinguishes between the two worlds, then this occurs during an
address generation interaction. Specifically, it should observe addresses which are
not uniformly distributed over the space of possible addresses. This is impossible
in the ideal world by construction. However, if this was true for the real world,
then H would not instantiate the random oracle, therefore by assumption it is
impossible for Z to distinguish between the two worlds. ut
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